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We examine the effects of a periodically varying flow velocity on the standing- and traveling-wave patterns
formed by the flow-distributed oscillation mechanism. In the kinematic �or diffusionless� limit, the phase fronts
undergo a simple, spatiotemporally periodic longitudinal displacement. On the other hand, when the diffusion
is significant, periodic modulation of the velocity can disrupt the wave pattern, giving rise in the downstream
region to traveling waves whose frequency is a rational multiple of the velocity perturbation frequency. We
observe frequency locking at ratios of 1:1, 2:1, and 3:1, depending on the amplitude and frequency of the
velocity modulation. This phenomenon can be viewed as a novel, rather subtle type of resonant forcing.
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Interest has been mounting recently in mechanisms of pat-
tern formation in open reactive flows. The combination of
reaction, advection, and diffusion, together with the effect of
an upstream boundary condition, leads to mechanisms such
as flow-distributed oscillations �FDO� �1–9�, a general cat-
egory of stationary patterns referred to as “flow and
diffusion-distributed structures” �FDS� �12–16�, and the dif-
ferential flow instability �DIFI� �10–16�. Our focus here is on
FDO. Due to the equivalence �17–19� of flow in reaction-
advection-diffusion �RAD� systems and linear growth of the
spatial domain of a reaction-diffusion system, and the exis-
tence of cellular oscillations in segmenting tissue, FDO was
shown to be involved in the axial segmentation occurring
during biological development �17–19�. Given the pulsating
growth of certain organisms �22,23�, including human em-
bryos �24�, we study here the consequences of a periodically
modulated flow v�t� on FDO.

The systems of interest are described by the RAD equa-
tion without differential transport,
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where D is the diffusion constant, v�t� is the flow velocity,
U�x , t� is an N-dimensional vector of dynamical variables
�concentrations of species�, and the local dynamics given by
the vector valued rate function f�U� has an attracting limit
cycle. If v�t� is constant, this system can support FDO con-
trolled by the upstream boundary condition U�0, t�. In the
simplest case, a constant boundary condition sets the phase
of each oscillating fluid element as it enters the medium, and
the periodic recurrence of the same phase as the fluid travels
downstream results in stationary waves. Oscillating bound-
ary conditions result in traveling waves �17–19,5�. Diffusion
can modify the effective dynamics of the medium as it trav-
els downstream and even extinguish the oscillations �7,9�.
Equation �1� is also relevant to media such as linearly grow-
ing organisms, as it can be reinterpreted by means of a Gal-
ilean transformation as representing a stationary medium
with a boundary �the growth tip� moving at speed v�t�
�17–19,21�.

We examine the effect of a sinusoidally varying velocity

v�t�=v0+�v cos �vt. In the kinematic limit of vanishing dif-
fusion D /v2→0, the wave pattern undergoes a simple, cal-
culable longitudinal displacement which is periodic in both
time and space. Away from the kinematic limit, however, we
observe a type of nonlinear resonance. Relatively small
disturbances of an FDO wave pattern are magnified with
downstream distance until the wavefronts break. This rupture
generates traveling waves in the downstream region whose
temporal frequency is a rational multiple of the velocity per-
turbation frequency. We observe 1:1, 2:1, and 3:1 ratios
depending on the frequency and amplitude of the velocity
perturbation.

For the numerical examples, we use the FitzHugh-
Nagumo-type �FN� dynamics �25�

f�X,Y� = ���X − X3 − Y�
− Y + �X + �

� �2�

with �=5, �=2, and �=0 for the local rate function. �This
gives a generic nonlinear oscillator.� At these parameter val-
ues, the local system has a limit cycle and a moderately
strong nonlinearity. The frequency of the limit cycle oscilla-
tion is �0�2��0.43�. In all simulations, we set D=1 and
vary only v0 and �v.

When the ratio D /v2 is sufficiently small, diffusion is
relatively unimportant and each individual fluid element be-
haves approximately as an independent oscillator obeying
the local dynamics whose initial phase is set by the boundary
condition as it enters the flow from the upstream end �3�. The
phase fronts can then be calculated by pure kinematics: the
oscillation phase of a fluid element at a particular time and
location depends on its initial phase when it entered the flow
and how long ago it entered the flow. For the case of a
stationary boundary condition �i.e., constant phase at the
boundary�, the result is that the location of the phase front
for a particular value of the oscillation phase � is given by

x��,t� = v0
�

�0
+

�v

�v
�sin �vt − sin �v�t −

�

�0
�	 , �3�

where �0 is the frequency of the local oscillator. When �v
=0, this reduces to the simple linear mapping between posi-
tion and phase that characterizes stationary FDO waves.
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Note the following: �i� The amplitude of the displacement of
the phase fronts �second, time-dependent term in Eq. �3��
depends on �v /�v, implying that faster �higher frequency�
velocity modulation has less of an effect than slower modu-
lation; �ii� the displacement is periodic in time with the same
frequency as the velocity perturbation; but �iii� it is also pe-
riodic in � and thus in space. The fronts for which � is a
multiple of ��0 /�v are not displaced, and they occur peri-
odically at positions �nv0 /�v. The spatial periodicity can be
understood by considering the trajectories of fluid elements
entering the system at different times. Different elements en-
ter at different points in the velocity modulation period and
thus begin their downstream travel at different initial veloci-
ties. Over any multiple of the modulation period, however,
the velocity averages to v0 and thus all elements reach the
same position at the same phase when one full period has
passed, regardless of when they started.

When the boundary condition is oscillatory instead of sta-
tionary, traveling waves are generated. Just as in the station-
ary case, velocity modulation causes a periodic longitudinal
displacement of the traveling wavefronts. The modulation of
stationary and traveling waves is illustrated in Fig. 1.

When diffusion is unimportant, neighboring fluid ele-
ments do not interact and the behavior of FDO patterns can
be explained by pure kinematics. Each comoving fluid ele-
ment follows the limit cycle defined by the batch reactor
dynamics. However, significant diffusion alters the dynam-
ics. The flow velocity modulation then introduces a periodic
variation in the local environment of each fluid element. The
strength of the local gradient is different for each comoving
element and diffusion therefore affects the dynamics differ-
ently at different locations. This differential effect can mag-
nify the small kinematic effect of the velocity perturbation,

leading to larger differences in the dynamical variables and
eventually to disruption of the smooth FDO waveforms.

Figure 2 shows several examples of this phenomenon, in
which quite subtle modulations of a stationary wave pattern
become magnified with increasing downstream distance and
lead to the breaking and reconnection of wavefronts in the
downstream region. The simulations in these examples were
all done at an average flow velocity of v0=3. By comparison,
the boundary between absolute and convective instability of
the Hopf/FDO instability occurs at vAC�2.82. Stationary
waves controlled by the boundary remain possible at veloci-
ties well below this threshold, however �26�. Thus, while the

FIG. 1. Periodic modulation of standing and traveling FDO
waves in the kinematic limit. Note the periodicity in both time and
space. In each space-time diagram, the trajectory of a comoving
point is shown as a guide to the eye �dashed white line�. �A� Sta-
tionary waves: v0=8, �v=2, �v=2��0.1���0 /4. Some wavefronts
remain stationary while others wiggle back and forth. �B� Upstream
traveling waves with wave frequency �tw=2��0.25� subject to a
modulated velocity field with v0=5, �v=2, �v=2��0.02�.

FIG. 2. Examples of the breakup of waves due to a velocity
perturbation. All examples have average flow velocity v0=3. The
dotted white line in each frame represents v0. �A� �v=2��0.43�
��0, �v=0.215. A slight pulsation with frequency �v is visible in
the standing wavefronts, becoming more pronounced downstream.
Near x=100, there is a transition to uniform oscillation. �B� �v
=2��0.2���0 /2, �v=0.1. Periodic disturbance of the standing
waves becomes sharper with increasing distance, and there is a
transition to traveling waves with a 1:1 frequency ratio. Near the
transition, these traveling waves propagate in a saltatory manner but
they grow smoother with further downstream distance. �C� �v
=2��0.15���0 /3, �v=0.1125. As in �B�, there is a transition to
traveling waves near x=100, but in this case the waves do not
smooth out with downstream distance. Instead, there is a second
transition at x=200 to waves with twice the velocity modulation
frequency �2:1 resonance�. �D� �v=2��0.10���0 /4, �v=0.05. A
series of transitions leads to waves with three times the perturbation
frequency �3:1 resonance�.
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flow velocity is far from the kinematic limit, it lies well
within the regime where boundary-controlled stationary
waves are stable in the absence of flow modulation. The
minimum velocity v0−�v never falls below vAC except in
Fig. 2�A�, and then only by a small amount.

In Fig. 2�A�, the perturbation frequency is very close to
the natural frequency of the chemical oscillator. The effect of
the flow modulation is visible in this space-time plot as a
slight pulsation of the wavefronts. The pulsation becomes
stronger at positions farther downstream, until there is a tran-
sition to a region of nearly uniform synchronous oscillation,
synchronized to the period of the flow modulation. If the
modulation frequency is changed, the pattern in the down-
stream region remains synchronized to the modulation, and
the result is either upstream or downstream traveling waves.
An example of upstream waves is shown in Fig. 2�B�. In this
case, the velocity modulation is at a frequency lower than the
intrinsic natural frequency of the medium. As one can see
from the figure, the system’s response to the velocity pertur-
bation is nonlinear. Instead of a simple sinusoidal displace-
ment, the stationary wavefronts develop a series of sharp
cusps. At a certain downstream position, the wavefronts
break and reconnect, and the periodic disturbances become
the source of a set of traveling waves with frequency equal to
the modulation frequency, just as if the boundary were being
driven at that frequency.

Just as in the case of ordinary FDO phase waves driven
by a perturbation at the boundary �3–5�, perturbations slower
than the intrinsic frequency give rise to upstream traveling
waves. �In general, the phase velocity, wavelength, and fre-
quency of the traveling waves obey the kinematic relation-
ships discussed in �17–19,5,9�.� These waves propagate ir-
regularly in the region just downstream from the transition,
but with increasing downstream distance they become
smoother. The temporal frequency of the waves is locked to
the velocity modulation frequency. Figure 2�C� shows a
more complicated situation with two consecutive transitions.
The first transition to travelling waves occurs much as in Fig.
2�B�. However, instead of smoothing out with downstream
distance, these waves propagate irregularly and develop a
second instability at a position farther downstream, leading
to traveling waves with a temporal frequency exactly twice
that of the velocity perturbation. This can be viewed as a
form of 2:1 frequency locking. The latter traveling wave
smooths out with downstream distance and appears to be the
final asymptotic waveform. An asymptotic waveform at three
times the velocity perturbation frequency is also possible, as

in Fig. 2�D�. In general, a sequence of transitions leads to
successive regions of stationary, 1:1, 2:1, 3:1, etc. waves. In
the particular case of Fig. 2�D�, the three transitions are quite
close together. Which asymptotic waveform is selected, and
the exact distances from one transition to the next, depend in
nontrivial ways on the perturbation frequency and amplitude.
We will explore this dependence in subsequent work; a be-
havior somewhat analogous to Arnold tongues seems to oc-
cur. We have observed asymptotic waves in 1:1, 2:1, and 3:1
ratios to the perturbation frequency, but we have not yet
observed other rational multiples such as 2/3. Interestingly,
the tendency of stationary waves to break is strongest not at
the intrinsic natural frequency of the oscillator, but at ap-
proximately 0.65�0.

Immediately downstream from any transition point, the
traveling waves generally propagate with a pulsating phase
velocity, but become smoother with increasing distance
downstream. Such behavior was observed in both experi-
ments and numerical simulations for waves forced at the
boundary under a steady flow velocity �4�. In that case, the
pulsating phase velocity was due to a mismatch between the
oscillations driving the waves and the limit cycle of the in-
trinsic dynamics in the flow reactor. The explanation in this
case is the same. Instead of being driven by an oscillation at
the inflow boundary, however, these traveling waves are
driven by an oscillation induced by the flow velocity modu-
lation. As in the case without flow modulation, diffusion
tends to smooth the jumping waves as they travel down-
stream, unless the velocity perturbation induces a second in-
stability as in Figs. 2�C� and 2�D�.

The spatiotemporal resonance manifested in wavefront
disruption and frequency locking is novel. While previous
studies of spatiotemporal resonance involved direct, global
perturbations of the local dynamics �27,28�, in the present
case the perturbation acts only at the inflow boundary. This
becomes more evident when one considers the equivalent
growing reaction-diffusion system in the comoving frame
�20,19�, where the velocity does not enter into the dynamical
equations except via the boundary condition. Yet this bound-
ary effect propagates into the spatial domain where it leads
the breakup of waves and resonant frequency locking.

Due to the above-mentioned equivalence of flow and
growth �18,19�, the same phenomenon should be observable
in experiments such as those of �20,21�, which use a station-
ary medium with a moving boundary, if the velocity of the
boundary is modulated. It may also be relevant to biological
situations �22–24� in which growth is pulsatile.
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