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Uniform shear flow in dissipative gases: Computer simulations of inelastic hard spheres
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In the preceding paper, we have conjectured that the main transport properties of a dilute gas of inelastic
hard spheres (IHSs) can be satisfactorily captured by an equivalent gas of elastic hard spheres (EHSs), pro-
vided that the latter are under the action of an effective drag force and their collision rate is reduced by a factor
(I+a)/2 (where « is the constant coefficient of normal restitution). In this paper we test the above expectation
in a paradigmatic nonequilibrium state, namely, the simple or uniform shear flow, by performing Monte Carlo
computer simulations of the Boltzmann equation for both classes of dissipative gases with a dissipation range
0.5<a=0.95 and two values of the imposed shear rate a. It is observed that the evolution toward the steady
state proceeds in two stages: a short kinetic stage (strongly dependent on the initial preparation of the system)
followed by a slower hydrodynamic regime that becomes increasingly less dependent on the initial state. Once
conveniently scaled, the intrinsic quantities in the hydrodynamic regime depend on time, at a given value of «,
only through the reduced shear rate a”(f) <a/ V“'T(t), until a steady state, independent of the imposed shear rate
and of the initial preparation, is reached. The distortion of the steady-state velocity distribution from the local
equilibrium state is measured by the shear stress, the normal stress differences, the cooling rate, the fourth and
sixth cumulants, and the shape of the distribution itself. In particular, the simulation results seem to be
consistent with an exponential overpopulation of the high-velocity tail. These properties are common to both
the IHS and EHS systems. In addition, the EHS results are in general hardly distinguishable from the IHS ones
if @=0.7, so that the distinct signature of the IHS gas (higher anisotropy and overpopulation) only manifests

itself at relatively high dissipations.

DOI: 10.1103/PhysRevE.72.031309

I. INTRODUCTION

A granular gas in the rapid flow regime is usually mod-
eled as a system of smooth inelastic hard spheres with a
constant coefficient of normal restitution a. The key ingredi-
ent of this minimal model is that energy is not conserved in
collisions: in every binary collision, an amount of energy
proportional to 1—a? is transferred to the internal degrees of
freedom and thus it is lost as translational kinetic energy.
Therefore, the gas “cools” down and the granular tempera-
ture monotonically decreases in time unless energy is exter-
nally injected into the system to compensate for the colli-
sional loss. If this energy injection takes place through the
boundaries (e.g., vibrating walls, thermal walls, sliding
walls, ...) a nonequilibrium steady state can be reached char-
acterized by strong spatial gradients in basic average quanti-
ties, such as density, mean velocity, or temperature. Kinetic
theory tools can be straightforwardly extended to granular
gases and, in particular, the Boltzmann and Enskog kinetic
equations have been formulated for inelastic collisions [1-3].

In the preceding paper [4], we have suggested that the
nonequilibrium transport properties of a genuine gas of in-
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elastic hard spheres (IHSs) can be accounted for, to some
extent, by an “equivalent” gas of elastic hard spheres
(EHSs). This requires the inclusion of two basic points. First,
the EHS are assumed to feel the action of a drag force with a
friction coefficient that mimics the collisional cooling rate of
the true IHS gas. This guarantees that the local energy bal-
ance is approximately the same in both systems. Second, the
collision rate of the EHS gas must be decreased by a factor
B(a) with respect to that of the THS gas at the same (local)
density and temperature. This can be interpreted under the
assumption that, while the EHS have the same mass m as the
IHS, they have a diameter ¢’ =320 (where henceforth we
are restricting ourselves to three-dimensional systems)
smaller than the diameter o of the IHS. Comparison between
some basic collision integrals for IHS and EHS suggests the
simple choice B:;—(l +a) [4] to optimize the agreement be-
tween both descriptions.

The aim of this paper is two fold. First, we want to assess
to what extent the EHS gas succeeds in mimicking the trans-
port properties and other quantities of the IHS gas by choos-
ing the most widely studied nonequilibrium state, namely the
simple or uniform shear flow (USF). Since the USF state is
intrinsically non-Newtonian [5,6], it provides an interesting
test case to check whether or not the IHS and EHS gases
behave similarly in extreme situations far from equilibrium.
As we will see, it turns out that most of the nonequilibrium
properties of both types of system are practically indistin-
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guishable for degrees of dissipation as large as a=0.7. For
higher dissipations, the agreement is still at least semiquan-
titative. The second goal of the paper is to carry out a rather
extensive study of the most relevant properties of the USF in
dissipative gases. This study includes the unsteady or tran-
sient regime (usually neglected in previous studies), which
can be decomposed into a kinetic stage followed by a hydro-
dynamic stage. In the steady state we pay special attention
not only to the rheological properties, but also to the velocity
cumulants and to the distribution function itself.

The paper is organized as follows. The Boltzmann equa-
tion for both types of system, IHS and EHS, is briefly re-
called in Sec. II, where part of the notation is also intro-
duced. This is followed in Sec. III by a description of the
USF and of the main quantities of interest. Section IV is
devoted to some details of the numerical simulation method
employed to solve the Boltzmann equation for each class of
systems. The most important part of the paper is contained in
Sec. V, where the results for the transient and steady-state
problems are presented and discussed. When possible, the
simulation data are also compared with predictions from a
simple kinetic model [4,7]. The paper is closed by some
concluding remarks in Sec. VL.

II. BOLTZMANN EQUATION

In a kinetic theory description the relevant quantity is the
one-particle velocity distribution function f(r,v;z). Its first
five moments define the number density

n(r,t) = J dvf(r,v;t), (2.1)
the nonequilibrium flow velocity
1
u(r,t)=——— | dvvf(r,v;1), (2.2)
n(r,t)
and the granular temperature
m 2
T(r,t) = avVe(r,0)f(r,v:t), (2.3)
3n(r,1)

where m is the mass of a particle and V(r,7)=v—u(r,?) is
the peculiar velocity. The hydrostatic pressure p=nT is one
third the trace of the pressure tensor P defined as

P(r,t):mfde(r,t)V(r,t)f(r,v;t). (2.4)

A. Inelastic hard spheres

The evolution of f in the low-density limit is governed by
the Boltzmann equation. In the case of a gas of IHSs, it reads

[1-3]
((9[+V' V)f:J(a)[f’f]’ (25)

where JW[f,f] is the Boltzmann collision operator
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Jffl= 0 f dv, f do®(g- o)(g- &)
X[a2f(V")f(V]) = FV)F(V)],

the explicit dependence of f on r and ¢ having been omitted.
In Eq. (2.6), o is the diameter of a sphere, © is the Heaviside
step function, ¢ is a unit vector directed along the centers of
the two colliding spheres at contact, g=v—v, is the relative
velocity, and « is the coefficient of normal restitution. The
precollisional or restituting velocities v” and v{ are given by

(2.6)

" l+a o " l+a A
Vi=vy- (g-0)o, Vi=vi+—I(g- 0)0,
2a a0
(2.7)
while the direct collision rule is
1+« A , 1+« .
vi=v- (g-0)o, vi=vi+—(g-0)0.
2 2
(2.8)

The inelasticity of collisions contributes to a decrease of
the granular temperature 7(z), i.e.,

n J AVVAI O f.f] = - (T, (2.9)
3n

where { is the cooling rate. By standard manipulations of the
collision operator, the cooling rate can be written as [2,7]

~1 3/2
Z <@> V31 - ),

=— 2.10
48\ T ( )

where
1
<V?2>=;de1JdV2|V1—V2|3f(V1)f(V2) (2.11)

is the (local) average value of the cube of the relative speed
and

T= L (2.12)
\2T/m
is a (local) characteristic time,
A= (V2mo?)! (2.13)

being the (local) mean free path. Note that the cooling rate ¢
is a nonlinear functional of the distribution function f
through the average (V?2> and cannot be explicitly evaluated
without the knowledge of f. Nevertheless, a simple estimate
is obtained from Eq. (2.11) by replacing the actual distribu-
tion function f by the local equilibrium distribution

fo(v) = n(m/27T)>? exp(— mV?/2T). (2.14)
In that case,
0T 372
<V?2>H<V?2>0=V,_~<n_1) . (2-15)

Insertion of this approximation into Eq. (2.10) yields the
local equilibrium cooling rate [7,8]
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2 ~1
fo=""=(1- ).

2.16
W (2.16)

This local equilibrium estimate is still a functional of f, but
only through the local density and temperature, i.e.,
onT"2. In addition, its dependence on inelasticity is simply
go o] — az.

The characteristic time 7 defined by Egs. (2.12) and (2.13)
is of the order of the (local equilibrium) mean free time 7T,
namely,

N Vr
T™MET= S = 5 Ts (2.17)
Mo 2

where in the last step we have taken into account that the
mean (peculiar) speed is (V)—(V),=v8T/7rm in the local
equilibrium approximation. It is also convenient to introduce
a characteristic time 7,, associated with the momentum trans-
fer or viscosity. Its expression is

5\
7= = 1016™ .

2.18
=T (2.18)

where 7,=1.016 X 5ymT/w/160” is the Navier-Stokes shear
viscosity in the elastic limit (a¢—1) [9]. Note that 7,/7
= ’T/'T]v“:‘Tz 1.13.

B. (Frictional) elastic hard spheres

Now we consider a dilute gas of elastic hard spheres
(EHS) of the same mass m as the IHS but with a diameter
o' =[B(a@)]"?>c smaller than that of the THS. As a conse-
quence, the characteristic time 7' and the mean free path N’
of the EHS gas are [10]

T = L, N = l(\51111'02)_1.
\2T/m B

(2.19)

Furthermore, we assume that the EHS are under the influ-
ence of a drag force Fy.,,=—my(a)V with a friction constant
'y(a):%go(a), where () is given by Eq. (2.16). Therefore,
the Boltzmann equation for the (frictional) EHS gas is

(aﬁv-V— @i-v>f:m“>[f,f], (2.20)
2 ov

where the elastic collision operator JI)[f,f] is given by Eq.
(2.6) by setting @=1 both explicitly and in the collision rule
(2.7), but keeping the factor o2. Henceforth, when referring
to the EHS system, we will always understand that the par-
ticles are frictional, in the sense that the external force F g,
is acting on them [11].

Friction produces in the EHS gas a cooling effect charac-
terized by the rate {y(«). This is intended to mimic the cool-
ing effect in the IHS gas due to the collisional inelasticity,
which is characterized by the rate {(«) given by Eq. (2.10).
Both cooling rates are quantitatively close to each other as
long as the density and temperature are similar in both sys-
tems and Eq. (2.15) is a good approximation. In principle,
we could consider a friction constant y=3{(Vi,)/(V3,)o, 50
that the cooling rate of the EHS would be the same func-
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tional of f as in the IHS case. However, this would compli-
cate excessively the EHS model without a correlated gain in
accuracy, as we will see in Sec. V C.

The parameter B(a)=(c"/0)? can be adjusted to optimize
the agreement between the physically most relevant integrals
involving J[f,f] and BJ(')[f,f]+%§O&V~(Vf). The simplest
choice is [4]

poita 2.21)
2

Of course, the IHS and EHS gases described by the Boltz-
mann equations (2.5) and (2.20), respectively, are intrinsi-
cally different. However, it might be possible that the main
transport properties, which are measured by low-velocity
moments such as in Egs. (2.1)—(2.4), are similar in both sys-
tems. As said in Sec. I, one of the goals of this paper is to
check this expectation in the case of the uniform shear flow

[12].

III. UNIFORM SHEAR FLOW

The uniform (or simple) shear flow (USF) is perhaps the
nonequilibrium state most widely studied, both for granular
[6,13-40] and conventional [41] gases. In this state the gas is
enclosed between two infinite parallel planes located at y=
—L/2 and y=+L/2 and in relative motion with velocities
-U/2 and +U/2, respectively, along the x direction. The
planes do not represent realistic bounding walls, in contrast
to what happens in the true Couette flow [42]. Instead, the
planes represent virtual boundaries where the Lees-Edwards
boundary conditions are applied [43,44]: every time a par-
ticle crosses one of the planes with a given velocity v, it is
reentered at once through the opposite plane with a velocity
v’ such that the relative velocity with respect to the plane is
preserved, i.e., v/ =v—UZX if the particle is reentered through
the bottom plate and v’ =v+ UX if it is reentered through the
top plate. In terms of the velocity distribution function, these
generalized periodic boundary conditions read

fy==x=LR2,v;))=f(y= F LI2,v ¥ Ux;1). (3.1)

This process injects energy into the system. Suppose a
particle with a velocity v crosses the top plane (i.e., v,>0);
it is then transferred to the bottom plane with a new velocity
v’ =v—UX. The change in kinetic energy is therefore propor-
tional to v'?—v?=2U(U/2-v,), which is positive (negative)
if v,<U/2(v,>U/2). Thus, some particles gain energy
while other particles lose energy through the boundary con-
ditions. On the other hand, the shearing motion tends to pro-
duce a negative shear stress (P,,<0), so that particles mov-
ing upward near the top wall preferentially have v,—U/2
<0. Therefore, v'2~v>>0 on average. This viscous heating
effect tends to increase the temperature, in opposition to the
cooling effect due to the inelasticity of collisions (in the THS
case) or to the drag force (in the EHS case).

Starting from a given initial condition f(r,v;0), and after
a certain transient regime, the system is expected to reach a
nonequilibrium steady state where the above heating and
cooling effects cancel each other. By symmetry reasons, this
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steady state is characterized by uniform density and tempera-
ture, and by a linear velocity profile u(r)=ayX, where a
=U/L represents the imposed shear rate. More generally, the
steady distribution function becomes uniform when the ve-
locities of the particles are referred to the Lagrangian frame
of reference comoving with the flow velocity [44]:

fle,v) = f(V),

If the initial distribution function f(r,v;0) depends on space
only through the coordinate y normal to the plates, this prop-
erty is maintained by the Boltzmann equations (2.5) and
(2.20), so that one can make

V=v-ayx. (3.2)

v.-V—ou,— (3.3)

) ay
Furthermore, if f(r,v;0) is consistent with the symmetry
property (3.2), again this is maintained by the Boltzmann
equations (2.5) and (2.20), which implies that

v-V— aV_\,&Vx. (3.4)
In this latter situation, Egs. (2.5) and (2.20) become spatially
homogeneous equations since, in agreement with Eq. (3.5),
the effect of convection is played by the nonconservative
inertial force Fgyeo,=—maV,X. In what follows, we will refer
to the transient solution of Egs. (2.5) and (2.20) with the
replacement (3.4) as the homogeneous transient problem.

On the other hand, if the initial distribution depends spa-
tially on y only but does not become uniform under the trans-
formation (3.2), then the replacement (3.3) is valid but Eq.
(3.4) is not. In that case, Egs. (2.5) and (2.20) cannot be
made equivalent to uniform equations and their transient so-
lutions define the inhomogeneous transient problem.

For the inhomogeneous transient problem we will con-
sider two different initial states. The first one is the equilib-
rium state

{3mm) ool-57)
f(r,v;0)=n >0 exp 279 ) (3.5)
where 72 and T° are constants [45]. The gas is initially at rest
(in the laboratory or Eulerian frame), but almost immediately
the Lees-Edwards boundary conditions produce fluid motion
near the walls, this motion being subsequently propagated to
the rest of the system through free streaming and collisions.
Eventually the flow velocity reaches the linear profile u,(y)
=ay. The transient period from u,=0 to u,=ay induces in-
homogeneities in the density and temperature profiles, even
though these quantities are initially uniform. As a second
choice for the initial state we will take the distribution

(y)

frv;0) == 5 v - ul)] - V], (3.6)
where the initial density and velocity fields are
1 21y
Oy)=n|1+ = si —) 3.7
n’(y) n( 5 sin = (3.7)
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u’(y) = U(cosﬂ—g)ﬁ, (3.8)
L =

respectively, while the initial temperature T0=mV?"/3 is uni-
form. The initial state (3.6) is very different from Eq. (3.5).
Now, all the particles have the same magnitude V° of the
peculiar velocity. In addition, the initial density and flow
velocity fields have the opposite symmetries to the ones im-
posed by the boundary conditions n°(-y)—i=-[n’(y)-i]
and u’(—y)=u’(y). Therefore, high gradients are expected
during the period of time before the boundary conditions,
i.e., establish a linear velocity profile and uniform density
and temperature.

Regardless of the initial preparation of the system, con-
servation of the total number of particles implies that the
average density coincides for all times with the initial value

i, i.e.,
e
n= —J dy n(y,1). (3.9)
L) 1
However, the average temperature
B | (L2
T() = — dy n(y,0)T(y,t) (3.10)
nLJ_ip

changes in time during the transient regime as a consequence
of the competition between the dissipative cooling and the
viscous heating.

A physically motivated way of measuring time is through
the accumulated number of collisions per particle s(z) from
the initial state to time 7. In the local equilibrium approxima-
tion s(¢)=s,(¢), where

n(y,t")

SO(I)_E\W’IL-{ J—L/z 7()’,5/).

Here, the local characteristic time 7(y,?) is given by Egs.
(2.12) and (2.13). The factor l takes into account that two
partlcles are involved in each collision, whlle the factor
2/\m accounts for the relation Tmpp! 7=V 712 [see Eq.
(2.17)]. Note that s((z) is the (local equilibrium) number of
collisions per particle of the IHS gas. The equivalent quantity
for the EHS gas, s;(¢), is obtained from Eq. (3.11) by using
the corresponding local characteristic time 7/(y,f) defined by
Eq. (2.19), instead of 7(y,7). In principle, s;(z) # Bsy(t) and,
more generally, s'(7) # Bs(z), unless the density and tempera-
ture profiles, and their history, are the same in both systems
[10]. We will come back to this point in Sec. V B.

In the analysis of the homogeneous transient problem, we
will start from a local equilibrium initial state

3
f(r,v;0) = ﬁ(#) exp{_

(3.11)

m 22
—(v—ayXx)~|.
StV —ay%) ]

(3.12)
In this case, the initial state is already uniform in the La-

grangian frame [see Eq. (3.2)], so that the velocity field is
kept linear, u,=ay, the density is constant, n=n, and the
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temperature is uniform, T(y,f)=T(z). Consequently, Eq.
(3.11) becomes

dt
so(t) = T(t )’ (3.13)
with a similar equation for s(’)(t) in the EHS case. Apart from
the temperature 7(r) and the elements P;(t) of the pressure
tensor, we will also evaluate in the homogeneous transient
problem the ratio (V3,)/(V3,),, as well as the fourth and sixth
cumulants

U S )
Ty BTy

where (V*)o=15(T/m)? and (V®),=105(T/m)>. We recall that
the quantity (V?2> is directly related to the cooling rate of the
IHS gas via Eq. (2.10), while the cumulants are measures of
the deviation of the energy distribution from the Maxwellian.
Those deviations will also be monitored through the ratios

+ 1+ 3a,, (3.14)

Wit

dVV2 J dVf(V,1)

R(t) = , 1=0,1,2,3.

W1 | R
J dvv? f dVfy(V,1)

Wi
(3.15)

R/(#) is the fraction of particles that at time # move with a
speed between W, and W, divided by the same fraction in
local equilibrium. We have taken for the integration limits
the values W;=C;\2T()/m with Cy=0, C,=1, C,=2, C;
=3, and Cy=

In either transient problem, the final steady-state tempera-
ture 7, is smaller or larger than the initial value 7° depending
on whether initially the dissipative cooling dominates or is
dominated by the viscous heating, respectively. By dimen-
sional analysis, 7, is proportional to ¢’ times a certain func-
tion of a, being independent of 7°. Stated differently, the
steady state is such that when the steady-state characteristic
time 7, TS”2 is nondimensionalized with the constant shear
rate a, then it becomes a function of a only. More generally,
the reduced steady-state velocity distribution function

2T, \%
f(C)— (?) fv(V) C_\W’ (3-16)

S

depends on « but is independent of the shear rate a and the
initial preparation of the system. Owing to the symmetry
properties of the USF

‘fj:(cx’ Cy’ Cz) =fj(cx, Cy’_ C;') =f;(_ Cx’_ Cy’ Cz)

(3.17)

Since fj(C) depends on the three velocity components in a
nontrivial way, it is difficult to visualize it, so that it is con-
venient to consider the following marginal distributions:

- [ ac acocpio.
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gi(C,) = f dc. f dCO=C)f,(C), (3.19)

F(C)=C? f dCf(C). (3.20)

The function g(+)(Cx) is the distribution of the x-component

of the velocity of those partlcles moving upward (i.e., with
C,>0). The functions g ). g +)(C ), and g< )(C ) have a
sumlar meaning. The symmetry propertles (3. 17) imply that

gy =gl (- ).

While the functions (3.18) and (3.19) provide information
about the anisotropy of the state, F(C) is the probability dis-
tribution function of the magnitude of the peculiar velocity
(in units of the thermal speed), regardless of its orientation.

gP(cy=¢(-cy, (3.21)

IV. MONTE CARLO SIMULATIONS

We have solved numerically the Boltzmann equation (2.5)
for the THS system and the Boltzmann equation (2.20) for the
EHS system by means of the direct simulation Monte Carlo
(DSMC) method [46-48]. For the sake of completeness, we
give below some details about the application of this method
to our problem.

A. Inhomogeneous transient problem

The USF has been implemented in the inhomogeneous
transient problem by applying the Lees-Edwards boundary
conditions (3.1), using the form (3.3) for the convection op-
erator, and starting from the initial distribution (3.5) and
(3.6). The separation between the boundaries has been taken
as L=2.5\" and the shear rate has been fixed at a7®=4,
where

0

N = (\Eﬂ'ﬁol)_l, L=

\ZYO/m “.)

are the initial (global) mean free path and characteristic time,
respectively, of the IHS gas. The coefficient of restitution for
the IHS has been taken as @=0.9. This same value has been
taken in the EHS case for the friction constant y= %{0 and the
factor B, as given by Eqgs. (2.16) and (2.21), respectively.

According to the DSMC method [46,47], the system is
split into M layers of width Sy=L/M. The velocity distribu-
tion function is represented by the positions {y,(¢)} and ve-
locities {v;(¢)} of a set of N simulated particles:

N
fovin) = 53 S - ) —v). @2)
i=1

where A=(N/L)/n is a constant formally representing the
area of a section of the system normal to the y axis, so that
Ay represents the volume of a layer. The number of par-
ticles inside a given layer I=1,...,M is
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N

Ni(D) = 2 0,(3:(1)), (4.3)
i=1

where O,(y) is the characteristic function of layer I, i.e.,

O,(y)=1 if y belongs in I and ©,(y)=0 otherwise. The

(coarse-grained) number density, mean velocity, temperature,

and pressure tensor of layer / are

ny(r) = N’(t) (4.4)
w (0= ()2 0,(vi(N)V(2), (4.5)
1
T0=33 0 2®,(y Vi) —uw()P,  (4.6)
1

P,(r) = —E O,y e)vi(r) -

Asy S —w(O]vi(t) —uy(D)].

4.7)

The average temperature and pressure tensor along the sys-
tem are given by

M
(0=~ S NOT ), (4.8)
=1

M
_ 1
P(r)=—2 P)2). 4.9
() Mz (1) (4.9)
The positions {y;(r)} and velocities {v,(¢)} of the particles

are updated from time ¢ to time ¢+ ¢ in two stages.
(1) Free streaming. In this stage,

yilt+8t) =y, (t) + v, (1) ot (4.10)

If particle i crosses the top wall, i.e., y,(t+ 8f) > L/2, then its
position and velocity are redefined as

yit+ 6t) — yi(t+ &)=L, vit) — v(t) —alX.

(4.11)

A similar action takes place if particle i crosses the bottom
wall, i.e., y;(t+ 8t) <—-L/2. In the case of IHS, the velocities
are not modified during the free streaming stage. In the case
of EHS, however, the action of the (local) friction force
yields

£(t) o2 )

vi(t+ 8t) =u,(t) + [vi(t) —u,t)]e” (4.12)

Here, I is the layer where particle i sits at time ¢ and (1)
o n,(t)\T,(t)(1-a?) is th -grained ion of -
HONT; a”) is the coarse-grained version of the cool
ing rate ¢, defined by Eq. (2.16).
(2) Collision stage. In this stage, a number

N owot
N, = —=1——= (IHS), (4.13a)
" o\aNma N0
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1\72 WI(St

= Bla ) LTIV (EHS) (4.13b)

of candidate pairs are randomly selected for each layer /. In
Egs. (4.13), \° is given by Eq. (4.1) and w;> \/T_,(% is an
upper estimate of the maximum relative speed in layer /. The
collision between each candidate pair ij is accepted with a
probability equal to v;;/w;, where v;; is the relative speed. If
the collision is accepted a dlrectlon o is chosen at random
with equiprobability and the velocities (v;,v;) are replaced
by (v;,v}), according to the collision rule (2.8) with <1
(THS) or a=1 (EHS).

The numerical values for the “technical” parameters are
as follows. The layer thickness is SL=0.05\" (i.e., the num-

ber of layers is M =50), the time step is 6r=107\VT°/T (so
that it changes in time as the global characteristic time 7

o1/ \/;" does), and the total number of particles is N=10%.
The hydrodynamic quantities (density, flow velocity, tem-
perature, and pressure tensor) are updated every 4 time steps
and recorded every 160 time steps. Moreover, in order to
improve the statistics, all the quantities are further averaged
over three independent realizations of the system.

B. Homogeneous transient problem

In the homogeneous transient problem the USF is imple-
mented by working directly in the Lagrangian frame of ref-
erence [see Eq. (3.2)] and using Eq. (3.4). Since the resulting
Boltzmann equation is uniform, only the (peculiar) velocities
{Vi(1)} of the N particles need to be stored and there is no
need of splitting the system into cells or applying boundary
conditions. The velocity distribution function is described by

N

1
52 8V -V,1),

i=1

fVit) — (4.14)

where the constant () =N/ formally represents the volume
of the system. The temperature and the pressure tensor are
evaluated as

N
1) = -2 V(). (4.15)
i=1
N
P(1) =2 ViOVi(0). (4.16)
i=1

Analogously, the fourth and sixth cumulants of the distribu-
tion function [see Eq. (3.14)] and the ratios R; [see Eq.
(3.15)] are computed as

N

m 1
a,(t) = m;j% V?(t) -1 (4.17)
3 1 N
as(1) = =DV +1+3a(1), (4.18)

10T (NS
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—1

P(Cp1) = P(C)
N

X 2 OVi(1) = W(0)O (W, (1) - Vi(1)),

i=1

R/(1) =

(4.19)

where P(x)zerf(x)—er‘xz/ V7, erf(x) being the error func-
tion. In order to evaluate the average of the cube of the
relative speed, a sample of N, pairs is randomly chosen out
of the total number N(N—1)/2 of pairs, so that

V0= V0 V0]

pij

(4.20)

The velocity update {V,(r)} —{V,(t+ &)} takes place again
in two stages. In the free streaming stage for IHS, only the x
component of the velocities change according to the inertial
force Fyeqr=—maV,X:

Vit + 0t) = Vi (1) = Vi (t)adt. (4.21)

On the other hand, for EHS we have the drag force Fgp,,=
-m({y/2)V in addition to Fy,.,,, so that

Vit + 1) = [V, (1) = Vi, (Hadr]e %0972,

Vit +01) = Vi, (D) 0972 (4.22)

where ¢,(z) is given by Eq. (2.16) with 7()=\"/\2T(¢)/m.

The collision stage proceeds essentially as in the inhomo-
geneous case, except that formally the number of layers is
M=1. Therefore, a number

]Y_Wk—f’ (IHS), (4.232)
N = B( )%WA—? (EHS) (4.23b)

of candidate pairs are randomly selected out of the total
number of pairs in the system, w \/Ft) being an upper es-
timate of the maximum value of the relative speeds {V;;} in
the whole system.

In the simulations of the homogeneous transient problem
we have considered two values of the shear rate (a7’=4 and
a1°=0.1) and ten values of the coefficient of restitution («
=0.5-0.95 with a step Aa=0.05), both for IHS and EHS.
This gives a total of forty different systems simulated. How-
ever, in the discussion of the transient problem we will
mainly report results corresponding to «=0.5 and a=0.9.
Once a steady state is reached, its properties are obtained by
averaging the fluctuating simulation values over time. In the
analysis of the steady state all the values «=0.5-0.95 will be
considered. The technical parameters of the homogeneous
simulations are 8t=10737"\7%/T (the average quantities be-
ing updated every 4 time steps and recorded every 160 time
steps), N=10%, and N,=2.5X 104
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FIG. 1. (Color online) Accumulated number of collisions per
particle as a function of time for IHS [s(z), smooth solid line] and
EHS [s'(¢), smooth dashed line] in the case a=0.9, a7?=4. The
fluctuating solid line represents the ratio s'(r)/s(t), the correspond-
ing scale being that of the right vertical axis. The data have been
obtained starting from the initial distribution function (3.5).

V. RESULTS

In this section we present the simulation results obtained
for the main physical quantities in the USF and compare the
properties of the genuine IHS gas with those of the EHS gas.

A. Inhomogeneous transient problem

As said in Sec. IV, the initial distribution function in the
inhomogeneous transient problem is either that of equilib-
rium, Eq. (3.5), or a strongly nonequilibrium one, Eq. (3.6).
We have restricted ourselves to a coefficient of restitution
a=0.9 and a shear rate a=4/7’0=(4/0.95)/70,, where 70 and

=7 B(a)=17°/0.95 are the initial (global) characteristic
times of the IHS and EHS gases, respectively. The values of
a and «a are such that the viscous heating initially prevails
over the dissipative cooling (either collisional or frictional)
and so the temperature increases and the mean free time
decreases.

We will mainly monitor the temporal evolution of the
physical quantities by using an internal clock, namely, the
accumulated number of collisions per particle s(¢) (IHS) and
s'(t) (EHS), rather than the external time ¢. The quantities
s(t) and s'(r) are computed directly by dividing the total
number of accepted collisions until time ¢ by the total num-
ber of particles; in general, they slightly differ from the local
equilibrium values sy(f) and sq(¢) [see Eq. (3.11)]. Insofar as
the velocity distribution function f(y,v;#) is similar in both
systems, one can expect that s'(¢)/ B(a) =s(z) [10]. Figure 1
shows s(7) and s'(7) as functions of time in the case of the
initial state (3.5). The slopes of those curves are directly
related to the respective temperatures; both slopes increase
monotonically until becoming constant for #/7°=8. As ex-
pected, the accumulated number of collisions in the EHS gas
up to any given time ¢ is smaller than in the IHS gas, i.e.,
s'(r)<s(r). Figure 1 also shows the temporal evolution of the
ratio s'(¢)/s(¢). It fluctuates around B(a)=0.95 up to t/7°
=4 and stays very close to 0.95 thereafter. This already pro-
vides an indirect validation of the practical equivalence be-
tween the profiles and history of the hydrodynamic quantities
in both systems.
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FIG. 2. (Color online) Hydrodynamic profiles for IHS (solid lines) and EHS (dashed lines) in the case a=0.9, ar’=4, at times /7"
=0.13, 0.5, 1, 1.5, and 2. The data have been obtained starting from the initial distribution function (3.5) (curves without symbols) or (3.6)

(curves with symbols).

Figure 2 shows the velocity, density, and temperature pro-
files at times 7/ 7=0.13, 0.5, 1, 1.5, and 2.0. The correspond-
ing accumulated numbers of collisions per particle (for IHS)
are s=0.08, 0.4, 1.1, 2.1, and 3.4 in the case of the initial
distribution (3.5), and s=0.09, 0.5, 1.5, 2.8, and 4.6 in the
case of the initial distribution (3.6). By time #/7°=0.13 only
about 16—18% of particles have collided, so that the devia-
tions from the initial profiles are essentially due to the
boundary conditions. As a consequence, at t/7°=0.13 the
flow velocity is almost the initial one everywhere except in
the layers adjacent to the walls; moreover, those layers have
a much larger temperature than the bulk, while the number
density is still practically unchanged. As time advances, the
more energetic particles near the boundaries travel inside the
system and transfer part of their momentum and energy to
the other particles by means of collisions. This produces a
stretching of the shape of the velocity profile as well as a
homogenization of temperature. The layers adjacent to the
walls are first partially depopulated in favor of the central
layers, but as the velocity profile becomes linear and the
temperature becomes uniform, so does the density. In sum-
mary, Fig. 2 clearly shows that the hydrodynamic profiles
freely evolve toward the characteristic profiles of the USF,
regardless of the initial preparation of the system. It must be
noted that, although the USF is known to be unstable with
respect to excitations of sufficiently long wavelengths
[19,21,23,29], the size of the simulated systems (L=2.5\°) is

small enough to suppress such an instability. As a matter of
fact, a recent analysis from kinetic theory [49] shows that at
«=0.9 the instability does not appear unless L=25\".

For the sake of clarity of the graphs, in the remainder of
this subsection we restrict ourselves to present simulation
results obtained from the initial distribution (3.5). To monitor
the time needed to establish a linear velocity profile and
uniform density and temperature, we have followed the evo-
lution of those quantities averaged over the four central lay-
ers (-28y<y=<2dy) and over the three top layers (L/2
-38y<y<L/2). The results are displayed in Fig. 3. The
flow velocity at y=0 fluctuates around zero, as expected by
symmetry, whereas the velocity near the top wall monotoni-
cally increases (except for fluctuations) toward the wall ve-
locity U/2. The maximum density difference appears after
about one collision per particle, while the maximum tem-
perature difference appears earlier at s=0.15. The character-
istic hydrodynamic profiles of USF, i.e., linear velocity and
uniform density and temperature, are reached approximately
at s=4 (which corresponds to a “real” time ¢/ 7’ =2.2). From
this time on, the evolution proceeds essentially as in the ho-
mogeneous transient problem.

In Figs. 2 and 3 we have scaled the local temperature
T(y,r) with respect to its average value 7(7) in order to focus
on the transient period toward uniformity. However, once the
system becomes “homogeneous” [in the sense of Eq. (3.2)]
at s=4, the temperature keeps evolving in time until the
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FIG. 3. (Color online) Evolution of the flow velocity, the den-
sity, and the temperature around y=0 and y=L/2-(3/2)dy for IHS
(solid lines) and EHS (dashed lines) in the case a=0.9, ar®=4.
Time is measured by the accumulated number of collisions per
particle (s) in the case of IHS and by the same quantity, but divided
by B, (s'/B) in the case of EHS. The data have been obtained
starting from the initial distribution function (3.5).

steady state is reached. This is observed in the top panel of

Fig. 4, which shows the evolution of 7/T°. We note that the
total transient period is much longer than the duration of the
inhomogeneous state. The temperature reaches a stationary

value much larger than the initial one (7,/7°=147) at s
=50 (¢/7°=9.8). Stationarity of temperature does not nec-
essarily imply that the steady state has been reached since, in
principle, the particles could redistribute their velocities
along time without altering the mean kinetic energy. A strong
indication that this is not actually the case is provided by the
bottom panel of Fig. 4, which shows the evolution of the
(reduced) shear stress —ﬁx},/ﬁf and the (reduced) normal
stress difference (IBXX—IBy},)/ aT. These two quantities reach
stationary values —}_’xy,s/ nT,=0.33 and (P, ,~P,,)/7T,
=0.24 after s=40 (t/7=8.3).

In the above comments on Figs. 2-4 we have focused on
the physical features of the transient toward the steady-state
USF, without distinguishing between the IHS and EHS sys-
tems. In fact, as Figs. 2—4 show, the results concerning the
hydrodynamic quantities and their fluxes are practically iden-
tical in both systems, even when high gradients are transito-
rily present. Therefore, the transport properties of a gas of

Yy8
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FIG. 4. (Color online) Evolution of T/T° (top panel) and
—sty/ aT and (I_’xx—l_’yy)/ T (bottom panel) for IHS (solid lines) and
EHS (dashed lines) in the case a=0.9, a7’=4. Time is measured by
the accumulated number of collisions per particle (s) in the case of
THS and by the same quantity, but divided by B, (s’/) in the case
of EHS. The data have been obtained starting from the initial dis-
tribution function (3.5).

IHS can be satisfactorily mimicked by a gas of EHS having
an adequate diameter and subject to an adequate friction
force. However, although a coefficient of restitution a=0.9 is
rather realistic, it is reasonable to expect that this approxi-
mate equivalence IHS <= EHS deteriorates as dissipation in-
creases. To analyze this expectation we have considered
other values of « in the homogeneous transient problem and,
especially, in the steady-state properties.

B. Homogeneous transient problem

As discussed in Sec. III, the Boltzmann equation for USF
allows for solutions which are spatially uniform when the
velocities are referred to the (local) Lagrangian frame of ref-
erence [see. Eq. (3.2)]. The simulation of the corresponding
Boltzmann equation by the DSMC method is much simpler
than in the inhomogeneous problem, as described in Sec.
IV B. In these homogeneous simulations we have considered
a=0.5-0.95 (with a step Aa=0.05) and two values of the
shear rate, namely a™=4 and a7®=0.1. The former value is
large enough to make viscous heating initially dominate over
(inelastic or frictional) cooling, even for a=0.5, so that
T(t)>T°. Conversely, a7’=0.1 is small enough to produce
the opposite effect, 7(r) <7°, even for «=0.95. On the other
hand, at a given value of «, the intrinsic steady-state proper-
ties must be independent of the value of the shear rate, and
this will provide an important indicator to determine whether
the steady state has been reached or not.

Although we have performed simulations for the ten val-
ues a=0.5-0.95, in this subsection we will focus on two
values: a=0.9 (moderately small dissipation) and «=0.5
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FIG. 5. (Color online) Accumulated number of collisions per
particle as a function of time for IHS [s(¢), solid lines] and for EHS
[s'(7), dashed lines], in the latter case divided by B:%(l +a), in the
cases a=0.5, 0.7, and 0.9. The left panel corresponds to a shear rate
a™=4, while the right panel corresponds to a7’=0.1. The dotted
lines are the predictions obtained from the solution of a BGK
model. Note that in the right panel the curves corresponding to IHS,
EHS, and BGK at a=0.9 are practically indistinguishable. The data
have been obtained starting from the initial distribution function
(3.12).

(large dissipation). In addition to the simulation data for THS
and EHS, we will present the results from the solution of an
extension [4,7] of the Bhatnagar-Gross-Krook (BGK) model
[50], which is inspired in the approximate equivalence
IHS <~ EHS. The solution of this BGK-like model for the
USF problem is worked out in Refs. [4,6,26].

We begin by showing the accumulated number of colli-
sions per particle as a function of time in Fig. 5, where the
case @=0.7 is also included. As said in connection with Fig.
1, the slope of s(7) and s’(¢) is proportional to \7(z). At a
shear rate a7®=4, viscous heating dominates and so the tem-
perature monotonically increases, especially for a=0.9; on
the other hand, at a7°=0.1, dissipative cooling prevails and
so the temperature monotonically decreases, especially for
a=0.5. The almost perfect agreement between s(¢) and
s'(t)/ B for «=0.9 is an indirect indication that 7(¢) is prac-
tically the same for the IHS gas and the EHS gas, as will be
confirmed later on. However, as the inelasticity increases, SO
does the temperature difference in both systems, the EHS
system having a slightly higher temperature than the IHS
system at any given time ¢. Despite its simplicity, the BGK
model does quite good a job, but it tends to overestimate
both s(z) and s’ (¢)/ 8. It must be said that the BGK curves for
s(7) have actually been obtained from the local equilibrium
approximation (3.13). As we will see, the BGK temperature
presents a very good agreement with the simulation results
for EHS, so that the small discrepancies between the DSMC
curves for s'(f)/ B and the BGK curves are essentially due to
the local equilibrium approximation s(¢) — sy(f) used in the
latter.
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FIG. 6. (Color online) Evolution of the ratio between the actual
number of collisions per particle and the local equilibrium estimate
for THS (solid lines) and EHS (dashed lines) in the cases «
=0.5,0.9 and a7°=0.1,4. The data have been obtained starting from
the initial distribution function (3.12).

To confirm this point, we plot in Fig. 6 the ratio between
the actual number of accumulated collisions per particle and
the local equilibrium estimate obtained from Eq. (3.13) by a
numerical integration using the actual values of temperature.
Except for a short initial period, s(¢)/so(r) and s’(1)/s(() take
values smaller than 1 and tend to steady-state values practi-
cally independent of the shear rate. The instantaneous colli-
sion rate is proportional to the average value of the relative
speed (V,,), which in the local equilibrium approximation is
(V1)) = (Vi2)0=\2(V)o=4\T/mm. Thus, the fact that s(z)
<s¢(t) is consistent with a nonequilibrium velocity distribu-
tion such that the mean speed is smaller than the local equi-
librium one, i.e., (V) <(V),, this effect being more noticeable
as the dissipation increases. By definition, (VZ)=(V?),
=3T/m. Therefore, the inequality (V) <(V) indicates an un-
derpopulation of the region of moderately low velocities of
the nonequilibrium distribution function (with respect to the
Maxwellian) that compensates for an overpopulation of the
high-velocity region, as will be seen later.

The evolution of the relative temperature T/7°, the re-
duced shear stress —P,,/nT, and the reduced normal stress
difference (P,,—P,,)/nT is displayed in Figs. 7 and 8 for
a=0.9 and @=0.5, respectively. In the former case, an excel-
lent agreement between the simulation results for both types
of system exists. In addition, the theoretical results obtained
from the BGK model accurately describe the behavior of the
simulation data. In the case @=0.5, however, the EHS system
tends to have a larger temperature than the IHS system, the
steady-state value being about 12% larger in the former case
than in the latter. This is partially due to the fact that the true
cooling rate { of the THS gas [see Eq. (2.10)] is larger than
the local equilibrium value ¢, [see Eq. (2.16)] imposed on
the EHS gas, as we will see later on. This also explains why
the BGK model, which also makes use of the approximation
{— {y, predicts a temperature in good agreement with the
simulation data for EHS. Since the EHS temperature is larger
than the IHS one, the shear rate normalized with the collision
rate is smaller for EHS than for IHS and, consequently, the
distortion with respect to the Maxwellian, as measured by
the shear stress and, especially, by the normal stress differ-
ence, is smaller in the former case than in the latter. Com-
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FIG. 7. (Color online) Evolution of 7/7°, —P,,/nT, and (P,,
—P,,)/nT for THS (solid lines) and EHS (dashed lines) in the cases
@=0.9 with a7°=0.1 and a™’=4. The dotted lines are the predic-
tions obtained from the solution of a BGK model. Note that in the
top panel the curves corresponding to IHS, EHS, and BGK are
practically indistinguishable. The data have been obtained starting
from the initial distribution function (3.12).

parison between Figs. 7 and 8 shows that the duration of the
transient period (as measured by the number of collisions per
particle) decreases as the inelasticity increases: s=40 at «
=0.9 versus s =20 at «=0.5. However, when that duration is
measured in real units, it depends mainly on the shear rate
and not on a, namely, t=97° for a7°=4 and r=160-2007"
for ar®=0.1.

It is interesting to note the similarity between the curves
in Fig. 4 and those corresponding to a7’=4 in Fig. 7. This is
made clear in Fig. 9, where the evolution of the global quan-
tities in the THS case for the homogeneous and inhomoge-
neous transient problems are shown. In the three situations
considered, the initial shear stress and normal stress differ-
ences are zero; however, given the high value of the shear
rate, the velocity distribution function rapidly changes and
adapts itself to the imposed shear rate, giving rise to a sharp
maximum of the reduced shear stress and normal stress dif-
ference. Henceforth, as the temperature increases so does the
collision rate, so that the relative strength of the shear rate
becomes smaller and smaller until the steady state is reached
at s=40. The first stage lasts about one collision per particle,
has a kinetic nature, and is sensitive to the initial preparation
of the system. On the other hand, the subsequent relaxation
toward the steady state defines a much longer hydrodynamic
stage that becomes more and more independent of the initial
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FIG. 8. (Color online) Evolution of T/7°, —P,,/nT, and (P,,
—P,,)/nT for THS (solid lines) and EHS (dashed lines) in the cases
a=0.5 with a7°=0.1 and a7’=4. The dotted lines are the predic-
tions obtained from the solution of a BGK model. The data have
been obtained starting from the initial distribution function (3.12).

state, provided that T°<T,. A similar hydrodynamic regime
exists for the class of initial states with 70>T, (e.g., for
a7=0.1). These comments also apply to the two cases with
a=0.5.

In general, at a given value of «, the intrinsic velocity
distribution function in the hydrodynamic regime depends on
time only through its dependence on the shear rate nondi-
mensionalized with the (time-dependent) collision rate. More
specifically,

m 12
} f(C@);a (1),

270 (5.1)

f(V,0)= n[

where

(5.2)

C(n= , d()= ar,(1).

\2T(0)/m

The definition of the reduced shear rate a* by means of the
viscosity characteristic time 7, instead of the mean free time
Tmrr Or the characteristic time 7 is an irrelevant matter of
choice since these three quantities differ only by constant
factors, namely, 7ypr/7,~=0.787 and 7/7,~0.888. In the
steady state, a”(f) —a, and f(C;a")—f(C;a,)=f.(C) [see
Eq. (3.16)].

031309-11



A. ASTILLERO AND A. SANTOS

150 ~ . . g
100
.
S 5l - - -Eq.(5) |
~.=--Eq. (3.6)
—Eq (3.12)
8
)
4
7]
0.0 . . .
0 10 20 30 40
S

FIG. 9. (Color online) Evolution of 7/T° (top panel) and

U,/nT and (P, — P /T (bottom panel) for THS in the case a
=0.9, a’’=4. The dashed and dash-dot lines correspond to the in-
homogeneous transient problem with the initial conditions (3.5) and
(3.6), respectively, while the solid lines correspond to the homoge-
neous transient problem with the initial conditions (3.12).

During the hydrodynamic relaxation toward the steady
state, it is insightful to define a time-dependent shear viscos-
ity 79()=—P,,(t)/a. As a consequence of Eq. (5.1), the ratio

n(t)/ 1o(2), where 7y(t)=nT(z)7,(t) is the Navier-Stokes vis-
cosity in the elastic limit [see Eq (2.18)], depends on time
only through a nonlinear dependence on a'(t). Figure 10
shows the reduced shear viscosity % = 7/ 7, versus the re-
duced shear rate ¢ in the case a=0.5. The values plotted
correspond to a temporal window 2 <s=<50. The lower limit
guarantees that the system has practically lost memory of its
initial state, while the upper limit is long enough to guarantee
that the steady state (represented by an open symbol) has
been reached. For each case (IHS, EHS, or BGK), the
steady-state point (a:, 77:) splits the respective curve into two

02 04 06 08 10 12 14 16

art
n

FIG. 10. (Color online) (Transient) reduced shear viscosity
7°(1)=5(1)/ 9o(¢) versus the (transient) reduced shear rate a’(r)
=ar,(t) for THS (solid lines) and EHS (dashed lines) in the case
a=0.5. The dotted lines are the predictions obtained from the solu-
tion of a BGK model. The circle, square, and diamond are the
steady-state points for IHS, EHS, and BGK, respectively. In each
case, the curve to the left of the symbol corresponds to a=0.1,
while the curve to the right of the symbol corresponds to a7’=4.
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FIG. 11. (Color online) Evolution of the ratio <V‘?2>/ <V‘?2)0, the
fourth cumulant a,, and the sixth cumulant —as for THS (solid lines)
and EHS (dashed lines) in the cases @=0.9 with a7’=0.1 and a7’
=4. The data have been obtained starting from the initial distribu-
tion function (3.12).

branches: the one to the left of the point corresponds to T
<T° (e.g., ar®=0.1), while the branch to the right corre-
sponds to T>T° (e.g., ar®=4). The entire curve represents
the nonlinear shear viscosity 7 “(a”) for a=0.5, and the
steady-state point 7,=7"(a,) is just a particular (and singu-
lar) value [6]. The formal extrapolation of #%'(a") to zero
shear rate gives the (reduced) Navier-Stokes shear viscosity
as=limg+_o 7°(a”) at @=0.5. The expected values are [4,8]
7ns=1.3 for THS and 7yg=1.1 for EHS and BGK. It is
worthwhile noting that, except for fluctuations in the simu-
lation data, the curves 7' (a”) for IHS, EHS, and BGK prac-
tically coincide, at least in the interval 0.2<a"<1.6. Thus,
the main difference among the three approaches lies in the
steady-state point where the system “decides” to stop. For a
more extensive discussion on the rheological function 7" (a")
and the distinction between 7, and 7 the reader is referred
to Ref. [6].

Although the most relevant information in the USF prob-
lem is conveyed by the elements of the pressure tensor, they
of course do not exhaust the physical information one can
extract from the simulations. In Figs. 11 and 12 we present
the evolution of the ratio <Vf2>/ (sz)o (where V), is the rela-
tive speed between a pair of particles) and the fourth and
sixth cumulants [see Eq. (3.14)] for @=0.9 and a=0.5, re-
spectively. The average value (V?Z) is physically interesting
because it is proportional to the true cooling rate { of the IHS
gas. In fact, we have checked in the simulations that the
value of { obtained from Eq. (2.10) agrees with the one

031309-12



UNIFORM SHEAR FLOW IN DISSIPATIVE GASES:...

116}

I LI2
&
>~ 1.08

~~
o

L8 1.04

~ 1.00H
0.6

_a3

FIG. 12. (Color online) Evolution of the ratio (sz)/ (VTZ)O, the
fourth cumulant a,, and the sixth cumulant —a5 for IHS (solid lines)
and EHS (dashed lines) in the cases a=0.5 with a7°=0.1 and a7’
=4. The data have been obtained starting from the initial distribu-
tion function (3.12).

computed directly from the collisional energy loss, Eq. (2.9).
However, the second method is much noisier than the first
one since it involves only the colliding pairs, whereas all the
pairs contribute to <V§2> [see, however, Eq. (4.20) and the
comment above it].

As happened with Figs. 7 and 8, the simulation data for
each one of the three plotted quantities in the case a7=4
present a respective maximum during the kinetic stage of the
evolution, representing the largest departure from the Max-
wellian. It is noteworthy that the fluctuations of the quanti-
ties plotted in Figs. 11 and 12 are much larger in the IHS
case than in the EHS case. Otherwise, the temporal evolution
and the steady-state values are very similar in both systems.

We observe that (V5,)>(V3,),, the relative difference in-
creasing with the inelasticity. This explains that the (internal)
collisional cooling rate { of the IHS gas is larger than the
(external) frictional cooling rate {, imposed on the EHS gas,
as said before in connection with Fig. 8. However, even
though the imposed cooling rate for EHS is the local equi-
librium one, this system satisfactorily mimics the distortion
from local equilibrium, as measured by (V3,)/(V3,), of the
IHS system.

The cumulants basically probe the high-energy tail of the
distribution, especially in the case of as. The positive value
of the fourth cumulant a,, both for THS and EHS, is a reflec-
tion of a strong high-energy overpopulation (with respect to
the Maxwellian) induced by the shearing. This overpopula-
tion effect is larger than and essentially independent of the
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FIG. 13. (Color online) Evolution of the ratios Ry, R, R,, and
R; [see Eq. (3.15)] for IHS (solid lines) and EHS (dashed lines) in
the case a=0.5 with a’’=4. The data have been obtained starting
from the initial distribution function (3.12).

one typically present in homogeneous states of granular
gases [51,52], which is absent in the EHS gas. The steady-
state value of the sixth cumulant aj is practically zero for
a=0.9. On the other hand, for «=0.5 one has —a3>0, what
is again related to the high-energy overpopulation.

A more direct information about the evolution of the ve-
locity distribution is provided by the ratios R; defined by Eq.
(3.15). They are plotted in Fig. 13 for the case a=0.5 and
a™=4. The maximum deviation from the Maxwellian takes
place during the kinetic stage (s =<1). Thereafter, the curves
smoothly relax toward their steady-state values R,=1.18,
R;=0.81, R,=1.39, and R;= 15, the relaxation times being
practically the same (s=10) in the four cases. During the
hydrodynamic transient regime and in the steady state, the
population of particles moving with a speed larger than three
times the thermal speed vo(1)=+27(¢)/m is remarkably
larger than the one expected from a Maxwellian distribution.
This overpopulation effect induced by shearing is also
present in the interval 2v,(f) <V <3v(z). In the hydrody-
namic transient regime, between 90 and 93% of the particles
move with a speed smaller than 2v,(¢) (in contrast to the
equilibrium value of 95.4%) and this is then the relevant
region for the low-degree moments. While the low-velocity
region V<uv() is about 20% overpopulated with respect to
the Maxwellian, the intermediate region vo(r) <V <2uv(?) is
underpopulated by about the same amount. In fact, the frac-
tion of particles moving with V<vy() and vy(r)<V
<2uv(t) is about 51 and 42%, respectively, in the steady
state, while the corresponding equilibrium values are 42.8
and 52.6%, respectively. As Fig. 13 shows, all these features
are successfully captured by the EHS system, even at this
rather high inelasticity.

The fact that (V3,)>(V3,), suggests that a better agree-
ment between the dynamics of the IHS gas and that of the
EHS gas could be expected if the friction constant of the
latter were not chosen as y=%§0 but as y=%§0(V?2)/ (V3,)0,
so that the cooling rate of the EHS gas would be exactly the
same functional of f as that of the IHS gas. To test this
expectation, we have carried out supplementary simulations
of the EHS system with this more refined friction constant in
the case a=0.5, a’’=4. The corresponding curves are not
included in Figs. 5, 6, 8, 10, 12, and 13 for the sake of
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clarity. The results show that, in general, the quantities asso-
ciated with the low-order moments (temperature and pres-
sure tensor) are indeed closer to the IHS values than with the
simpler choice y= %go. As a matter of fact, the EHS tempera-
ture is now slightly smaller, instead of slightly larger, than
the THS temperature. However, in the cases of (V3,)/(V3,),
a,, and as, the results obtained in the EHS simulations with
y=%§0(V?2>/ (VL)O turn out to be not necessarily better than
those obtained with y=%§0.

C. Steady state

Once we have analyzed the transient period toward the
steady state for the representative cases a=0.5 and a=0.9,
let us report on the most relevant steady-state properties for
all the values a=0.5-0.95 we have considered. The quanti-
ties associated with the second-degree velocity moments,
namely, the reduced shear rate aj:m-,?(TS)OC 1/NT,, the re-
duced shear stress —P,, /nT;, and the reduced normal stress
differences (P,, =Py, ,)/nT; and (P, ,— P, )/nT,, are plot-
ted in Fig. 14. The overlapping of the data obtained from
simulations with the two different values of the shear rate
(a™=0.1 and a7=4) confirms that the steady state has ac-
tually been reached and that the intrinsic velocity distribution
function f,(C) [see Eq. (3.16)] depends only on & and not on
the initial preparation of the system. For a=0.7 there exists
a good agreement between the EHS and IHS results for the
quantities a: and —P,, /nT,, which are the most relevant
properties in the USF problem. For larger inelasticity, how-
ever, the steady-state temperature 7' is larger for the EHS gas
than for the IHS gas, and so a, is smaller in the former case
than in the latter. This implies that the departure from isot-
ropy is slightly smaller in the EHS gas than in the IHS gas,
and so is the shear stress —P,, /nT;. As for the normal stress
differences (P, ,—Py,,)/nT, and, especially, (P,
-P,,)/nT,, they start to differ in both systems for «
=0.85. It is worthwhile noting that the BGK kinetic model,
which has a simple explicit solution in the steady state [4,6],
does a very good job at predicting the transport properties,
especially in the case of the EHS system. An exception is the
normal stress difference (P, ,— P, )/nT,, which vanishes in
the BGK model but takes on (small) positive values in the
simulations. The good agreement between simulation data
for the elements of the pressure tensor and the BGK predic-
tions was already noted in Ref. [26], although there the ki-
netic model was slightly different from the one considered
here.

Figure 14 also includes results obtained from control
simulations carried out in the case «=0.5 on EHS but with a
refined friction constant y=%§O<V?2)/(V?2>0 instead of the
simple one y:%(o. We observe that the agreement with the
IHS data improves for those quantities that were already rea-
sonably well described by the simple EHS system, namely,
Ty, P, and P, —P, . On the other hand, the delicate
normal stress difference P, ,—P,, , which otherwise is quite
small, is still about 40% smaller in both EHS systems than in
the IHS system. This indicates that whenever the discrepan-
cies between the IHS and EHS results are relatively impor-
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FIG. 14. (Color online) Steady-state values of the reduced shear
rate a*=ar,], the reduced shear stress —P,,/nT, and the reduced
normal stress differences (P,,—Py,)/nT and (P_.—P,,)/nT as func-
tions of the coefficient of restitution @. The open symbols are simu-
lation results for IHS and EHS and two values of the shear rate,
while the dotted lines correspond to the solution of a BGK model.
Note that in the latter model P, =Py, .. The filled diamonds rep-
resent simulation data of EHS with a friction constant vy
=24V /(Vi) in the case @=0.5, ar’=4.

tant, they are hardly affected by a more sophisticated choice
of the friction constant 7.

From a rheological point of view, it is worthwhile intro-
ducing the nonlinear shear viscosity 7 =—(P,,/a)/ny=
—(P,,/nT)/a" and the viscometric functions '\I’1=(PW
-P,)/nTa® and V,=(P_-P,)/nTa™ In the hydrody-
namic transient regime, they are functions of a” (for a given
value of @), as was illustrated in Fig. 10 in the case of 7" at
a=0.5. In the steady state (¢"—a,) these quantities become
functions of a only. Equivalently, by eliminating « in favor
of the steady-state reduced shear rate a*, those rheological
quantities can be seen as functions of a . This is the repre-
sentation shown in Fig. 15. We observe that the curve 7, (a,)
for EHS is very close to the one for IHS, even though the
EHS points are shifted with respect to the IHS points corre-
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FIG. 15. (Color online) Steady-state values of the reduced shear
viscosity 7'=7/75, and the viscometric functions —W,=(P,,
-P,)/ nTa*f and W,=(P_—P,,)/nTa™* as functions of the reduced
shear rate a,. The open symbols are simulation results for IHS and
EHS and two values of the shear rate, while the dotted lines corre-
spond to the solution of a BGK model. Note that in the latter model
W, ;=0. The filled diamonds represent simulation data of EHS with

a friction constant y=§g0<vfz>/<v§2>0 in the case @=0.5, ar®=4.

sponding to the same value of a, the shift increasing as a
decreases. On the other hand, the viscometric effects are
more pronounced in the IHS case than in the EHS case.
Paradoxically, the BGK curves for 77: and W, ; are generally
closer to IHS than to EHS in the representation of Fig. 15. It
is also noteworthy that the isolated points corresponding to
EHS with y= %Q)(V*fz)/ <V?2)0 seems to be consistent with the
curve obtained by joining the other EHS points.

The a dependence of (V3,)/(V3,), and the cumulants a,
and aj in the steady state is displayed in Fig. 16. We recall
that in the THS system the ratio (V3,)/{V3,), coincides with
the ratio {/{, between the true cooling rate and its local
equilibrium estimate. It is observed that the local equilibrium
approximation underestimates the cooling rate by a few per-
cent, essentially due to the distortion induced by the shear-
ing. This distortion is well captured by the EHS system, de-
spite the fact that its cooling rate is, by construction, given
by {,. As said above, the positive values of a, and, espe-
cially, —a; are indicators of an overpopulation effect (with
respect to the Maxwellian) of the high-velocity tail of the
distribution, this effect being stronger than and practically
independent of the typical high-velocity overpopulation of
granular gases in uniform and isotropic states [51,52]. As a
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FIG. 16. (Color online) Steady-state values of the ratio

(V3 1{V35)o, the fourth cumulant a,, and the sixth cumulant —as as
functions of the coefficient of restitution «. The open symbols are
simulation results for IHS and EHS and two values of the shear
rate, while the dotted lines in the middle and bottom panels corre-
spond to the solution of a BGK model. The filled diamonds repre-
sent simulation data of EHS with a friction constant vy
=%§O(V?2>/(V?2>O in the case @=0.5, ar®=4.

matter of fact, the distribution function of the (frictional)
EHS gas in the homogeneous cooling state, as well as in the
state heated by a white-noise forcing, is exactly a Gaussian.
Therefore, the overpopulation measured by a, and —as is
basically a shearing effect. The fourth cumulant is well ac-
counted for by the EHS gas, but the magnitude of the sixth
cumulant is larger for IHS than for EHS. As happens with the
normal stress difference P,—P,, (see the bottom panel of
Fig. 14), the cumulant a5 is a very sensitive quantity that
probes subtle details of the THS velocity distribution function
not sufficiently well captured by the EHS system for «
=0.85.

It is worthwhile noting that (V3,)/(V3,), and a, are
slightly larger in the EHS case than in the IHS case for «
=(.7, while the opposite happens for «=0.7. This is remi-
niscent of the situation in the homogeneous cooling state and
in the white-noise heated state [51], where a5 "> < a5"*=0 for
a=12/2=0.71, while a"5=a5"=0 for a<12/2. In fact,
we have observed that the difference ay > —a5™ in the USF
is quite close to the difference in the white-noise heated
state. Figure 16 also shows a strong correlation between the
values of (V3,)/(V3,) and those of a,. More precisely, we
have empirically checked that (V3,)/(V3,)o=1+0.27a, both
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FIG. 17. (Color onhne) Linear plots of the marginal velocity
distribution functions g (Cx) 8, +)(C ), and F(C) for a=0.9 (left
panels) and a=0.5 (right panels). "The solid and dashed lines repre-
sent simulation results for IHS and EHS, respectively, the dash-dot
lines are the BGK predictions, and the dotted lines are the (local)
equilibrium distributions.

for THS and EHS in USF, in contrast to (V3,)/(V3,)o=1
+%a2 in isotropic states [51].

In Fig. 16 we have included the BGK predictions for the
cumulants @, and a3. Not being associated with conventional
velocity moments, the evaluation of (V3,) [see Eq. (2.11)]
from the BGK distribution function requires heavy numerical
work and so it is not included in Fig. 16. We observe that the
increase of a, with increasing inelasticity is well captured by
the BGK model. On the other hand, the a dependence of —a3
is described by the BGK model at a qualitative level only,
predicting in general too high values. Regarding the control
simulations for EHS with @=0.5 and y=3(Vip)/(V3,), we
observe that the values of (V3,)/(V3,), and a, are not actu-
ally improved, while the improvement on a5 is very small.

The quantities plotted in Figs. 14—-16 provide useful (in-
direct) information about the velocity distribution function of
the steady-state USF. However, they essentially probe the
domain of low and moderate velocities (say V=<227/m),
except perhaps in the cases of a, and, especially, a3, which
are more sensitive to the high-velocity tail. In order to ana-
lyze more directly the shape of the velocity distribution, its
anisotropy, and the high-velocity tail, we have measured in
the simulations the steady-state marginal distributions de-
fined by Egs. (3.18)—(3.20). As representative examples,
Figs. 17 (linear scale) and 18 (logarithmic scale) show g( +)
X(C)), g(+)(CV) and F(C) for @=0.9 and a=0.5. We have
checked that the symmetry properties (3.21) are fulfilled and
that the curves obtained from the two values of the shear rate
(a=4 and a7°=0.1) practically coincide. In fact, to im-
prove the statistics, the simulation data represented in Fig. 18
have been averaged over both shear rates and, in addition,
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FIG. 18. (Color online) Logarrthmlc plots of the marginal ve-
locity distribution functions g w(c)), g(+ (C,), and F(C) for a
=0.9 (left panels) and @=0.5 (right panels) The solid and dashed
lines represent simulation results for IHS and EHS, respectively, the
dash-dot lines are the BGK predictions, and the dotted lines are the
(local) equilibrium distributions.

the symmetry properties (3.21) have been exploited to make

Y, — —[g“)(cx) +¢9(=c)l,

8,7(C,) — —[gﬁ(cv) +8,7(=C)l. (5.3)
Two anisotropic features of the USF state are quite
apparent. First, the functions g( )(C ) and g(+)(C ) are
clearly asymmetrlc namely, +)(|C |)<g(+( |c.) and

(+)(|C D<g, is a physical effect induced by
the shearlng, in consrstency with P, (C,C,)<0. The sec-
ond feature is the non-Newtonian property g( o g . More
specifically, the marginal distribution g is broader than
g;+), in agreement with the fact that P, — PyyOC<C§>—<C§>
>0. These two effects are obviously more pronounced for
a=0.5 than for a=0.9.

Figure 17 shows that an excellent agreement between the
IHS and EHS distributions for an inelasticity a=0.9 exists in
the region of low and intermediate velocities, in consistency
with the results displayed in Figs. 14-16. For a@=0.5, it is
observed that the EHS distributions g(+)(C) g(+)(C ), and
F(C) are more populated than the THS ones in the regions
-1=C,=0, -03=C,=<0, and C=<0.5, respectively. It is
also interesting to note that, in the region of thermal veloci-
ties, the orientation-averaged distribution function F(C) is
much less distorted with respect to the Maxwellian than the
marginal distributions gf:r)(Cx) and g;J')(Cy), especially in the
case a=0.9. Another important finding is that the BGK ki-
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netic model, not only captures “global” or average properties
well, such as the hydrodynamic quantities (see Figs. 14-16),
but also the “local” details of the velocity distribution func-
tion.

The logarithmic scale employed in Fig. 18 has been cho-
sen to reveal the high-velocity tails of the d1str1butions. We
observe an overpopulatlon of both tails of g espemally at
a=0.5. In the case of g) however, the overpopulation
seems to affect the tail C,<<O only. The high-energy over-
population is clearly apparent in the distribution of the mag-
nitude of the velocity F(C). In a recent paper, Bobylev et al.
[53] have proven that In F(C) ~-CH*, with = 1, for asymp-
totically large velocities in the USF. Although it is not clear
whether our simulation data have reached the high-velocity
regime where the asymptotic law In F(C) ~—C* dominates,
the bottom panels of Fig. 18 seem to be consistent with this
law with w=1.

The comments in the preceding paragraph apply equally
to IHS and EHS. As a matter of fact, the simulation data for
both systems in the case a=0.9 are hardly distinguishable for
that value of «@. In the case a=0.5, however, the high-
velocity values of g)(:)(CX) and F(C) are larger for IHS than
for EHS, while the opposite happens for the high-velocity
values of g;”(Cy). As for the BGK distribution function, it
cannot be expected to be accurate beyond the domain of
thermal velocities. This is confirmed by Fig. 18, where we
can observe that at «=0.9 the BGK model strongly exagger-
ates the high-velocity overpopulation effects of gi+)(Cx) and
F(C). This produces too large a value of the sixth cumulant
—as, as observed in Fig. 16. On the other hand, at @=0.5 the
BGK value of —a; agrees by accident with that of the IHS
system and this explains why in that case the overpopulated
tail predicted by the BGK model agrees well with that of the
IHS system. Nevertheless the tail of g(+ C,) for C,>0 as
well as that of g (C ) for C;, <0 are strongly underesti-
mated by the BGK model at a=0.5.

For the sake of clarity, we have not included in the right
panels of Figs. 17 and 18 the curves corresponding to our
simulations of the EHS system with «=0.5 and a friction
constant y:%g“()(v?z)/ <V?2>0. In any case, the results are very
close to those corresponding to the friction constant y=%§0.
This shows that the main quantitative differences between
highly dissipative IHS and EHS systems, in particular the
high-velocity tails, are intrinsic to the different dynamics of
both systems and so they are not avoided by a fine-tuning of
the drag force acting on the elastic particles.

VI. CONCLUSIONS

In this paper we have dealt with the main nonequilibrium
properties of two classes of dissipative gases subject to the
so-called simple or uniform shear flow (USF). In the first
class, the system is made of inelastic hard spheres (IHSs)
with a constant coefficient of restitution & <<1. The inelastic-
ity of collisions provide an internal energy sink, character-
ized by a cooling rate {. In the second class, the particles are
elastic hard spheres (EHSs) under the action of a drag force,
so that the energy sink is now external and characterized by
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a friction coefficient y. At a given value of «, some of the
basic properties of the Boltzmann equation for the IHS gas
are formally similar to those for the (frictional) EHS gas [4]
if (i) the friction coefficient is chosen as a function of the
local density and temperature, y= §00<nT” 2(1-a?) and (i)
the collision rate of the EHS gas is B(a)= 2(1 +a) times the
collision rate of the IHS gas under the same conditions. The
boundary conditions of the USF state provides an energy
source (viscous heating) that competes with the energy dis-
sipation (either collisional or frictional), until a steady state
is eventually reached, resulting from the balance between
both effects.

The two main points we have intended to address in this
paper are the following ones. On the one hand, we wanted to
perform an extensive study of the physical properties of dis-
sipative gases under USF, for both the transient and the
steady states. While the USF state has been widely consid-
ered in the literature of granular fluids, some of its relevant
aspects (hydrodynamic transient stage, cumulants, high-
velocity tail,...) have received little attention. As a second
point, taking the USF as a paradigmatic and conceptually
simple nonequilibrium state, we were interested in elucidat-
ing to what extent the EHS gas mimics the physical proper-
ties of the genuine IHS gas. To meet these goals, we have
carried out computer simulations by the DSMC method on
both classes of systems for ten values of the coefficient of
restitution (@=0.5-0.95 with a step Aa=0.05) and two val-
ues of the shear rate (a=4/7" and a=0.1/7°). Below we sum-
marize the main conclusions derived from our study.

The duration of the transient period, when measured by
the number of collisions per particle (s), is hardly dependent
on the imposed shear rate a or on the initial state, but
strongly depends on the coefficient of restitution «. The
larger the dissipation, the smaller the number of collisions
needed to reach the steady state. For instance, s=40 at «
=0.9, while s =20 at «=0.5. Nevertheless, when the duration
is measured by an external clock (for instance, in units of the
initial mean free time), it becomes weakly dependent on «
but strongly dependent on a: the smaller the imposed shear
rate, the longer the transient period.

The evolution toward the steady state proceeds in two
stages. The first (kinetic) stage depends heavily on the initial
preparation of the system and lasts a few collisions per par-
ticle. This is followed by a much slower hydrodynamic re-
gime that becomes less and less dependent on the initial
state. Once conveniently scaled with the thermal speed
vo(t)=+27(t)/m, the velocity distribution function in the hy-
drodynamic regime depends on time through the reduced
velocity C()=V/vy(t) and the reduced shear rate a(7)
<al % only [6]. In particular, at a given value of a, the
(reduced) nonlinear shear viscosity 7' (a") moves on a cer-
tain rheological curve, the steady-state value 7]X (a ) Tep-
resenting just one point. This point splits the curve 7 (a )
into two branches. The branch a" <a, is accessible from ini-
tial states such that the dissipative cooling dominates over
the viscous heating, so that T(f) decreases and a"(¢) increases
during the transient period. Conversely, the branch a*Ba?
corresponds to initial states where the viscous heating domi-
nates, so that 7(¢) increases and a“(f) decreases, until the
steady state is reached.
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The actual number of collisions per particle s(¢) is slightly
smaller than the local equilibrium estimate sy(¢). This indi-
cates that (V) <(V),, whereas (V?)=(V?),=3T(t)/m by defi-
nition. The inequality (V) <{V), is consistent with an under-
population (with respect to the local equilibrium distribution)
for moderate velocities that must be compensated by a high-
velocity overpopulation. This qualitative reasoning is con-
firmed by the inequalities (V5,)>(V3,), (V¥)>(V*),, and
(V0> (V%) observed in the simulations. In addition to these
effects, the shearing motion induces a strong anisotropy in
the normal stresses, namely, P, (t)>nT(t)> P (1) = P,,(1).
In other words, a breakdown of the energy equipartition oc-
curs, whereby the “temperature” associated with the degree
of freedom parallel to the fluid motion is significantly larger
than that associated with the other two degrees of freedom,
as already observed in previous studies
[14-17,20,22,24,26,28,30,36,38].

We have paid special attention to the properties of the
steady state, which is intrinsically independent of the im-
posed shear rate and of the initial state. As expected, the
distortion from the local equilibrium state (as measured by
the shear stress, the normal stress differences, the cumu-
lants,...) increases with the dissipation. This distortion is
made quite apparent by the shapes of the steady-state (mar-
ginal) velocity distributions defined by Egs. (3.18)—(3.20). In
particular, the high-velocity tails of g)(;)(Cx) and F(C) seem
to be consistent with an exponential overpopulation.

All the above comments apply equally well to the IHS
and EHS gases. Therefore, the main nonequilibrium and
transport properties of a true IHS gas in the USF state are
satisfactorily mimicked by an “equivalent” EHS gas. If one
focuses on the basic properties (say the steady-state reduced
shear rate aj, shear stress P, /nT,, or second cumulant a,) it
is almost impossible to distinguish the EHS values from the
IHS ones if «=0.7, the differences still being relatively
small if @=<0.7. We have observed that (V3,)/(V3,), and a,
are in the EHS system slightly larger than in the IHS system
if =0.7, while the opposite happens if a«=<0.7; this is
analogous to what happens in the homogeneous cooling state
and in the white-noise heated state, in which cases the EHS
distribution is exactly a Maxwellian. It is interesting to note
that, even at @=0.5, the full hydrodynamic curve %"(a”) co-
incides for both systems, except that the location of the
steady-state point 77:= 7 (a:) slightly changes. More delicate
quantities (such as the normal stress differences or the sixth
cumulant) keep being practically the same in both systems if
a=0.85. Even at the level of the velocity distribution func-
tion itself, the EHS and IHS curves practically overlap (at
least for the domain of velocities C<6 accessible to our
computer simulations) at a coefficient of restitution as real-
istic as @=0.9. At @=0.5, however, the distribution functions
gi”(Cx) and F(C) of the THS system exhibit a visibly larger
high-velocity overpopulation than those of the EHS system.

As said above, in the EHS systems we have chosen the
friction coefficient as y=%§0an1/2(1—a2), so that it is a
functional of the distribution function only through the local
density and temperature and, moreover, its dependence on «
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is explicit. Given that the true cooling rate is slightly larger
than the local equilibrium estimate, i.e., {/ §0=(V?2>/ <V?2)0
> 1, the imitation of the inelastic cooling rate by the EHS is
not perfect. Therefore, one might reasonably expect that the
discrepancies between the EHS and THS results would di-
minish if the friction coefficient were taken as 7y
:%§O<V§2>/ <V?2>0. To test this expectation, we have per-
formed complementary simulations of the EHS system with
this more refined value of 7y in the case of highest dissipa-
tion, i.e., @=0.5. The results show that, whenever the former
agreement between EHS and IHS was fair, the new agree-
ment is generally even better. However, those quantities
(such as the normal stress difference P_,—P,, and the sixth
cumulant a;) that turned out to be especially sensitive to the
dissipation mechanism (collisional inelasticity versus exter-
nal friction) are practically unaffected by the new choice of
v. Moreover, the high-velocity tails of both versions of the
EHS gas are practically the same, being both smaller than the
IHS tail. Therefore, the (subtle) discrepancies between the
IHS and EHS systems in cases of high dissipation (say «
=<0.7) seem to be intrinsic to their distinct dynamics. Taking
this into account, there is no practical reason to propose for
the drag force acting on the EHS a friction coefficient differ-
ent from the local equilibrium value yzég’o. Concerning the
collision rate coefficient B(a), the choice ﬁ(a):%(l +a) is
recommended by criteria of simplicity and consistency with
the cases of mixtures and dense gases [4]. Moreover, we
have checked (not shown in this paper) that an alternative
choice, namely, B(a)= ]g(l +a)(2+a), although reproducing
well the Navier-Stokes shear viscosity [4], provides results
for the nonlinear shear viscosity in worse agreement with the
THS ones than those reported here with B(a):%(l +a).

The (approximate) equivalence IHS <= EHS can be used to
transfer to granular gases part of the expertise accumulated
for a long time on the kinetic theory of elastic particles. In
particular, the celebrated Bhatnagar-Gross-Krook (BGK) ki-
netic model of the Boltzmann equation can be readily ex-
tended to granular gases [4,7]. In this paper we have com-
pared the solution of the BGK model for USF [4,6,26] with
the simulation data. While it is generally believed that the
BGK model would be accurate only for states near equilib-
rium and/or in the quasielastic limit, our results show that,
despite its simplicity, the model succeeds in capturing quan-
titatively the evolution and steady-state values of the main
transport properties (temperature, shear stress, and normal
stress difference P,,—P,,) and even of the fourth cumulant
a,. However, the small nonzero difference P —P,, is not
accounted for by the BGK model and the sixth cumulant a;
agrees with the simulation data at a qualitative level only. All
of this is consistent with the observation that the BGK ve-
locity distribution function is reliable in the thermal region
(C=2), but not in the high-velocity domain.

In summary, we conclude that the solutions of the Boltz-
mann equations for IHS are very similar to those for EHS (in
the latter case with a smaller collision rate and under the
action of an adequate drag force). Thus the temporal evolu-
tion toward the steady state and the properties of the latter
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are mainly governed by the common feature of energy dissi-
pation, without any significant influence of the detailed
mechanism behind it. Only for very high dissipation (say «
=<0.7) and for properties probing the velocity domain be-
yond the thermal region, does the IHS system imprint its
signature and distinguish from the “disguised” EHS system.
In this paper we have restricted ourselves to the USF, but we
plan to perform a similar comparison in other states, espe-
cially in those where the heat flux, rather than the pressure
tensor, is the relevant quantity. We will also undertake a par-
allel study in the case of dilute mixtures, as well as in the
case of dense gases (complemented by molecular dynamics
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simulations), following the schemes discussed in the preced-
ing paper [4].
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