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The dynamics of vector dark solitons in two-component Bose-Einstein condensates is studied within the
framework of coupled one-dimensional nonlinear Schrodinger (NLS) equations. We consider the small-
amplitude limit in which the coupled NLS equations are reduced to coupled Korteweg—de Vries (KdV) equa-
tions. For a specific choice of the parameters the obtained coupled KdV equations are exactly integrable. We
find that there exist two branches of (slow and fast) dark solitons corresponding to the two branches of the
sound waves. Slow solitons, corresponding to the lower branch of the acoustic wave, appear to be unstable and
transform during the evolution into stable fast solitons (corresponding to the upper branch of the dispersion
law). Vector dark solitons of arbitrary depths are studied numerically. It is shown that effectively different
parabolic traps, to which the two components are subjected, cause an instability of the solitons, leading to a
splitting of their components and subsequent decay. A simple phenomenological theory, describing the oscil-

lations of vector dark solitons in a magnetic trap, is proposed.
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I. INTRODUCTION

It is well established that in a one-component Bose-
Einstein condensate (BEC) with a positive scattering length,
which has cigar-shaped geometry, one can generate dark soli-
tons [1]. Experimental generation of two-component BEC’s
of different hyperfine states of rubidium atoms in a magnetic
trap [2] and of sodium atoms in an optical trap [3] stimulated
theoretical studies devoted to the mean-field dynamics of
multicomponent condensates. As in the one-component case
special attention was devoted to the existence of solitary
waves in such systems. When a condensate is cigar shaped
and has relatively low density—i.e., when the healing
lengths of the components are much larger than the trans-
verse dimension of the condensate and much less than its
longitudinal dimension—the transverse atomic distribution is
well approximated by the Gaussian ground state and the sys-
tem of coupled Gross-Pitaevskii (GP) equations, describing
the mixture (see, e.g., [4]), can be reduced to the coupled
one-dimensional (1D) nonlinear Schrddinger (NLS) equa-
tions (see, e.g., [5]). The respective models were a subject of
recent theoretical studies. In particular, coupled large-
amplitude dark-bright solitons have been reported in [6];
bound dark solitons have been numerically studied in [7],
where it has been found that the creation of slowly moving
objects is possible; a diversity of other bound states has been
generated numerically in [8].

The present paper aims at a further analytical and numeri-
cal study of dark solitons in two-component BEC’s. The
main distinctions of the situation considered here compared
to the previous research are as follows. (i) We consider vec-
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tor dark solitons—i.e., states where two components move
with equal or approximately equal velocities. (ii) We do not
impose the condition of equality of the nonlinear coeffi-
cients, as a necessary condition, allowing one to reduce the
problem to an exactly integrable one—to the so-called
Manakov problem, for which vector dark solitons are known
[9]. (iii) In the small-amplitude limit we provide an analyti-
cal description of the phenomenon, reducing a system of
coupled NLS equations to a system of coupled
Korteweg—de Vries (KdV) equations, which allows us to
predict the existence of two types of vector dark solitons,
moving with different velocities. (iv) Finally, we study in
detail the effect of the magnetic trap on the dark soliton
dynamics. We show that, due to the difference of its effect on
different components, a magnetic trap leads to a splitting of
the components and subsequent destruction of vector dark
solitons.

II. STATEMENT OF THE PROBLEM AND PHYSICAL
PARAMETERS

The evolution of a two-component BEC composed of dif-
ferent hyperfine states is described by the coupled GP equa-
tions (j=1,2) [4]
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where V;(r)=(m/2)w;(\’x*+r7), ¥; are the macroscopic
wave functions of the states, a;; are scattering lengths of the
respective interactions—it will be assumed that they are
positive—w; are transverse linear oscillator frequencies of
the components, and \ is the aspect ratio of the condensate.
Respectively, NV;=[|W |*dr is the number of atoms of the jth

component and N=N,+N, is the total number of atoms.
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In the case of an elongated trap, when A is small enough
and when the densities of both components are low enough,
one can employ the multiple-scale expansion method in or-
der to reduce the original 3D system (1) to the homogeneous
coupled 1D GP equations (for details of the derivation see,

e.g. [5])
i0;®) == D, + x| P> D, + x|D,[*D,,

107D, == D, + x| P> D, + xo|D,[*D,. (2)
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(I)j, T, and X are the dimensionless wave function

envelops, slow time, and slow coordinate, respectively,
anate,
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parameter of the problem is defined as
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Besides the asymmetry of the trap and weakness of the
two-body interactions, expressed by the smallness of N and
8, respectively, our model assumes equality of the aspect
ratios of the components (A does not depend on j). Mean-
time, we emphasize that the linear oscillator frequencies ;
may be very different (say, in the experiment reported in Ref.
[10], the relation between the frequencies was w=12). As a
result, even for initially equal scattering lengths, the effective
nonlinearities x;, defined in Eq. (3), become different be-
cause of different transverse distributions of the components.

To estimate a typical value of the parameter 6 we consider
a binary condensate of two hyperfine states of rubidium at-
oms in a trap with the mean value of the transverse oscillator
frequency 277X 200 Hz and aspect ratio A=107* (this corre-
sponds to 1 um and 100 wm of the transverse and longitu-
dinal linear oscillator lengths). Taking a;;=~1 nm (here we
take into account that the scattering length can be varied by
using Feshbach resonance) and assuming the mean atomic
density to be n=10'? cm~ we obtain 6=~ 0.05. We also point
out here that the respective healing length ¢ (for numerical
estimates we assume that the healing lengths of the both
components are approximately equal) is estimated to be of
the order of 4 um.

III. SMALL-AMPLITUDE DARK SOLITONS

A. Rescaled system of equations

An initial value problem for the system (2) does not allow
a solution in the general case, except in the special limit,
which is known as the Manakov system and which is dis-
cussed below [see Eq. (12) and the respective discussion].
Some information about possible solutions is, however,
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available in the small-amplitude limit, where the coupled
NLS equations are reduced to coupled KdV equations.

In this approximation a dark soliton evolves against a
background, which means that Egs. (2) are considered sub-
ject to the boundary condition

lim |, = 7, (5)

x| —e '
where pJZ. are properly normalized densities of the compo-
nents. Taking this into account as well as a large number of
free parameters of the problem, it is convenient to scale out
the boundary conditions for the sake of performing the
small-amplitude reduction mentioned above. To this end we
introduce the total dimensionless density p2=p%+p§ and res-
cale_the variables as follows: ;=(1/p)®;, t= xp°T, and
x=\xpX. Then Egs. (2) are rewritten in the form

id, == Ty + (U g |* + cos® oy .

id4n = — Tey + (sin® o g |* + Us| ) i, (6)

where szxjpf/)(pz, cos a=p,/p, aqd sin a=p;/p and thus
the parameter « determines the relation between the unper-
turbed densities of the components: tan a=p;/p,. The
boundary conditions now acquire the desirable form

lim |y*= 1. (7)

|x‘—>oo

B. Sound propagation

Small-amplitude dark solitons, which from the physical
point of view represent packets of acoustic waves, for which
weak nonlinearity and weak dispersion are balanced, propa-
gate against a background with a speed close to the group
velocity of the sound (see, e.g., [11,12], as well as consider-
ation below). The background in our case is computed from
Egs. (6) and (7) to be i;=exp(~i&;t) where

E=U +cos’a, & =U,+sin’a. (8)

Designating the frequency and wave vector of a sound wave
as () and K, respectively—i.e., considering a solution of Egs.
(6) in a form ;=1+b; expli(Kx—Q1)]+c; exp[—i(Kx—Q1)],
where b; and ¢; are small constants, |b,|c;/<1—one finds
the two branches (upper with sign “+” and lower with sign

“—") of the spectrum of the acoustic waves:

Q. =KNK2+ Uy + Uy = (U, = U +5in?2a).  (9)

Since dark solitons will be constructed against a static back-
ground, we are interested in the limit of long wavelengths,
where the group velocities are given by

dQ, /
[ llm — = \/U2+ Ul + \“’(Uz— U1)2+ Sin2(2a).
k—0 dK

(10)

It follows from Eq. (9) that the lower branch is stable subject
to the condition
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A=U,U,-sin’> acos> =0, (11)

and thus the consideration below will be restricted only to
this case. We notice that this constraint corresponds to the
condition of the thermodynamic stability of the condensate
with the only difference that it is written for effective non-
linearities (rather than in terms of the coefficients g;;; see,
e.g., [4)).

An interesting feature, relevant to the next consideration,
is that the group velocity of the long-length excitations of the
lowest branch—i.e., v_—becomes zero at

sin’(2a) = 4U,U,. (12)

Then the matrix of effective nonlinearities A is degenerated.
This situation corresponds to the Manakov system, which is
an integrable limit of the coupled NLS equations.

C. Comment on the small parameter

Let us now turn to the analysis of small-amplitude dark
solitons. To this end we employ the idea due to Ref. [11]
about the possibility of multiple-scale reductions between the
NLS and KdV equations, noticing that the KdV equation can
be obtained as a small-amplitude limit of the NLS-like equa-
tion also in nonintegrable limit and with arbitrary (intensity-
dependent) nonlinearity [12].

Before going into details of the calculations we make the
following observation. The derivation of the dynamical equa-
tion for small-amplitude waves is based on the introduction
of the small-parameter of the problem, which we will be
designated as ¢ [see Egs. (14) and (15) below]. Then the
resulting evolution equation [see Eq. (18) below] appears in
the order &°. If we now recall that the 1D reduction of the
coupled GP equations is mathematically justified by the
smallness of &, introduced in Eq. (4), and that the respective
1D NLS equations (2) appear in the & order, while terms of
order & are neglected, we conclude that, strictly speaking,
the resulting KdV limit is not applicable for a description of
low-dimensional BEC’s (it would be valid only if one could
provide the inequality §<&><<1, which is not feasible for
real experimental situations, where typical values of J are of
order of 0.1-0.01, as has been mentioned above). Thus the
present section, although being interesting from the view-
point of the small-amplitude limit of the coupled NLS equa-
tions, cannot be directly interpreted as a theory of small-
amplitude dark BEC solitons (the issue which remains an
open problem). The significance of the results obtained be-
low for the mean-field theory of the BEC is in the indication
of new types of solutions which cannot be directly obtained
from the system (2) [or (6)].

There exists one more limitation on the practical use of
the small-amplitude limit. It is related to the fact that small-
amplitude solitons are wide and their width may be compa-
rable with the longitudinal extension of the condensate. In-
deed, the characteristic size of a (non-small-amplitude) dark
soliton is of the order of a healing length §; (as above healing
lengths of both components &, , are considered of the same
order). This means that a small-amplitude soliton has a width
of the order of §;/&> §;. The small-amplitude expansion fails
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at the boundaries of the atomic cloud, as the density ap-
proaches zero in those domains. Thus, for the validity of the
theory one must require the longitudinal size of the conden-
sate (i.e., a;/\\) to be much bigger than the width of the
soliton aj/ VA _§j/ € or, in other words, one must impose a
condition &> \s‘”)\fj/ a;. The obtained constrain is, however,
not as strong as the previous one. In particular, the estimates
provided the end of the Sec. II give now &> 0.04.

D. Coupled KdV equations

We look for a solution of system (6) in the form of a
small-amplitude excitation of the background exp(-i&;t),
which moves with a velocity close to one of the speeds v.
given by Eq. (10). The respective analytical ansatz reads

IJIJ = Q](gs T)eXp[_ igjt+ l(Pj(g’ T)]s (13)

where the amplitude Q,(,7) and phase ¢,({,7) are repre-
sented in the form of the expansions

Q¢ N=1+eq(LD+e'qu( D+, (14)
<Pj(§’7)=8¢j(§,7)+83¢j1(§’7')+ U (15)
and the new slow variables are given by
{=¢e(x-v1),
&3

TT U, + D)2, + Ui —4A]"

Hereafter v is either v, or v_, depending on the branch under
consideration. One verifies that, subject to condition (11), the
denominator in the definition of the slow time 7, which is
introduced for the sake of convenience, is always positive.
Our aim now is to derive evolution equations for g;({, 7)
and ¢;({, 7), which will describe the evolution of the small-
amplitude dark solitons. Respectively, we impose the bound-
ary conditions
lim ¢,(¢,7) =0,

|g]—e

Jim $(&0=d  (16)

with ¢;, being constants, and consider equations of different
orders of e.

While equations of the zero and first orders are satisfied
identically, it follows from the equations of the second and
third orders with respect to & (see the Appendix for details),
that the amplitudes and phases of the excitations of the two
components are linked by the relations (j=1,2)

1

The obtained formula reveals the essential difference be-
tween integrable and nonintegrable versions of the coupled
NLS equations. In the former case a zero value of the group
velocity of the lowest branch does not allow the existence of
small-amplitude solitary pulses. In other words, in the inte-
grable case there exists only one branch of dark solitons.

The condition of compatibility of the equations of fourth
and fifth orders in the small parameter & results in the
coupled KdV equations (see the Appendix)
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7.4+ 0 auar+ 0=, 18)
where j,k,I=1,2,
N'=60°U1 + 807U\ U+ 40°A ~ 12U)A,

Y2 =2 cos? a[v?(2U, + U,) — 4A],
yi2= Y = cos? a[v*(U, + 2U, — sin® @) — 2A],
1 _ o2 12
v, =2sin” a[v (U, +2U,) — 4A],
5" = 60°U3 + 807U, Uy + 40°A — 120,A,

}éz = y%l =sin® a[v*(2U, + U, — cos’ a) — 2A]

are the effective nonlinearities,

3 3
v v
,8%=UA—E(U1+2U2), B%:Ecosz a,

3 3
B5=vA - %(ZUI +U,), Br= UE sin” a

are the effective dispersions, and the Einstein summation
rule over repeated indexes is used.

Let us return to discussion of the integrable limit (12),
where according to the discussion following Eq. (17), one
must take v=v,=y2(U,;+U,) (i.e., the upper branch only)
and A=0. In this case, the coefficients of the coupled KdV
equations become y/‘=(U,+U,)¥ and ,8{=v/2(U1+U2)E{
where

Bi=-2(U,+2U,). Bi=1+\1-4U,U,,

B=-2QU,+U,), Bi=1-\1-4U,0,,
2 2

~l1

%' =2 - BNGB +2B3),

O | —

1o~ =
N === BB+ By,

W=-BB. % =-Bib

|
n'=%' == BB+ B,

I
7' =5 CBI - BB +28)
(notice that now U,U,<1/4). The respective system of
coupled KdV equations is integrable.
E. Small-amplitude dark solutions

A specific particular solution of Eq. (18) can be searched
for in the form
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n
q1=qr=— , (19)
2| 2 . T]
cosh |:\/;K(§ wr)

where w and 7 are real constants to be determined and « is a
constant parametrizing the problem. Substitution of ansatz
(19) in Eq. (18) gives the condition of the equality of the
chemical potentials:

61 =(€2. (20)

Next, the parameter 7, characterizing the width of the soli-
ton, is computed to be

217

= 21
1+U1+U2 ( )

7
The parameter w, which characterizes the soliton velocity in
the frame moving with the speed of the sound, is given by

W=W+=—4(U1+U2)(1+U1+U2)K2 (22)
for the upper branch and
w=w_=-4(U,+ U, - 1)’k? (23)

for the lower branch of the spectrum. Both w, are negative,
which means that the solitons move with velocities smaller
than the sound velocities of the respective branches.

As it follows directly from ansatz (19), solutions describ-
ing different branches correspond to equal distributions of
atomic densities. Meantime, they correspond to different
phase differences

A(Pj = ¢j+ - ¢j— (24)

at the infinities [see Egs. (17) and (16)]: the lower-branch
soliton “separates” domains with a larger difference in the
chemical potentials.

F. Numerical results

As has been mentioned above, although solutions of the
coupled KdV equations represent a good approximation for
exact solutions of the coupled NLS equation in the small-
amplitude limit, strictly speaking they cannot be considered
as satisfactory when applied to the dynamics of a two-
component BEC in an elongated trap. Meantime, the ob-
tained vector soliton (19) can be employed as an initial con-
dition for the numerical generation of dark vector solitons of
the coupled NLS equations (6), having small but finite am-
plitudes. Such a numerical study is performed in the present
section.

Taking into account the existence of two kinds of
small-amplitude solitons we address the question about the
persistence of the excitations at finite, but still small, ampli-
tudes, as well as their stability withing the framework of
system (6).

An exact vector dark soliton corresponding to the upper
branch of the linear spectrum reads

;i ={ivy+ V1 - v tanh[ k(x — Vo) Jfe 7, (25)

where
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FIG. 1. (a) Trajectories of dark solitons. Lines 1, 2, and 3 cor-
respond to the dynamics of xf,?i)n, x,(;il, and xf;;i computed numeri-
cally. The dotted line corresponds to the theoretical prediction of the
dynamics of x, .. Theoretically predicted values of xfr?i)n and xf:l)n
practically coincide, which makes them indistinguishable in the fig-
ure. The parameters are U;=2, U,=1.5, a=m/3, k=0.1, and e=1.
(b) Dynamics of the minima of densities of the dark vector solitons:
the growth of the minimum shown by line 3 corresponds to a shal-

lowing the soliton solution.

Vo

2
V=V1+U+U—4K, V= 77—
0 b iU+ U,

., (26)

and relation (20), which also can be rewritten as
2 cos? a=1-U,+U,, is taken into account. By expanding
Eq. (25) in a Taylor series in terms of the small parameter x
one verifies that the leading orders transform into the upper-
branch dark soliton described by formulas (14), (15), (19),
(21), and (22), where the formal small parameter & is substi-
tuted by 1 and « is interpreted as the small parameter of the
problem.

In Fig. 1(a) the trajectories of the centers of vector dark
solitons are shown for three different initial conditions: the
exact dark soliton (25) (line 1), the approximate distribution
(19) corresponding to the upper (line 2), and lower (line 3)
branches. The centers of the solutions are defined as coordi-
nates of the absolute minima of |1//]|2 they are designated as

9 and xi;"l)n for the exact and two approximate solutions,

rgqsl%ectively.

The exact solution (25) appears to be stable, and its ap-
proximate counterpart given by Eq. (19) undergoes a small
(invisible on the scale of Fig. 1) deformation. In the numeri-
cal simulation with the “approximate” initial condition cor-
responding to Eq. (19) the effective small parameter « is 0.1.
This gives the amplitude difference with the exact solution to
be of order of x*=107*, which explains the difference be-
tween lines 1 and 2 in Fig. 1(b). The solution corresponding
to the lower branch of the spectrum starts to move with ve-
locity v_, but during the initial interval of time changes sig-
nificantly: it decays into two localized pulses moving in op-
posite directions, as is shown in Fig. 2. The forward-moving
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FIG. 2. Profile of the unstable lower-branch soliton at =0 (thin
line) and at =10 (thick line). Parameters are the same as in Fig. 1.

part represents the “unstable” dark soliton. Its amplitude con-
tinues to change during the evolution [see Fig. 1(b)], and its
velocity approaches the group velocity of the upper (stable)
branch [see Fig. 1(a)].

The observed instability of the lower-branch dark soliton
is especially interesting in view of the recent results reported
in [13], where it was found that in the 3D coupled GP equa-
tions, describing spinor condensates, there exist subsonic
(i.e., having velocities below the sound speed of the lowest
branch) solitary wave complexes, most of which are sug-
gested to be stable. In our case a subsonic vector dark soliton
is unstable and the stable one has the velocity between the
two sound speeds: v_<V,<uv,.

In order to understand this phenomenon, let us consider
the energy of the system,

E:El +E2+Eint’ (27)

which we write down in dimensionless variables,

U.
Ej=fdx|:|¢jx|2+ _21(|¢j|2_ 1)? (28)

is the energy of the excitation of jth component, and

1
e (L e e

is the energy of interaction of the components. Next, we
recall that for a given phase difference between the infinities,
Ag; [see definition (24)], there exist two types of dark soli-
tons, corresponding to two branches of the group velocities.
Let us assume now that the respective lower- and upper-
branch solitons are characterized by the parameters «_ and
K., respectively. Let also initially the low-branch soliton be
excited. Since it does not represent an exact (but only an
approximate) solution, it starts to deform with time. Such a
deformation has a constraint: the phase differences Ag; are
preserved. In the case of a small-amplitude soliton, given by
Eq. (19), one computes from Eq. (17) and definition (24)

23/2 23/2

32 _

P — L ) Y (¢ 3,
1+U;+U, 1+U,+U,

Ap =Ap, = _vZ

(30)
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On the other hand, one can compute the energy in terms
of the parameters of the solution by substitution of Egs. (19)
and (21) into expressions (27)—(29):

16K [v+ +2(1+ U, +U,)]
* 3(1+ U+ U,)?
3/

(31)

From Eq. (30) it follows that v 2= k_v*?. Since v_<uv,,
one finds that «,<k_ and hence E,<E_. Thus what we
observed in the numerical simulations is the transformation
of a high-energy vector soliton into a low-energy vector soli-
ton, accompanied by quasilinear modes.

IV. EFFECT OF THE PARABOLIC TRAP

Let us now turn to the situation when the trap is not long
enough in the axial direction, such that reflections of a soli-
ton from potential walls can happen. In this case the trap
potential must be included explicitly in the equations (in-
stead of including it in the normalized ground states; see,
e.g., [14]). This leads to coupled 1D GP equations (6) as
follows:

id == dipy + (Vix? + Uy g + cos® o M)

i0f == T + (V3 + sin® of | + Us| ). (32)

Here v;=N/xp*> and v,=wv, are the effective strengths of
parabolic traps. Without a restriction of generality in what
follows we consider the situation where v; <v,.

In the case of equal effective frequencies v;=v, and sub-
ject to the specific initial condition (¢, =constX ), effec-
tively reducing the system to a single NLS equation, a vector
dark soliton oscillates with frequency \2 times smaller than
the frequency of the parabolic trap [15,16]. If, however, the
strengths of the parabolic potentials of the two components
are different, the behavior of the soliton changes dramati-
cally. There exist two competing factors, which determine
the dynamics. On the one hand, each component, affected by
its own parabolic potential, “attempts” to oscillate with its
own frequency. On the other hand, an attractive interaction
between the components, described by functional (29),
forces them to oscillate with the same frequency.

The dynamics emerging from the competition of the fac-
tors mentioned above is shown in Fig. 3. In the case of suf-
ficiently wide potentials and small difference between their
strengths [Fig. 3(a)] the first and second components (thin
and thick lines correspondingly) initially oscillate with ap-
proximately equal frequencies.

The dynamics observed in the case when initial soliton
velocities are fixed and the difference between the strengths
of the traps is increased is shown in Fig. 3(b). One observes
a more significant separation of the components. The dynam-
ics, however, still resembles periodic motion. After a subse-
quent increase of the initial kinetic energy of the soliton, by
means of increasing its initial velocity, more visible splitting
is observed, as is shown in Fig. 3(c). After the first period the
soliton splits and each component starts to oscillate with its
own frequency.

By increasing the frequencies of the magnetic trap but
keeping constant the ratio between them [this corresponds to
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FIG. 3. Trajectories of the components of the vector soliton,
Xinj (j=1,2), corresponding to the first (thin line) and to the sec-
ond (thick line) components for parameters «, v;, and v, being,
respectively, (a) 1.05, 0.15, and 0.2; (b) 1.05, 0.1, and 0.2; and (c)
1.,0.1, and 0.2; (d) 1.05, 0.2, and 0.4. Dotted lines show trajectories
of the components in the respective traps when an interaction be-
tween the components is absent. The other parameters are U;=2,
U,=1.5, and a=7/3.

passage from Fig. 3(b) to Fig. 3(d)] one observes a fast
splitting of the components whose trajectories show rather
independent behavior. The second component, which exists
in an effectively more narrow trap, does not display periodic
motion.

To understand qualitatively the described behavior, we in-
troduce coordinates of the centers of mass of the components

(j=1,2):

o0

1 o
= | Anras w= | lwwPa 6y
We also define the coordinate of the center of mass of the
whole condensate X,=(N,X,+N,X,)/N, where N=N,+N,,
and the distance between the two centers of masses:
X_=X,-X,. We emphasize that, strictly speaking, X, , do not
describe the trajectories of the dark solitons (see the discus-
sion in [15]). One, however, could expect that when the vec-
tor soliton splitting is small enough (i.e., when X_<1) the
relations among the frequencies of the two-component prob-
lem are approximately the same as in the one-component
case. That is why we concentrate on the dynamics of X,.

Differentiating X; with respect to time and using Eqgs. (6)
we compute

4 4 N NN

5V, 4+ Nyd)X, + ]T]{Nz(l - ﬁ)vﬁ - fuﬁ}x_
2 i |?

= —(sin®> a - cos a)J | |*—— |¢2| X, (34)
N ox

. N, N
X_+4[<1——2>v§+—2
N N

sin @ cos® @ a|zp |2
=2< + )J = =dx. (39)
N2 Nl —o0

Hereafter overdots stand for derivatives with respect to time.

v%}X_ + 4(1/% - v%)XJr
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FIG. 4. Dynamics of x,,, | = X,,i,.» corresponding to Fig. 3. Pan-
els (a)-(d) correspond to the respective panels in Fig. 3.

While Egs. (34) and (35) are exact, they are not closed,
and in order to make use of them we have to make some
approximation. Below, in Figs. 5(a) and 5(b) we show that, if
the difference v,—v; is small enough, the shapes of the com-
ponents are preserved for relatively long temporal intervals,
even when the splitting is not negligible. Based on this ob-
servation we assume that the components of the vector soli-
ton preserve their shapes and only change their velocities.
This allows to us describe each component in the vicinity of
the soliton by formula (25) where V) is substituted by X;(7).
We also restrict the consideration (this time for the sake of
simplicity only) to zero initial velocities: vy=0. Then the
integral on the right-hand sides of Egs. (34) and (35) can be
computed explicitly. It appears to be a function of X_ only
(i.e., independent on X,).

Let us now take into account that |X_| <|X,| [see Figs. 3
and 4, panels (a) and (b)]. Then, in the leading order the
terms with X_ can be neglected in Eq. (34), resulting in a
simple equation for the center of mass of the condensate:

X, +Q2X, =0. (36)

Here
, 4 2 2
Q+=E(N1V1+N2V2). (37)

In other words, ,=Q,/2 is expected to be the main fre-
quency of the oscillations of the vector soliton, where we
introduce the factor 2, conjecturing that the relation be-
tween the frequencies of the condensate and soliton is the
same as in the one-component case. To compare this estimate
with the direct numerical simulations shown in Fig. 3(a), we
use the numerical values Ny=~12 and N,~7.1 and obtain,
from Eq. (37), the frequency Q,~0.24 and the period of
oscillations 7=~ 26.1. The numerical value of the period sub-
tracted from Fig. 3(a) is T, =~ 26.3, which is in remarkable
(taking into account the character of the approximations)
agreement with the theoretical prediction 7.

In order to analyze the characteristics of the splitting of
the soliton, we hold the above assumptions and rewrite Eq.
(35) in the form
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L
[}
X

0
X

FIG. 5. Density profiles |¢;|* of the first (solid lines) and second
(dashed lines) components at time #; corresponding to Fig. 3. In
(a)—(c), t;=40, and in (d), #;=20.

. J X
x_+93x_+£efiu=4(y2- X, (38)
oX 1 2/ A+

where the effective potential is given by

siffa@  cos? a) sinh X_—X_cosh X_
+
N, N, sinh® X_

U(X.) = s(
(39)

U.(X_) describes additional confinement of the relative mo-
tion of the components due to the attractive interaction be-
tween the components, which is imposed simultaneously
with the parabolic trap characterized by the frequency

N N
QE=4|:<1—W2>V§+ 2,2

FV2:| . (40)
Equation (38) is nothing but a nonlinear oscillator in a trap
made up of the parabolic potential Q>X?/2 and of the non-
linear potential U, (X_), driven by the periodic force
4(V%—V§)X+(t), originating from the oscillation of the con-
densate as a whole.

To simplify the next consideration we take into account
that X_ is relatively small [see Fig. 4(a)] and substitute
IU.(X_)/ dX_ by the first term of its Taylor expansion. This
results in a modified linear frequency, which is determined as

O =4/02+ %ﬁ(oy (41)

Using the data of Fig. 3(a) we compute Q_=~0.59, which
corresponds to the period of modulation 7_=10.65, while the
numerical value subtracted from the figure is 7, -~ 11.8.
Thus we again observe good agreement between the simple
theoretical estimates and the numerical results, which shows
that the simple model given by Egs. (36) and (38) provides
an adequate description of the vector soliton dynamics in a
parabolic trap whenever the splitting between the compo-
nents is small.

The interaction between the components of the vector
soliton and soliton interaction with the confining potential in
a general case lead to deformations of the profiles of the
soliton components, which is shown in Fig. 5 for times 7,
corresponding to the final time of the evolution depicted in
Fig. 3. Already after a few oscillations the vector soliton
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decays, except in the case when both components oscillate in
effective traps with equal strengths (i.e., when the vector
soliton behaves like a single-component dark soliton [15]).

V. CONCLUSION

To conclude, we have investigated the dynamics of vector
dark solitons governed by one-dimensional coupled nonlin-
ear Schrodinger equations. In the homogeneous case and in
the small-amplitude limit, when the vector soliton propagates
with velocity close to the speeds of the sound, a stable vector
soliton has a velocity close to the higher velocity of the
sound and exceeding the speed of the slow sound. The re-
spective subsonic (i.e., having a velocity lower than the
speed of the slow sound) dark vector soliton is unstable.
Both cases are described by coupled Korteweg—de Vries
equations. When the group velocity of the lower branch of
the sound dispersion relation becomes zero, which corre-
sponds to the integrable Manakov system, the coupled
Korteweg—de Vries equations obtained in the small-
amplitude limit are integrable (to the best of the authors’
knowledge, such a system has not been reported in the lit-
erature, so far).

Including a parabolic trap in the consideration changes the
behavior of vector solitons dramatically, leading in a general
case to their decay, which is explained by different eigenfre-
quencies of the two components. If in the meantime the ef-
fective traps for both components have close frequencies,
during the initial times the dynamics of the vector soliton can
be qualitatively (and also quantitatively, with rather good
accuracy) described by the oscillatory motion of the soliton
center with the frequency given by Eq. (37). The relative
dynamics of the components, when the splitting is small
enough, can be interpreted as an oscillator driven by a peri-
odic force. Large differences between strengths of parabolic
traps or large initial soliton velocities cause instability of
dark vector solitons, leading to their splitting and subsequent
decay, thus preventing the possibility of long-time dynamics.
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APPENDIX: DERIVATION OF THE COUPLED KdV
EQUATIONS

Substituting Egs. (13),(14), (15), and (8) into Egs. (6) and
gathering terms of the same order of the small parameter ¢,
one obtains that the equation is satisfied identically in the
orders £° and €'. Next one has
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Uﬁ((b] - 2Ulq] -2 COS2 agr = O,
U&g(ﬁz—zsinz a’ql—2U2q2=0, (Al)
in the order &2, and
<9§¢1 -vdq, =0, (9§¢2—U(9442=0, (A2)

in the order . Integrating Eqs. (A2) once and taking into
account Egs. (16), one obtains Eq. (17). Substituting link
(17) in Egs. (A1) one verifies that the so-obtained system is
solvable subject to the condition (10), which justifies the
value of the soliton velocity as the group velocity of the
sound waves.

Equations of the order &*
read

, where the link (17) is used,

virhy — 2U16111 -2 cos® agy

=d,¢, - t?év(ﬁl (5g¢1)2 (3g¢1)(¢9g¢2)
2
+ C"jz (0%,

. 1 30U,
Vdghy —2 sin” aqy —2Uyqy = 0, - _32¢2 + 7(%%)2

2 sin?

((9g¢1)((9g¢2)

sm a

—— (). (A3)
Finally one computes the equations of the order &> [where
the link (17) as well as the explicit value of the group veloc-
ity (10) are taken into account and integration with respect to
{ is performed]

;b = i(M>)2 lad)
(P11 —vqn = 20{1 071’

f7§¢21 —Uvqy=— i(&gd’z)z - 13472- (A4)
2v v

The last system allows one to express g;; through other de-
pendent variables and substitute the result in Egs. (A3). In
this way one obtains the inhomogeneous linear algebraic sys-
tem of equations for d;¢;,, the determinant of which is com-
puted to be zero. This leads to a linear dependence of the
equations which are solvable only subject to the respective
requirement imposed on their right-hand sides. Differentiat-
ing the mentioned solvability condition with respect to { and
using one more time the link (17) in order to express the final
result through the dependent variables g; only, one obtains
the coupled KdV equations (18).
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