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We study the effects of weak disorder in the linear gain coefficient on front formation in pattern forming
systems described by the cubic-quintic nonlinear Schrödinger equation. We calculate the statistics of the front
amplitude and position. We show that the distribution of the front amplitude has a loglognormal diverging form
at the maximum possible amplitude and that the distribution of the front position has a lognormal tail. The
theory is in good agreement with our numerical simulations. We show that these results are valid for other
types of dissipative disorder and relate the loglognormal divergence of the amplitude distribution to the form
of the emerging front tail.
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The theory of pattern formation aims to explain the gen-
eration and dynamic evolution of the multitude of patterns
appearing in nature. This theory is of major importance in a
wide variety of fields ranging from physics and chemistry to
biology and social sciences. Most pattern forming systems in
these fields are affected by processes involving noise or dis-
order. When the disorder is strong, the patterns are usually
destroyed. However, when the disorder is weak, the patterns
can form and evolve under the influence of the disorder and
a very important question arises regarding the statistics of the
parameters characterizing the forming patterns.

Fronts are probably among the most common patterns ap-
pearing in nature. In this paper we investigate front forma-
tion induced by dissipative disorder, i.e., disorder in the lin-
ear or nonlinear gain coefficient, in systems described by the
cubic-quintic nonlinear Schrödinger equation �CQNLSE�.
The CQNLSE is one of the simplest nonintegrable exten-
sions to the cubic nonlinear Schrödinger equation �CNLSE�
for which solitary wave solutions are readily obtained �1–7�.
The CQNLSE and its extension, the cubic-quintic complex
Ginzburg-Landau equation �CQCGLE�, are of special inter-
est, since they describe a wide variety of nonlinear physical
phenomena. Examples include pulse propagation in certain
optical fibers and waveguides �6,8�, convection in pure and
binary fluids �7�, mode-locked lasers �9�, and plasma-laser
interaction �10�. Moreover, the CQCGLE, which is a gener-
alization of the cubic complex Ginzburg-Landau equation
�CCGLE�, is expected to be valid in systems described by
the CCGLE whenever the cubic coefficient is small �1,2�.
Because of the nonintegrability of the CQNLSE the dynam-
ics of its solitary waves is far richer than the dynamics of
solitons of the CNLSE. In particular, small perturbations can
lead to front formation, pulse splitting, oscillation, or col-
lapse. Due to this richness, the CQNLSE has been widely
used as a basic model in pattern formation �1,2�.

Solitary waves, fronts, and other traveling wave solutions
for the CQNLSE and for the CQCGLE were obtained in
several earlier works �1–7�. Much attention was devoted to
analyzing the stability of these solutions under small pertur-
bations �4,5,7,11�. These studies have shown that the solitary
waves either decay or evolve into fronts in the presence of a
small linear loss or gain term, respectively. Furthermore, it

was noted that in the case of linear gain the solitary waves
are unstable with respect to emission of continuous radiation.
Effects of noise and disorder on solitons of the CNLSE �12�
and on patterns appearing in the CCGLE �13� have been
studied in detail. However, to the best of our knowledge,
effects of dissipative disorder on the evolution of stationary
patterns of the CQNLSE and the CQCGLE have never been
investigated before.

We focus our attention on disorder in the linear gain co-
efficient since such disorder is expected to be quite common
in a variety of physical systems. In fiber lasers and in optical
fiber transmission, for example, such disorder exists when
the linear gain/loss coefficient is fluctuating with propagation
distance. In addition, it was recently shown that effective
disorder in the linear gain coefficient plays an important role
in optical fiber telecommunication systems with multiple fre-
quency channels �14,15�. In pattern forming systems where
the patterns are spatial such disorder can exist as a result of
fluctuations with respect to time in the energy that is pumped
into or out of the system. Indeed, a deterministic linear gain/
loss term is included as a part of the CCGLE and CQCGLE
and plays a special role in the dynamics �1,2�. Furthermore,
the solitary waves of the CQNLSE become unstable in the
presence of linear gain and evolve into fronts. It is therefore
very interesting to study the situation where the linear gain/
loss coefficient is stochastic. The most important questions in
this case are: �1� What are the statistics of the emerging
fronts parameters? �2� Are these statistics dependent or inde-
pendent of the form of the dissipative disorder term?

In this paper we address these questions. Using the adia-
batic perturbation theory, we obtain the dynamics of the soli-
tary wave amplitude. We calculate the amplitude distribution
and show that it has a loglognormal diverging form in the
vicinity of the maximum possible amplitude. We then calcu-
late the distribution of the front position and find that it has a
lognormal tail. These predictions are in good agreement with
our extensive numerical simulations. We show that the log-
lognormal and lognormal asymptotic behavior of the distri-
bution functions are valid for other types of dissipative dis-
order and relate the loglognormal divergence of the
amplitude distribution to the shape of the tail of the emerging
front.
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Consider the CQNLSE in the presence of weak disorder
in the linear gain coefficient, where the disorder is spatially
short correlated and zero in average:

i�z + �tt + 2���2� − �q���4� = i���z�� ,

���z�� = 0, ���z���z��� = D��z − z�� . �1�

In the context of nonlinear optics � is the envelope of the
electric field, z is the propagation distance, t is a retarded
time, �q is the quintic coefficient, 0��	1 is the linear gain
coefficient, and D is the disorder intensity. The terms �q���4�
and i���z�� account for quintic nonlinearity and disorder in
the linear gain coefficient, respectively. When �=0, Eq. �1�
supports solitary wave solutions of the form �s�t ,z�
=
s�x�exp�i��, where


s�x� = �2���1 − 4�q�2/3�1/2 cosh�2x� + 1�−1/2, �2�

�=
+��t−y�+ ��2−�2�z and x=��t−y−2�z�. In these rela-
tions the parameters �, �, 
, and y are related to the ampli-
tude, frequency, phase, and position of the solitary wave,
respectively. Note that the solitary wave solution �s exists
provided that ���m	�4�q /3�−1/2.

We study the evolution of the solitary wave �s under the
dynamics described by Eq. �1�. Since we are interested in the
statistics of front formation, we restrict the discussion to the
case �q�0. We also assume that 4D�2z	1, so that for most
of the disorder realizations the dynamics of the solitary wave
amplitude is not yet influenced by the O��2� radiation insta-
bility effects �1,5,11�. Due to the symmetry of Eq. �1� with
respect to t→−t the position and frequency of the solitary
waves are not affected by the disorder. The dynamics of the
amplitude can be obtained by using the energy conservation
law:

�z

−�

�

dt���2 = 2���z�

−�

�

dt���2. �3�

Employing the adiabatic perturbation theory around the soli-
tary waves �s �see, e.g., Ref. �1�� we obtain

d

dz
ln�arctanh� �

�m

� = 2���z� . �4�

Integrating Eq. �4� over z we arrive at

��z� = �m tanh�c�0�exp�2�x�z��� , �5�

where x�z�=�0
zdz���z�� and c�0�=arctanh���0� /�m�. Since

��z� is short correlated, according to the central limit theorem
x�z� is a Gaussian random variable with �x�z��=0 and
�x2�z��=Dz. �Note that this is not necessarily true when the
disorder is not short correlated.� The distribution function of
� is obtained by changing variables from x�z� to ��z� while
using Eq. �5�. This yields

F��� =
exp�− ln2�arctanh��/�m�/c�0��/�8D�2z��
�8�D�2z�1/2�m�1 − �2/�m

2 �arctanh��/�m�
�6�

for 0����m and F���=0 elsewhere. For �q	1 the distri-
bution �6� approaches the lognormal distribution, which was

obtained for propagation of CNLSE solitons in the presence
of weak disorder in the linear gain coefficient �14,15�. No-
tice, however, that for finite values of �q F��� is very differ-
ent from the lognormal distribution. First, F��� has a com-
pact support. Second, F���→� as �→�m. This can be
shown by considering the asymptotic behavior of F��� near
�m. Denoting �=�m−��, where 0��� /�m	1, and expand-
ing Eq. �6� with respect to �� /�m we obtain

�F��������m
= ��8�D�2z�1/2���ln���/�2�m����−1exp

�„− ln2�− ln���/�2�m��/�2c�0���/�8D�2z�… .

�7�

We refer to the distribution �7� as the loglognormal distribu-
tion. Third, when the disorder strength 4D�2z is smaller than
some threshold D: 4D�2z�D(�q ,��0�), F��� has a local
minimum in the vicinity of �m and a local maximum at some
intermediate �. Using Eq. �7� we find that the location of the
local minimum is approximately given by the equation
ln�X / �2c�0���=4D�2z�X−1�, where X	−ln��� / �2�m��.
When 4D�2z�D(�q ,��0�), this equation does not have a
solution and F��� does not have a local minimum �or a local
maximum�.

The dynamics described by Eq. �1� can either lead to front
formation or to decay of the solitary waves. To analyze the
dynamics of the emerging fronts we define the front position
tfr as the value of t for which ���= ���max /2, where ���max is
the maximum of ��� at a given z. Using Eq. �2� we obtain

tfr = arccosh�4 + 3�1 − �2/�m
2 �−1/2�/�2�� . �8�

We say that the field ��t ,z� at a given z corresponds to a
front if B�m���z���m, where B=0.95. Since B is suffi-
ciently close to 1, tfr��� is a monotonously increasing func-
tion. Therefore the distribution of the front position G�tfr� is
given by

G�tfr� = C�dtfr

d�

−1

F„��tfr�… , �9�

where C= ��B�m

�m d�F����−1. Equations �8� and �9� uniquely
define the distribution G�tfr�. The tail of this distribution is
lognormal. To see this consider the dynamics given by Eq.
�3� in the limit �→�m. In this limit the integral over t of ���2
can be approximated by b�mtfr, where b is a constant. Hence
tfr satisfies dtfr /dz�2���z�tfr. Integrating over z we obtain
tfr�const�exp�2�x�z��, from which it follows that tfr is log-
normally distributed. A more rigorous calculation using Eqs.
�7� and �8� yields

�G�tfr��tfr�1 � ��2�D�2z�1/2�2�mtfr − ln 3��−1

� C�m exp�− ln2��2�mtfr − ln 3�/c�0��
8D�2z

� .

�10�

To check our theoretical predictions we performed nu-
merical simulations with Eq. �1�. We used an initial condition
in the form of the solitary wave �s with ��0�=1, ��0�=0,
y�0�=0, and 
�0�=0. The following two sets of parameters
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were considered: D=3, �q=0.5, �=0.03, and �=0.05. The
simulations were carried out up to a distance zf =10. For this
value of z the disorder strength 4D�2z is 0.108 for �=0.03
and 0.3 for �=0.05.

Equation �1� was integrated by employing a split-step
method that is of sixth order with respect to the z-step dz
�16�. To overcome numerical errors resulting from radiation
emission and the use of periodic boundary conditions we
applied artificial damping in the vicinity of the boundaries of
the computational domain. The size of the domain was taken
to be −L� t�L with L=10� so that the absorbing layers do
not affect the dynamics of the solitary waves. For both val-
ues of � we sampled more than 2.5�105 disorder realiza-
tions. In the �=0.03 case we employed the technique of im-
portance sampling �17� in order to access the tail of G�tfr�.

The amplitude distributions F��� at zf =10 obtained by
our numerical simulations for �=0.03 and �=0.05 are shown
in Figs. 1�a� and 1�b�, respectively. A comparison with the
theoretical prediction given by Eq. �6� is also presented. The

insets show a blowup of the same data in the vicinity of �m
together with the theoretical prediction for the asymptotic
form given by Eq. �7�. One can see that the behavior of F���
is quite different in the two cases. While for �=0.03 F���
possesses a local maximum at an intermediate value �0
�1.06, for �=0.05 it does not have a local maximum or
minimum. Instead, in the latter case F��� is quite flat at 1
���1.2 and then increases sharply at 1.2����m. This is
a result of the fact that for �=0.05 4D�2zf �D(�q
=0.5,��0�=1), i.e., the final disorder strength is intermedi-
ate. In both cases the agreement between theory and simula-
tions is good in the main body of the distribution as well as
in the vicinity of �m. The later statement means that the
asymptotic behavior of F��� near �m is indeed loglognormal
in both cases. In the �=0.03 case, F��� has a minimum lo-
cated within ���10−5 from �m and then increases sharply
with increasing �, but we were unable to capture this very
narrow region with our simulations. We were able to capture
the minimum of F��� in the �=0.05 case at z=6. For these
values the minimum of F��� is located at ���7�10−4

from �m.
Figures 2�a� and 2�b� show the distribution functions of

the front position G�tfr� at zf =10 as obtained by the numeri-
cal simulations with �=0.03 and �=0.05, respectively. The
figures also present the theoretical prediction given by Eqs.
�8� and �9� together with the asymptotic lognormal form
�10�. The agreement between theory and simulations is very
good for �=0.03. In the �=0.05 case good agreement is ob-
tained for tfr�5, i.e., in the near part of the tail, while for

FIG. 1. Distribution function of the pulse amplitude F��� at
zf =10 for D=3, �q=0.5, �=0.03 �a� and �=0.05 �b�. The squares
represent the result obtained by numerical simulations, while the
solid lines correspond to the theoretical prediction given by Eq. �6�.
The insets show a blowup of the same data in the vicinity of �m.
The dashed lines stand for the asymptotic loglognormal form given
by Eq. �7�.

FIG. 2. Distribution function of the front position G�tfr� at
zf =10 for D=3, �q=0.5, �=0.03 �a� and �=0.05 �b�. The squares
represent the result obtained by numerical simulations. The solid
and dashed lines correspond to the theoretical prediction �Eqs. �8�
and �9�� and to the asymptotic lognormal form �Eq. �10��,
respectively.

BRIEF REPORTS PHYSICAL REVIEW E 72, 027203 �2005�

027203-3



tfr�5 there are not enough realizations to make a clear state-
ment. From this we conclude that the near tail of the distri-
bution of the front position is indeed lognormal.

We now show that the loglognormal and lognormal char-
acter of the tails of F��� and G�tfr�, respectively, are valid
for other types of dissipative disorder. Consider the dynamics
of the solitary wave �s in the presence of a dissipative dis-
order i���z����2n�, where n�0 is an integer. The cases
n=1,2 are of special importance since corresponding deter-
ministic terms are incorporated in the CCGLE and the
CQCGLE �1,2�. We assume that �q

1/2 is not small, so that �m
2n

is not a large parameter. Using energy conservation we ob-
tain an equation similar to Eq. �3� for the amplitude dynam-
ics. Taking the limit �→�m in that equation we obtain

d

dz
ln�ln� e2cn��

2�m
�� = 2n+1�m

2n���z� , �11�

where cn is a constant. Integrating and solving for x�z� we
find that F��� is loglognormal in the vicinity of �m

�F��������m
� ��32�D�2z�1/22n�m

2n���ln� e2cn��

2�m
���−1

� exp�−
ln2�− ln��e2cn���/�2�m��/�2c̃��

22n+3�m
4nD�2z

� ,

�12�

where c̃ is another constant. In a similar manner we obtain
that the tail of G�tfr� is lognormal

�G�tfr��tfr�1 � ��2�D�2z�1/22n�m
2n�2�mtfr − ln 3 − cn��−1

� C�m exp�− ln2��2�mtfr − ln 3 − cn�/c̃�
22n+3�m

4nD�2z
� .

�13�

The result �12� means that the amplitude statistics for solitary

waves of the CQNLSE are very different from the statistics
for CNLSE solitons. Indeed, in the latter case, where �q=0,
the disorder i���z����2n� can lead to an exponential growth
of the amplitude associated with the lognormal tail of F���
for n=0 and to a blowup of the amplitude after a finite
propagation distance for n�1. Near the integrable limit, i.e.,
when �q

1/2	1 and �m�1, one can expect the amplitude sta-
tistics to be similar to the CNLSE case. For such values of �q
the first order perturbation description might break down be-
fore the solitary waves approach the asymptotic front form
and, therefore, we cannot make a statement about the behav-
ior of F��� near �m.

A simple argument shows that the loglognormal diver-
gence of F��� is related to the asymptotic form of the emerg-
ing front tail. Let us concentrate on disorder in the linear
gain. We already showed that in this case when �→�m tfr is
lognormally distributed, i.e., tfr�const�exp�2�x�z��. Fur-
thermore, taking the limit t�1 and �� /�m	1 in Eq. �2� we
obtain that the tail of the front is given by

�
s�x��t�1,���max
� �m���/�m�−1/4 exp�− �mt� . �14�

Using this asymptotic form at t= tfr�1 together with the
definition of tfr we obtain tfr�−ln��� / �2�m�� / �4�m�, from
which it follows that F��� is loglognormal in the vicinity
of �m. Thus the loglognormal divergence of the amplitude
distribution is indeed determined by the form of the emerg-
ing front tail. It would be interesting to see if similar statis-
tical behavior exists in other types of pattern forming
systems supporting front formation in the presence of dissi-
pative disorder.

We are grateful to A. Aceves, R. Indik, and Y. Pomeau for
very useful discussions.
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