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Pore-scale investigation of viscous coupling effects for two-phase flow in porous media
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Recent studies have revealed that viscous coupling effects in immiscible two-phase flow, caused by momen-
tum transfer between the two fluid phases, can be important in porous medium systems. In this work, we use
a three-dimensional parallel processing version of a two-fluid-phase lattice Boltzmann (LB) model to investi-
gate this phenomenon. A multiple-relaxation-time (MRT) approximation of the LB equations is used in the
simulator, which leads to a viscosity-independent velocity field. We validate our model by verifying the
velocity profile for two-phase flow through a channel with a square cross section. We then simulate co-current
flow through a sphere-pack porous medium and obtain correlations of the relative permeabilities as a function
of capillary number, wettability, and the fluid viscosities. The results are qualitatively consistent with experi-
mental observations. In addition, we calculate the generalized permeability coefficients and show that the
coupling coefficients are significant and the matrix is nonsymmetric. We also find a strong correlation between
the relative permeability and interfacial area between fluids, indicating that both the common extension of
Darcy’s Law and the generalized formulation accounting for viscous coupling effects do not provide adequate
insight into two-phase flow processes in porous media. This work lends additional support for the hypothesis

that interfacial area is a key variable for multiphase flow in porous medium systems.
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I. INTRODUCTION

Simultaneous two-fluid-phase (hereinafter two-phase)
flow in porous medium systems occurs routinely in nature
and is of significant interest in many environmental and in-
dustrial processes, including enhanced oil recovery and re-
mediation of hazardous waste sites by nonaqueous phase lig-
uid (NAPL) spills. While the use of the conservation of the
mass equation to represent the flow systems are fundamental,
the closure relations employed to complement the balance
are empirical. The conventional closure of the system relies
upon the use of relative permeabilities of each of two fluids
from an extension of Darcy’s Law for single-phase flow, in-
stead of a formal conservation of momentum. However, Dar-
cy’s Law is strictly valid only for creeping single-phase flow
[1]. For two-fluid-phase systems, the conventional view im-
plies that the flows of the two fluids are essentially un-
coupled and that the pressure gradient and gravity are the
only driving forces for each individual fluid. The existence of
viscous coupling between the two immiscible fluids, due to
the momentum stress being transferred across the fluid-fluid
interfaces [2—4], makes the simple extension of Darcy’s Law
highly questionable. Another assumption of the conventional
Darcy’s Law under serious challenge is that the relative per-
meability is a function of the corresponding fluid saturation
only. It has been posited that two-phase flow depends upon
many flow parameters, such as fluid saturations, capillary
number, wettability, and the viscosity ratio between the non-
wetting and wetting phases. Viscous coupling of the fluids is
affected by each of these factors [5-8].

The majority of theoretical approaches [9—17] intended to
improve upon the traditional two-phase flow model have led
to a similar generalized model for two-phase flow that ac-
counts for interfacial viscous coupling effects. In the gener-
alized model, the flow of each fluid phase is a linear function
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of gradients of both phases, indicating that in two-phase flow
systems, fluid flow will depend not only on the correspond-
ing pressure gradient and body forces for the fluid of con-
cern, but also on the corresponding terms for the companion
fluid. This model results in four generalized coefficients,
which are commonly referred to as generalized relative per-
meability coefficients. While there have been various experi-
mental studies showing that the coupling coefficients are im-
portant for a range of porous medium flow problems
[5-7,18], measurement techniques of the generalized coeffi-
cients are highly distinctive and the validity and reliability of
the obtained results are in many cases questionable [19,20].
In addition, the model has not succeeded in resolving the
complexity of two-phase flow through porous media. The
generalized flow theory fails on two counts. First, the theory
is of the Onsager-type; however, the controversial issue re-
garding whether or not the two cross coefficients are equal
has not been settled [2]. Second, the generalized relative per-
meability coefficients depend strongly on capillary number,
equilibrium contact angle, and the fluid saturation history
[5,20], which is also the case with the traditional two-phase
flow model.

Recently, a consistent and systematic approach, referred
to as the thermodynamically constrained averaging theory
(TCAT) approach, has been proposed for modeling multi-
phase flow [21,22]. The approach is based upon a complete
and rigorous set of conservation equations that are closed
with a set of relations that account for the effects of inter-
faces formed at the junction of two phases, rather than ad hoc
empirical relations [11]. One of the conclusions from this
approach is that the interfacial area between phases is an
important variable that must be incorporated into a complete
two-phase flow model. While there have been active research
efforts devoted to test this theory [23-30], the evolving
theory still requires improved experimental and small-scale
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computational approaches to determine the appropriate mi-
croscale processes and closure relations.

The overall goal of this work is to investigate quantita-
tively the viscous coupling phenomenon of two-phase flow
in a porous medium from a microscopic pore-scale perspec-
tive, where detailed information, such as the pore morphol-
ogy and topology, is available. The specific objectives of this
work are to

(1) review the research conducted to date on viscous cou-
pling effects for two-phase flow in porous medium systems
from theoretical, experimental, and computational efforts;

(2) advance a multiple-relaxation time (MRT) LB model
capable of simulating two-phase flow in three-dimensional
porous medium systems;

(3) validate our model by simulating a simple case of
two-phase flow in which a theoretical solution that explicitly
accounts for the interfacial coupling is available;

(4) investigate the effect of capillary number, wettability,
and viscosity ratio on the conventional relative permeabili-
ties in co-current two-phase flow through a sphere-pack po-
rous medium;

(5) develop and execute a strategy to calculate the cou-
pling coefficients in the generalized model; and

(6) investigate the hypothesis advanced in the TCAT ap-
proach that interfacial area is a critical variable in multiphase
porous medium systems.

II. BACKGROUND
A. Theoretical developments

The traditional model describing the flow of two immis-
cible fluid phases under steady-state conditions relies upon
an extension of Darcy’s Law, written as

KK,

v;=——4(Vp;-pg), (1)

1

where v;(;_,, ) is the Darcy velocity for the wetting phase and

nonwetting phase, p; is the fluid pressure, p;g is the body
force, u; is the dynamic viscosity of the fluid, « is the intrin-
sic permeability determined by the pore structure of the po-
rous medium alone, and «,; is the relative permeability that
depends upon fluid saturations, or fraction of the pore space
occupied by each fluid, and potentially other factors.

As viscous coupling effects have been increasingly recog-
nized, several theoretical approaches have been adopted to
describe viscously coupled multiphase flow in porous me-
dium systems. Bachmat and Bear [9], de la Cruz and Spanos
[10], Gray [11], Hassanizadeh and Gray [12-14], and Whi-
taker [17] applied a volume averaging method to Stokes
equation to arrive at a modified theory that includes viscous
coupling effects between two fluid phases. Kalaydjian
[15,16], on the other hand, used the ideas of irreversible
thermodynamics to develop analogous transport equations
describing immiscible two-phase flow in isotropic media.

These different theoretical approaches produced a similar
final formulation that we will refer to as the generalized two-
phase flow model, which may be written as
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The generalized relative permeability coefficients include
two conventional coefficients, «,,, and k,,,,, and two off-
diagonal coefficients, k, ,, and k,,,,.

One view of Eq. (2) is that this expression is a macroscale
application of Onsager’s fundamental reciprocity relation
[31,32], which is the basis of the thermodynamics of irre-
versible processes at the microscopic level. According to On-
sager’s theorem, the cross coefficients, «, ,, and k,,,, in this
case, are symmetric given a linear relationship between the
forces and fluxes for an irreversible process. However, there
has been diversity in opinions regarding whether or not On-
sager’s reciprocity relations of irreversible thermodynamics
for microscopic systems are applicable to macroscopic vis-
cous coupling phenomena. Among those who argue in favor
of the applicability of Onsager’s theory to coupled flows in
porous media are Gunstensen and Rothman [33], Kalaydjian
[15,16], Rose [34,35], and Auriault and Lewandowska [36].
Opposing views, however, are to be found in Avraam and
Payatakes [5-7], Bentsen [37], Bentsen and Manai [38], Dul-
lien and Dong [18], Goode and Ramakrishnan [39], and
Bentsen [3]. They argue that the nature of two-phase porous
medium flow is not amenable to the Onsager-type relation,
due to the fact that the coupling permeability coefficients are
complex functions of the characteristics of the flow systems
and are dependent on many nonlinear pore-scale flow pro-
cesses.

Recently, the TCAT approach has been advanced as a rig-
orous basis for the development of models of flow and trans-
port phenomena in porous medium systems [21,22], which is
the evolution of formal constrained averaging theory work
that has been ongoing for many years [11,12,40-44]. This
approach starts from microscopic balance equations of mass,
momentum, and energy for two fluid phases, a solid phase,
and the interfaces between the phases. Averaging theorems
and geometric constraints are used to simplify the entropy
inequality and guide the development of closure relations
needed to yield well-posed models. As a result of this work,
the importance of fluid-fluid interfaces in multiphase systems
has been distinguished and incorporated in model formula-
tions. Interfacial areas are considered as additional averaged
macroscale variables that represent additional information re-
lated to the microscopic state of the system, such as the
evolution of the distribution of fluids in the pore space. The
importance of taking interfacial areas into account, including
the potential to remove hysteresis from capillary pressure-
saturation closure relations, has been demonstrated by sev-
eral studies [29,45,46]. However, interfacial areas are not
explicitly a part of either the traditional multiphase flow
model or the generalized flow model.

B. Experimental investigations

Standard methods for measuring conventional relative
permeabilities rely upon steady-state, uniform flow and con-
stant capillary pressure gradients for both phases without
gravitational effects. However, these approaches are unable
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TABLE I. Summary of the experimental investigations of viscous coupling effects.

Investigators Dim. Medium Experimental method max( Kr’"w) Brm _y
Kr,rm Kr,wn
Kalaydjian® 3 Capillary tube Co-current steady-state 70% Yes
Bestsen and Manai” Sandpack Co-current and >15% No
counter-current
steady-state
Liang and Lohrenz® 1 Sandpack Combination of 70% Yes
steady-state and
unsteady-state
Dullien and Dongd 1 Sandpack Co-current steady-state 35% No
Avraam and Payatakes® 2 Pore network Co-current steady-state 120% No

Reference [16].
PReference [84].
“Reference [50].
dReference [18].
“References [5-7].

to discern the values of the diagonal coupling coefficients.
Seeking a suitable method to measure all four relative per-
meabilities in the general model is difficult. Limited numbers
of experimental studies have attempted to do so, and a sum-
mary of these studies is reported in Table I.

Generally, three types of experiments are conducted to
measure the permeability coefficients: steady-state
[5-7,16,18,19,38,47], unsteady-state (so-called immiscible
displacement) [48,49], and a combination of steady-state and
unsteady-state [50]. The immiscible displacement experi-
ments are the least time-consuming, allowing values of rela-
tive permeability and capillary pressure to be determined dy-
namically. However, these approaches are subject to
uncertainties and measurement errors, which are caused by
varying capillary pressure gradients and saturation gradients.

Steady-state experiments, on the other hand, are more
popular among experimental investigators because the fluid
saturations, flow rates, and pressure gradients in the system
can be directly measured, making them seem more reliable.
Several experiments, such as those by Dullien and Dong [18]
and Zarcone and Lenormand [51] on sand packs, were per-
formed by applying external force to only one fluid, so that
the first two coefficients were determined and then alter-
nately the other two coefficients were determined. Another
approach, in which co-current flow is first applied by adding
equal external forces to both fluids and then counter-current
flow by adding the opposite forces, were explored in, for
example, Bentsen and Manai [38].

A more systematic and complete set of experimental work
was pursued by Payatakes’ group [5-7,52-54], who per-
formed experiments on a two-dimensional glass pore net-
work model on a square lattice. Fluids with constant flow
rates were injected through the medium co-currently until
steady-state conditions were achieved. By varying the ratio
of flow rates and pairs of fluids, relative permeability coeffi-
cients as a function of capillary number, wettability, viscosity
ratio, and ratio of injecting flow rates were investigated, and
a strong correlation between the macroscopic permeabilities
and the steady-state pore-scale flow mechanisms was re-

ported based on the capillary number in the flow system.

As the importance of interfacial area has been increas-
ingly recognized, experimental measurement techniques
have been developed to measure such quantities [27,55,56].
However, due to the difficulty in determining the four rela-
tive permeability coefficients in the generalized model and
measuring the interfacial area, to the best of our knowledge
no experimental study has appeared that has investigated the
relationship between viscous coupling in two-phase flow and
interfacial area.

C. Computational simulations

Since experimental work that aims to explore all the re-
lated flow characteristics is difficult to perform, current ex-
perimental studies on viscous coupling effects are all limited
to one- and two-dimensional systems. On the other hand,
numerical simulations, having benefited from the dramatic
evolution of computational capabilities and new algorithms,
have significant promise for helping advance fundamental
understanding of viscous coupling theory and for guiding the
design and interpretation of experimental studies. However,
compared to laboratory experimental approaches, investiga-
tive studies to investigate viscous coupling using numerical
means are extremely limited. Conventional numerical inves-
tigations using, for example, finite-difference and finite-
element methods are even more scarce [34,57] because of
difficulties associated with pore-scale simulation of multi-
phase flow using such techniques.

Recently, the lattice Boltzmann (LB) method [58,59], a
relatively new method derived from its precursor, the lattice-
gas cellular automata method [60,61], has grown in popular-
ity in the field of computational fluid dynamics, because it
provides a means of simulating true flow mechanisms with a
realistic pore geometry for multiphase flow. It also allows
more versatility in the choice of parameters than can be had
in experiments and provides detailed information about flow
processes at the microscale. However, only a few published
studies have investigated viscous coupling effects using
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these methods. Olson and Rothman [62] attempted to esti-
mate the coupling coefficient using a lattice-gas model in a
digitized rock geometry obtained by x-ray microtomography
[63]. Langaas and Papatzacos [64] simulated co-current and
counter-current steady-state flows at different wettabilities,
viscosity ratios, and driving forces using a Bhatnagar-Gross-
Krook (BGK), single-relaxation-time lattice Boltzmann
model for a two-dimensional, uniform pore space.

Gunstensen and Rothman [33] used a BGK color-gradient
lattice Boltzmann model to simulate two-phase flow in a
three-dimensional porous medium. They delineated regions
of linearity and nonlinearity between Darcy velocities and
and forcing as a function of fluid saturations, and they ob-
served Onsager reciprocity in the linear region where a rela-
tively high body force was applied. However, some signifi-
cant issues still remain unresolved: (1) the applicability of
Onsager theory in the nonlinear regime, which represents
flow in the majority of hydrological applications; (2) the con-
sideration of porous medium systems with more realistic
pore structure than those considered to date; and (3) applica-
tion of modern, high-resolution LB methods. The studies
mentioned above, although limited in number, provide moti-
vation for a more complete study.

Another important aspect of viscous coupling is to eluci-
date the role of interfacial effects, as several researchers have
realized [5,6,33]. By applying the LB model at the micro-
scopic pore scale, the interfacial area between fluid phases
can be readily determined. A marching cubes algorithm has
been used extensively as a tool to resolve graphical inter-
faces [65-67]. Recently, a modified marching cubes (MMC)
algorithm has been successfully implemented and used to
compute interfacial area using data sets obtained directly
from LB simulations [68]. This approach provides a means
to investigate the dependence of relative permeabilities on
the interfacial area and to evaluate the validity of evolving
theories.

III. LATTICE BOLTZMANN MODEL
A. LB-MRT model

The LB method involves solving the microscopic Boltz-
mann equation, which can be viewed as a discrete approxi-
mation of the incompressible Navier-Stokes equations based
on kinetic theory [69]. In the LB method, fluid flow is rep-
resented by the distribution functions of fluid particles mov-
ing on a regular lattice. The so-called D3Q19 lattice was
used in this work, where “D3” indicates three dimensions,
and “Q19” indicates a 19-dimensional space with corre-
sponding velocity vectors e; (i=0,1,...,18).

The evolution of the fluid particle distributions is gov-
erned by the discrete Boltzmann equation [70]:

f+er+1)—flx,n)=S[f 0,0 -fxn], ()

where the bold-face symbols denote Q-dimensional column
vectors, e.g.,

f(x’t) = [f()(xJ)’fl(x’t)’ 7f18(x’t)]T

is a vector of the distribution functions at lattice location x
and time 7. The left-hand side of Eq. (3) represents the ad-
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vection term, denoting that the fluid particles f(x,7) simply
propagate in space according to the velocity e. The right-
hand side of Eq. (3) represents the collision term, accom-
plished by a multiple-relaxation-time (MRT) approximation
of the particle distribution functions towards their equilibria
via a Q X Q full collision matrix S.

Equivalently, one can consider the collision process being
carried out in moment space, instead of discrete velocity
space. Given a set of discrete velocity vectors e and corre-
sponding distribution functions f(x,7), a vector of moments
m;(i=0,1,...,18) can be constructed by a projection of the
distributions f through a linear transformation, i.e.,

m=Mf; f=M"'m,

where M is an integer transformation tensor, constructed via
the Gram-Schmidt orthogonalization procedure [70-72]. The
moments are related to the conserved (hydrodynamic) and
non-conserved (kinetic) physical properties, including the
density, the momentum, the kinetic energy, the energy flux,
and the viscous stress tensor. Hence, Eq. (3) can be written as

fx+et+1)—flx,)) =M'S[m(x,0) —m(x,n]. (4)

The corresponding collision matrix S§=M-S-M-! in moment
space is a diagonal matrix:

S =diag(0,5,,52,0,53,0,53,0,53,54,55,54, 55,565 56> 6557 57,57) »

(5)

where s; are the collision (or relaxation) parameters, indicat-
ing that the collision process for each moment m; is accom-
plished by a linear relaxation towards its equilibrium ml(.eq).
The transformation tensor M and the functional forms of the
equilibrium moments m©? for the D3Q19 lattice are given in
[70,71].

The values of the collision parameters s; that correspond
to the conserved moments are irrelevant because m(GQ)(x,t)
=m(x,1) for the conserved moments; here we set them to be
zero. Also, some of the collision parameters are set to be
identical values to preserve symmetry on the chosen lattice.
The kinematic viscosity v is then defined as

(1 1 If1 1
v=—|—=<|=2|—-2). (6)

3\sy 2 3\sg 2
Note that the conventional BGK single-relaxation-time
model is a special case of the generalized LB-MRT model,

where the collision matrix is S=(1/7)I. Here 7=1/s, is the
single relaxation time and I is the identity matrix.

B. Two-phase LB model

A Shan-Chen multicomponent LB model [73] was used in
this work. We provide a short description of the model be-
low, and we refer readers to our previous work [74] for ad-
ditional details. The evolution equation for fluid k (wetting or
nonwetting fluid) is
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flx+e.r+1) = fie,t) = M7'S [m 9 (x, 1) — my(x,1)].
(7)

The macroscopic fluid density py, fluid velocity v, and com-
mon velocity v are obtained by

pi(x,1) = Efi,k(xJ),
vilx,1) = E firlx,t)elpy(x,1),

v(x,1) = E (PkaS4,k) / 2 (pks4,k)-
k k

To simulate multiphase flow in porous media, long-range
interactions of the form

Fy=Fipr+Frpo+ pige (8)

are included, where F ;_; is the fluid-fluid interaction force,
F t.; is the fluid-solid interaction force, and p;g, is the gravi-
tational force for fluid k. Note that one can choose arbitrary
values for the gravitational coefficient g, to replace the de-
sired fluid pressure gradient, which simplifies the handling of
boundary conditions.

The change in momentum due to interaction forces F; is
included in the equilibrium function mgekq)(pk,viq), where
pv=po+F /s, [75]. In the model, nearest neighbor in-
teractions are used to define the inter-particle forces. The
fluid-fluid interaction force Fy s, on fluid k at site x is the
sum of the forces between the fluid k particle at x, and the
fluid k' particles at neighboring sites x', given as

Frpfx) == h(0) 2 Glex o (x)x' =x),  (9)

X

where ¢,(p,) is a function of local density and for simplicity
Ui(pr)=py is used in this study. In Eq. (9), G represents the
strength of the interpartical force. By choosing G properly,
fluids can separate so that immiscible multiphase flow be-
havior motivated by interfacial tension can be produced [76].

The interaction force Fy ;. between the fluid k at site x
and the solid at site x’ is defined as

Fy %) = = pi(x) 2 Gy, ) (x" = x). (10)

!
X

Again, one can choose the sign and the magnitude of coeffi-
cient Gy, to distinguish the different wetting preferences of
pure fluids. Detailed descriptions for choosing these coeffi-
cients for the fluid-fluid and fluid-solid interaction forces in
the multiphase LB model were discussed in our previous
work [74]. The overall fluid momentum is defined as [77]:

1
puZEEfi,kei"'Esz» (11)
K i k

where u is the overall fluid velocity, and p=2,p; is the total
density of the fluids.

The LB method is a computationally intensive approach.
As a result, an efficient parallel algorithm and implementa-
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tion are critical for large-scale multiphase LB simulations. In
this work, we adapted a LB implementation approach pro-
posed by Pan et al. [78], which utilizes an orthogonal recur-
sive bisection (ORB) decomposition that leads to excellent
parallel efficiency by maintaining an efficient workload bal-
ance among subdomains.

IV. MODEL VALIDATION
A. Comparison between BGK and MRT model

In the LB method, no-slip velocity boundary conditions
are usually approximated using the bounce-back scheme,
which mimics the phenomenon that a particle reflects its mo-
mentum in some way when colliding with a solid surface.
However, the actual position of a boundary is viscosity de-
pendent when applying the BGK model [79,80]. While in the
MRT model, the viscosity dependence can be eliminated by
individually adjusting the collision parameters.

In order to illustrate the benefit of the MRT model over its
BGK counterpart, we performed a test for single-phase flow
through a homogeneous sphere-pack porous medium, labeled
as GB1b. The porosity of the GB1b medium was 0.36 and
the relative standard deviation of the spherical grain size was
10.1%; more properties of the GB1b medium were given in
[74]. We used a subset of the entire GB1b sphere pack and
discretized it using a 64X 64X 32 lattice. A mirror image
was created along the flow direction to enforce periodic
boundary condition. The resulting medium contained about
150 spheres with 64° lattice nodes, corresponding to 13 lat-
tice nodes per average sphere diameter. This discretization
level was chosen based upon our previous investigations
[74], which showed that for the same sphere-pack porous
medium, the simulated relation curve between capillary-
pressure and saturation in a NAPL-water flow system ap-
proaches convergence if the number of lattice nodes per av-
erage sphere diameter {=13.0.

In the MRT model, s, and sq were determined based on
Eq. (6), and following the analysis by Ginzburg and
d’Humieres [79], we used

S| =5,=55=54 53=57=8(2-15,)/(8-5s4)  (12)

in order to minimize the permeability dependence on viscos-
ity. By applying a constant body force to the flow through the
medium, we calculated the steady-state Darcy velocity and
estimated the saturated permeability of the medium with re-
spect to different fluid viscosities (i.e., 7=0.6,0.8,1.0,1.5)
using both the MRT and BGK models. As shown in Fig. 1,
the simulated permeability obtained by the BGK model in-
creases significantly with increasing viscosities, although re-
fining the discretization to 1283 mitigated the level of depen-
dence. We observed that the permeabilities obtained by the
MRT model remained essentially constant for both the 64°
and 128° discretization levels when the viscosity changed by
a factor of 10. Therefore, compared to BGK models, MRT
models are more suitable for application to multiphase flow
systems, where fluids of varying viscosities are present si-
multaneously, and where applying fine enough discretization
of pore geometries to achieve the desired accuracy is often
computationally impractical.
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FIG. 1. (Color online) Comparison of the measured permeability
of a sphere-pack porous medium as a function of fluid viscosities
using BGK and MRT models. The permeability results are normal-
ized with respect to the value at v=0.1.

B. Two-phase flow in a tube

We further validated the LB multiphase model by consid-
ering flows in a simple geometry for which a theoretical
solution is available. Our simulation was performed in a
three-dimensional tube with a square cross section, filled
with a nonwetting phase (NWP) of viscosity v, and a wetting
phase (WP) of viscosity v, as shown in Fig. 2(a). The con-
figuration of the interface between the NWP and WP depends
upon the radius of interface R, which is defined by the pres-
sure difference between the fluids.

Semianalytical approximations of the solution that ac-
count for the interfacial stress balance between the NWP and
WP were given by Ehrlich [8], who exploited the solution to
investigate viscous coupling effects on a bundle of capillary
tubes. Axial velocities for the NWP and WP are represented
in polar coordinates by the series

\ n~ Pnén : . i
v,(r.6) = - ~Ln= Pl (—%+a0+2[a,ffcos(sja>]),
n j=1

pr_pwgw 1”2 . i
v, (r,f)=— ———— —Z+bo+2[(bﬂ”’]
w Jj=1

+ cjr_sj)cos(sjﬂ)]) (13)

where v; (=, 1s the fluid velocity of the NWP/WP phases
along the flow direction, u; is the dynamic viscosity, s is the
number of the sides of the cross section in polygon tubes
(which is 4 for square cross-sections), and aj, bj, and c; are
the undetermined parameters. The series in Eq. (13) have to
be truncated to a finite number at j=N so that a total number
of 3N+2 unknown parameters (a; j—o n» b; ;= > and c; -y n)
need to be determined. We truncated the series at N=15,
which led to a sufficiently small convergence error, accord-
ing to the results reported in Ehrlich [8]. Hence, we solved
for 32 unknown a’s, b’s, and c’s from 32 equations con-
structed by applying a zero velocity boundary condition at
the tube wall, and continuity of velocity and a stress balance
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FIG. 2. (Color online) (a) Two-phase flow in a channel with
square-shaped cross section; (b) Cross-sectional velocity profile for
a phase viscosity ratio M=2 with 322 lattice nodes along the y-z
plane; and (c) Error of the simulated velocity v, profile with respect
to the semianalytical solution versus lattice size N, for single-phase
flow and two-phase flow with a viscosity ratio M =2.

across the NWP-WP interface. We compared the velocity
field obtained at N=15 with that obtained at N=20, and
found that the L, norm of the difference between the two
solutions was less than 6 X 1078, which confirmed the con-
vergence of the velocity field.

In the LB simulation performed to compare to this ana-
lytical solution, the fluid-fluid interaction coefficient Gy
was set to 0.001, determined from a simple bubble test (see
details in [74]) such that the desired phase separation was
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produced. The fluid-solid interaction coefficients G, were
set to zero because the interactions between both fluids and
the wall were neglected in the analytical solution. Initially,
both the NWP and WP were placed within the tube as shown
in Fig. 2(a); the system was allowed to reach steady state
after the body forces were imposed for both fluids. Periodic
boundary conditions were applied in the x direction along the
channel length, and steady state was considered to be
achieved when the following criterion was satisfied:

VS, [ e) - (.1 = SO
VS, ux)?

where u, is the overall fluid velocity [defined in Eq. (11)]
along the flow direction x.

Figure 2(b) plots the steady-state profile of v, in the
middle plane of the channel with a radius of interface R
=10, body forces g,=g,=10"* and a viscosity ratio M
=v,/v,=2. A good agreement between the LB simulation
and the analytical solution is illustrated in Fig. 2(b) using 32°
lattice nodes in the y-z cross section. To further evaluate the
difference between the numerical LB solution and the semi-
analytical solution, we calculated the L, norm error of veloc-
ity field, defined as

2 [0.x) - v, )P
E,= N , (15)
1

where v, is the Ehrlich’s semianalytical solution defined in
Eq. (13), and le is the number of lattice nodes in the y-z
cross section. We observed a second-order rate of conver-
gence for single-phase flow, whereas for coupled two-phase
flow at M =2, we obtained an order of convergence of 1.4,
which we calculated using linear regression to fit E, with
respect to N; in log space. The lower order of convergence
for the coupled two-phase flow case was expected because of
the interfacial effect caused by the steep gradient in density
across the fluid-fluid interface [81,82]. We have observed
similar rates of convergence for two-phase flow in a tube
with M up to 5.

<107, (14)

V. TWO-PHASE FLOW SIMULATIONS IN POROUS
MEDIA

A. Setup of the numerical system

We used the identical porous medium and discretization
approach detailed in Sec. IV A. To determine if our simula-
tions were adequately resolved, we made spot checks by
comparing the simulated relative permeabilities with 64° lat-
tice nodes to a finer discretization with 96* lattice nodes and
found that at the same saturation level the variation of the
relative permeabilities between the two discretization levels
for both fluid phases in the conventional model was within
5% in all cases.

We first determined the saturated permeability « of the
medium, which was calculated from a steady-state Darcy’s
velocity after applying a constant body force for one phase
and setting the density of the other fluid equal to zero at all
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locations. It is important to note that the MRT model yields
more accurate predictions of both saturated and relative per-
meabilities than the standard BGK model, which inherently
has a relaxation-time dependent location of the no-slip
boundary and thus leads to a viscosity dependent permeabil-
ity.

Simulation of immiscible two-fluid-phase flow was per-
formed as follows:

(a) Initially, both a NWP and WP of equivalent density
were uniformly-distributed throughout the medium such that
the desired WP saturation (denoted as §,,) was obtained;

(b) The medium was bounded by walls along the y
and z directions and a periodic boundary condition was ap-
plied along the x direction;

(c) Co-current flow was simulated by adding body
forces, as defined in Eq. (8), for both fluids along the flow
direction. The reasons for using body forces instead of im-
posing a pressure gradient as a driving force are that: (1)
using body forces can avoid capillary pressure gradients and
thus saturation gradients along the flow direction; and (2)
body forces are convenient to implement, since periodic
boundary conditions can then be applied along the flow di-
rection; and

(d) The fluid-fluid interaction coefficient G and fluid-
solid coefficients G, were chosen such that the fluids with
an assigned viscosity ratio were separated and the desired
wettabilities were achieved [74]. For example, in a neutrally
water-wet (NWW) system, the WP-solid and NWP-solid in-
teraction coefficients were set to be —0.01 and 0.01, corre-
sponding to a contact angle of approximately 65°, while in
the strongly water-wet (SWW) system, those coefficients
were set to be —0.02 and 0.02, corresponding to a contact
angle of approximately 25°.

The conventional permeabilities for the NWP and WP
were calculated following the extension of Darcy’s law de-
fined in Eq. (1). In order to calculate the four generalized
permeability coefficients, one set of steady-state data is in-
sufficient. Therefore, a second set of steady-state simulations
was performed by perturbing the body force of the NWP by
20% of that used in the first set, while keeping the same body
force for the WP. These conditions were important to provide
similar flow conditions, yet sufficiently different conditions
to allow determination of the four generalized permeability
coefficients with sufficient accuracy.

In the following section, we first investigate the effects of
capillary number, wettability, and viscosity ratio on the con-
ventional permeabilities of fluids. We also calculate the gen-
eralized coefficients and investigate whether the generalized
coefficient matrix is symmetric or nonsymmetric. Lastly, we
investigate the correlation of the relative permeabilities as a
function of the interfacial area.

B. Results and discussion

1. Effect of capillary number

We first show the dependence of the relative permeability
on capillary number Ca, which describes the ratio of viscous
forces to capillary forces:

Ca=v,m,/y- (16)
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The nondimensional interfacial tension vy can be obtained
using Laplace’s Law by means of a bubble simulation [74].
Figure 3 compares a series of snapshots of the NWP motion
under two capillary numbers 5 X 10~ [Figs. 3(a)-3(d)] and
5X 107 [Figs. 3(e)-3(h)]. The corresponding Reynolds
numbers of the WP

Re = p,v,,Di (17)

were 0.17 and 0.017, respectively, indicating a Darcy flow
regime. In Eq. (17), D is the average diameter of solid grain
in the medium.

For both cases, the driving force for the NWP was kept
constant while the force for the WP in Figs. 3(a)-3(d) was
one order of magnitude larger than that in Figs. 3(e)-3(h).
The saturation of the NWP for both cases was 6%, which
allowed us to track dynamically the movement of individual
NWP regions. As illustrated in Fig. 3, the NWP was in the
form of disconnected ganglia and trapped in big pores due to
the resistance of capillary forces. At higher Ca, we observed
the motion of disconnected NWP regions that had overcome
the capillary resistance to movement. For example, the
movement of a NWP region initially in the upper left of Fig.
3(a) was observed. However, this motion was undetectable in
case of a lower Ca [see Figs. 3(e)-3(h)], although in both
cases the driving body forces applied to the NWP were the
same.

Strictly speaking, this is not a conventional steady-state
scenario, although the macroscopic saturation and flow rates
of both phases remain constant. The dynamic equilibrium of
a moving disconnected NWP phase in “steady state” was first
observed by Avraam et al. [52]. It is obvious that there is an
interfacial momentum transfer from the WP, engulfing the
disconnected NWP, to the NWP, which results in the mobi-
lization of the disconnected NWP at higher Ca.

The influence of Ca on the conventional relative perme-
abilities is shown in Fig. 4, in which two levels of Ca’s
(Ca=10"* and Ca=10">) were compared in a neutrally wet
porous medium. The body forces of the WP and NWP were
kept equal (g,=g,,) and were adjusted according to the WP
velocity in order to achieve the desired Ca. This is similar to
the way that the experiment by Avraam and Payatakes [7]
was performed in glass pore networks. We found that both
the NWP and WP permeability coefficients were increasing
functions of Ca for the fluid system. This trend was also
observed by Avraam and Payatakes [7] experimentally and
by Langaas and Papatzacos [64] numerically.

In order to further investigate the effect of capillary num-
ber, we performed simulations at S,,=0.5 with different level
of forcing and hence different Ca. Figure 5 shows that when
Ca is 107 or smaller, the flow rate and the driving force
exhibit highly nonlinear relations for both phases; while
when Ca approaches 1073, the relative permeabilities are al-
most constant, indicating linear flows at high levels of forc-
ing. This finding agrees with [33], despite differences be-
tween the porous media investigated and the LB simulators
used. We note natural hydrologic two-phase flow systems are
almost universally in the nonlinear regime because typically
Ca<<107%,
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FIG. 3. (Color online) Snapshots of the nonwetting phase distri-
bution under a higher capillary number [Ca=5 X 1074, (a)~(d)] and
a lower capillary number [Ca=5 X 1075, (e)-(h)]. The NWP region
indicated by the arrow in (a) moves through the porous medium
driven by momentum transfered from the WP at higher Ca, while it
is unable to move at lower Ca.
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FIG. 4. (Color online) Relative permeability vs WP saturation
S,, for co-current two-phase flow with different Ca in a neutrally
wet medium at M=1.

2. Effect of wettability

Next, we studied the dependence of the relative perme-
ability on wettability. Steady-state NWP distributions are il-
lustrated in Fig. 6 for cases of neutrally water wet (NWW)
and strongly water wet (SWW) media. For the case of a
SWW medium, the NWP displaces the WP in the largest
pores. Thus for the same saturation conditions, the NWP
correspondingly occupies a set of larger pores on average for
the SWW medium compared to the NWW medium. As a
corollary to this observation, the NWP has a larger specific
interfacial area with the solid phase, hence greater resistance
to flow, in the NWW case than in the SWW case, which is
consistent with previous observations [18]. On the other
hand, the NWP becomes more disconnected in the SWW
medium, as shown in Fig. 6. The former mechanism appears
to be dominant because the total effect of these factors leads
to a higher apparent NWP relative permeability in the SWW
system than in the NWW system, as shown in Fig. 7. In
particular, a substantially higher NWP relative permeability
was observed in the SWW system than in NWW system at
high NWP saturations, where the resistance effect of the

0.7

0.6F O Kr,w H

0 0.0002 0.0004 0.0006 0.0008
Ca

0.001

FIG. 5. (Color online) Relative permeabilities as a function of
Ca for co-current, two-phase flow with M=1 and S,,=0.5.

PHYSICAL REVIEW E 72, 026705 (2005)

(b)

et

FIG. 6. (Color online) Steady-state distributions of the NWP (a)
a neutrally wet medium; and (b) a strongly water-wet medium.
Wetting-phase saturation S,,=0.509 in (a) and 0.508 in (b). Dark
gray (red online) regions represent the nonwetting fluid, and light
gray (yellow online) regions represent the solid phase. For clarity of
illustration the wetting fluid is not shown.

solid phase boundary to the movement of NWP clearly out-
weighs the connectivity effect of the NWP in a SWW me-
dium. This was also observed in experimental work reported
in Dullien [83] for dolomite media and Avraam and
Payatakes [6] for glass pore networks.

On the other hand, in a SWW system, due to the fact that
NWP tends to occupy larger pores, the average size of pore
space occupied by the WP is smaller for the SWW system
compared to the NWW systems at a given saturation level.
This would suggest that the WP relative permeability for a
SWW system would be lower than the WP relative perme-
ability in a corresponding NWW system. However, the WP is
more connected in SWW media than in corresponding NWW
media. Based upon our observations, the net effect of these
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FIG. 7. (Color online) Relative permeability vs WP saturation
S,, for co-current two-phase flow with different wettability with
M=1 and Ca=107.

two off-setting mechanisms is a relatively small difference in
the relative permeability of WP as a function of changes in
wettability for the two conditions that we analyzed. This
finding is in agreement with the experimental results re-
ported in Avraam and Payatakes [7].

3. Effect of viscosity ratio

We further studied the dependence of the conventional
relative permeabilities on the viscosity ratio between fluid
phases. As experimental measurements of relative permeabil-
ity data on three-dimensional porous medium systems are
unavailable, we compared our simulations with Avraam and
Payatakes’s work [6], which was performed in a two-
dimensional glass pore network. Figures 8 and 9 show these
experimental data along with results of three-dimensional LB
simulations used to measure conventional relative perme-
abilities as a function of WP saturation for two viscosity
ratios, M=1.45 and M=3.35. From Fig. 8, we observe that

-I. Experimen‘tal, M=145
-B Experimental, M = 3.35
-@- Simulated, M = 1.45
-~ Simulated, M = 3.35
0.8f
0.6f
c
o
0.4f
0.2f
0
0

FIG. 8. (Color online) NWP relative permeability measured by
[6] in a glass pore network with a contact angle of 40° and our
simulated results for a NWW system as a function of WP saturation
S, for co-current, two-phase flow with different viscosity ratios at
Ca=1075,
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FIG. 9. (Color online) WP relative permeability measured by [6]
in a glass pore networks with a contact angle of 40° and our simu-
lated results in a NWW system as a function of WP saturation S,

for co-current, two-phase flow with different viscosity ratios at Ca
=107,

an increased viscosity ratio M leads to a significantly in-
creased NWP apparent relative permeability, especially when
the saturation is in the intermediate range. This is because
the WP, which is flowing in relatively small pore size con-
nected paths and edges of the pore space, is strongly coupled
to the NWP, which is flowing in the larger regions of the
pore structure. As a result, the NWP experiences an apparent
hydraulic slip, a so-called “lubricating” effect on the flow of
the NWP due to the WP film [83]. The greater the viscosity
of the NWP, or the ratio M, the greater the hydraulic slip
becomes.

This macroscopic trend in relative permeability can also
be due to changes in the NWP distribution as a function of
M, as observed experimentally by [6] in their two-
dimensional glass network, in which they found that a higher
viscosity ratio favors a more connected NWP pathway and
hence greater NWP permeability. It is also consistent with
the numerical study done by Langaas and Papatzacos [64].
The different permeability values among investigators are
due to differences in capillary numbers among the systems,
medium morphology, fluid properties, or dimensionality ef-
fects.

On the other hand, the flow of a less viscous WP is ef-
fected less by the viscosity of the NWP, therefore the WP
relative permeability is relatively insensitive to changes in
M. This trend was clearly confirmed by our simulations and
the experimental work of Avraam and Payatakes [6], as
shown in Fig. 9.

4. Generalized permeability coefficients

The generalized permeability coefficients for the NWP
and WP were calculated and are shown in Fig. 10. The mag-
nitude of the «, ,, coupling coefficient is comparable to the
diagonal coefficient at intermediate saturations, which indi-
cates that the interfacial viscous coupling in two-phase flow
is an important phenomenon. Interestingly, «, ,,, > K, ,, for
S,,= 0.5, which we attribute to the disconnected nature of the
NWP in this region. This indicates that in such an instance
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FIG. 10. (Color online) Generalized relative permeabilities as a
function of WP saturation S, for co-current two-phase flow with
M=1 and Ca=107,

the movement of the NWP phase is assisted by the WP. Since
Kyon =0, this coupling also assists the flow of the WP, but to
a significantly lesser extent. We hypothesize that these results
are influenced by the distribution of interfacial areas for each
of the fluid phases.

We found that the cross coefficients are nonequal and
K,y 18 generally greater than «, . This provides evidence
against the applicability of the Onsager’s theory in two-phase
porous medium flow at macroscale. This observation is con-
sistent with the majority of the findings from recent investi-
gations of viscous coupling effects [6,7,18]. The nonsymmet-
ric cross coefficients are essentially caused by the difference
in microscopic morphology and topology of the two fluids.
In a SWW system with intermediate saturation, WP predomi-
nantly fills the thin channels and small pores that the NWP is
not able to enter, while the rest of WP coexists with NWP in
wider channels and larger pore spaces. Since the coupling
effects only occur at the interfaces between the fluids, the
influence of coupling on WP is smaller than that on NWP.

Our results, however, seemingly disagree with the com-
putational study by Gunstensen and Rothman [33], who
found that the Onsager reciprocity holds. However, Gun-
stensen’s numerical experiments were conducted in the linear
flow regime (i.e., where v,,, is a linear function of the forc-
ing) by enforcing high body forces, while our study was
performed at Ca=107. For this Ca the flow rate and the
driving force exhibit nonlinear relations for both phases, as
discussed earlier in Sec. V B 1. We verified this by spot-
checking the four generalized permeability coefficients at
S, =0.5 with Ca=10"? using the same approach outlined in
Sec. V A. We found that the coupling coefficients «, ,,, and
K, differed by only 10% and they were both significant
compared to the diagonal coefficients. This suggests that
when capillary number is large, the generalized model is a
reasonable model and is superior to the conventional Darcy’s
Law.

The identification of the linear and nonlinear regimes and
the dependence of Onsager’s reciprocity on these regimes
also indicates that there might be different flow mechanisms
dominating the flow phenomena when fluid velocities change
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significantly. While some studies have attempted to explain
these flow mechanisms based on experimental [6,7] or com-
putational [33] observations, distinction of these mechanisms
was based on many flow parameters in the specific media
used in these studies and no unified indicator or potential
variable has been suggested. We believe further study along
this line is important to fully understand the complicated
flow phenomena in multiphase porous medium systems.

5. Effect of fluid-fluid interfacial area

We explored the effect of fluid-fluid interfacial area on
relative permeabilities. Unlike previous simulations, we re-
moved the solid walls that bound the medium along the y
and z directions in order to eliminate the influence of the
additional solid-fluid interfaces. Thus, periodic boundary
conditions were used in all three directions, although the
body force acted only in the x direction. Different spatial
distributions of both fluids at a fixed saturation were
achieved by initially distributing the fluids in different por-
tions of the medium.

The resulting steady-state distributions of NWP are illus-
trated in Fig. (11). In Case 1 [Fig. 11(a)], the WP occupied
primarily the top half of the medium and the NWP occupied
primarily the bottom half; in Case 2 [Fig. 11(b)], the NWP
was placed in the middle of the medium; while in Case 3
[Fig. 11(c)], the NWP was distributed uniformly throughout
the medium. At steady state in each configuration, the inter-
facial area for each configuration was calculated using an
MMC algorithm implemented by McClure ef al. [68].

As a first attempt to investigate the effects of interfacial
area, we evaluated the relation between the conventional
relative permeability and interfacial area, holding fluid satu-
rations essentially constant. Figure 12 indicates strong corre-
lations between the relative permeabilities for NWP and WP
and the fluid-fluid interfacial areas under the same saturation
level. In Case 1, WP occupied the top half of the medium
and NWP occupied the bottom half; thus generally, each
phase flowed as a continuous phase and the interfacial area
between the phases was smaller than that in other cases.
Therefore, the relative permeability for each phase was
higher in Case 1 than that in other cases. In Case 2, NWP
still flowed as a continuous but slightly more scattered phase,
while WP was divided into top and bottom parts, which led
to a larger interfacial area between fluids and hence slightly
decreased NWP and significantly decreased WP permeabili-
ties. In Case 3, both the NWP and WP were the most discon-
nected. This was reflected by an increase in the interfacial
area. As a result, the NWP and WP relative permeabilities
decreased by 50% and 40% compared to Case (b), respec-
tively. The sensitivity of the WP relative permeability with
respect to changes in interfacial areas is especially striking.
Based on the above results, we believe that interfacial area is
an important measure of the morphology and topology of
fluid distributions in macroscale porous medium systems,
which is not accounted for in either the conventional or gen-
eralized relative permeability models. This provides addi-
tional evidence for the evolving TCAT approaches, which
include interfacial areas as natural quantities in macroscale
models [21,22].
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FIG. 11. (Color online) Steady-state distributions of NWP with different initial phase configurations: (a) Case 1, (b) Case 2, and (c) Case

3. For all cases, the WP saturation is 0.45-0.46.

VI. CONCLUSIONS

The LB method is a useful approach for studying the
complex behavior of two-fluid-phase flow in porous media.
Particularly, the ease of obtaining the local parameters, such
as permeability, saturation, and flux, makes it suitable for use
in exploring pore-scale physics within porous medium sys-
tems. In addition, we believe that the multiple-relaxation-
time (MRT) LB models are superior to the BGK models for
multiphase flow simulations, due to the fact that the MRT
models improve the numerical stability and yield a viscosity-
independent velocity field, which is impossible to achieve
using the standard BGK models. The investigations of two-
phase flow in a channel with a square-shaped cross section
show good agreement with the analytical solution of axial
fluid velocities using the LB-MRT model.
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FIG. 12. (Color online) Conventional relative permeabilities of
NWP and WP vs fluid-fluid interfacial area per unit volume at con-
stant fluid saturations for (a) Case 1, (b) Case 2, and (c) Case 3.
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Three-dimensional investigations of viscous coupling ef-
fects were carried out for two-fluid-phase flow through a
sphere-pack porous medium. Viscous coupling effects were
found to be important over a broad range of conditions, in-
cluding capillary number, wettability, and viscosity ratio.
Qualitative trends in the change of conventional permeability
with the above parameters compare favorably with the ex-
perimental results obtained by Avraam and Payatakes [6,7].
The motion of disconnected NWP regions under higher Ca
was captured, which indicates that the prevailing assumption
that disconnected parts of a nonwetting fluid phase remain
static is invalid under certain conditions.

The dependence of the permeability-saturation curve on
the capillary number, wettability, and viscosity ratio provides
evidence against the sole dependence of permeability on the
corresponding fluid saturation posed in the conventional ex-
tended form of Darcy’s Law. An attempt to calculate the
coupling coefficients in the generalized formulation showed
that viscous coupling effects contribute significantly to fluid
flow. In addition, those coupling coefficients were found to
be unequal, which implies that the Onsager’s reciprocity re-
lation is not applicable for describing multiphase flow in
macroscale porous medium systems. We also note that most
of our studies were performed for Ca< 104, as Ca at this
range is of practical concern in subsurface systems. Other
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work found that Onsager theory was valid at higher Ca (still
sufficiently low to fall into Darcy flow regime), which was
confirmed by our study as well.

The evolving TCAT approach motivated us to further in-
vestigate the role of interfacial area for two-phase flow in
porous media. A strong dependence of relative permeabilities
on fluid-fluid interfacial area was found. For a fixed satura-
tion level, different flow topologies resulted in significantly
different relative permeabilities. This suggests that the distin-
guishing feature of multiphase flow systems—the existence
of fluid-fluid interfaces, should be accounted for explicitly in
a more complete model formulation. New models that over-
come the deficiencies of the conventional and generalized
theories deserve further study.
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