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Microscopic theory of linear light scattering from mesoscopic media and in near-field optics
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On the basis of quantum mechanical response theory a microscopic propagator theory of linear light scat-
tering from mesoscopic systems is presented. The central integral equation problem is transferred to a matrix
equation problem by discretization in transitions between pairs of (many-body) energy eigenstates. The local-
field calculation which appears from this approach is valid down to the microscopic region. Previous theories
based on the (macroscopic) dielectric constant concept make use of spatial (geometrical) discretization and
cannot in general be trusted on the mesoscopic length scale. The present theory can be applied to light
scattering studies in near-field optics. After a brief discussion of the macroscopic integral equation problem a
microscopic potential description of the scattering process is established. In combination with the use of
microscopic electromagnetic propagators the formalism allows one to make contact to the macroscopic theory
of light scattering and to the spatial photon localization problem. The quantum structure of the microscopic
conductivity response tensor enables one to establish a clear physical picture of the origin of local-field
phenomena in mesoscopic and near-field optics. The Huygens scalar propagator formalism is revisited and its

generality in microscopic physics pointed out.

DOI: 10.1103/PhysRevE.72.026612

I. INTRODUCTION

Theoretical studies of the light scattering from (nonmag-
netic) condensed matter media often are carried out on the
basis of macroscopic electrodynamics, and considerable in-
sight in the underlying physics obtained using Green’s func-
tion techniques. In the space (r)-frequency (w) domain one
usually starts from the following propagator equation for the
macroscopic electric field, E(r; w) [1-3]:

E(r;w) = E“(r;0) + B (r; 0) — uow?

xf Grr—r";0) P 0)d, (1)
e—0

where E®(r; w) is the external (incident) electric field driv-
ing the electrodynamics of the medium, and P(r;w) is the
macroscopic polarization induced in the scattering regime.
The dyadic electromagnetic propagator a(r—r’ ;w) is singu-
lar at r’ =r, and the singularity is so strong that the integral
over the singularity is only conditionally convergent [1]. The
various choices of the geometry of the principal volume €

which excludes the singularity of G(r-r’;w), and which
becomes infinitesimally small (e—0) at the end of the cal-
culation as indicated, lead to the addition of different so-
called self-field contributions, E5f(r;w), to the prevailing
electric field [2]. The self-field only contributes to the elec-
tric field inside the scattering medium. In the Appendix, I
briefly discuss the issue of the singularity of the propagator,
paying particular attention to the spherical contraction
scheme. The macroscopic electric field can only be deter-
mined from Eq. (1) if the prevailing polarization distribution
is known (and vice versa). In the linear regime of macro-
scopic electrodynamics traditionally one relates P(r; w) and
E(r;w) via a phenomenological constitutive relation of the
form
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P(r;o) = X(r;w) - E(r;o), ()

where x(r;w) is the macroscopic susceptibility of the me-
dium. The tensorial form of x(r;w) and its space dependence
allow one to include optical anisotropy and inhomogeneity in
the formalism. In Eq. (2) the quantities P, , and E relate to
the same angular frequency, and this is so because we have
assumed that the medium does not change its physical prop-
erties over time (translational invariance in time). It has also
been assumed that the constitutive equation is local in space,
i.e., the polarization at a given space point (r) does only
depend on the electric field in the same point [4]. By inser-
tion of Eq. (2) into Eq. (1) one obtains the central propagator
equation for analyses of linear light scattering in macro-
scopic electrodynamics, namely,

E(r;w) = E“(r;0) + ESf(r; )
_q(z)f G(r-r';0) ¥r';0) - E(r';0)
e—0

Xdr', (3)

where gy=w/c( is the vacuum wave number of light. Since
the macroscopic electric self-field, ESf(r;w), at least ap-
proximately as we shall realize, can be expressed in terms of
the macroscopic polarization which in turn relates to the
electric field via Eq. (2), Eq. (3) is an integral equation from
which the macroscopic electric field may be determined as-

suming X(r;w) [and (E(r—r’ ;)] to be known. The integral
equation in Eq. (3) can be used to study not only standard
scattering problems in macroscopic electrodynamics but also
hole and grating diffraction problems in physical optics, for
example. Over the years various techniques have been em-
ployed to solve Eq. (3), or simpler (approximate) forms of
integral equations for E(r;w). The most commonly used
technique is a method of perturbation, in which successive
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terms in the expansion are obtained by iteration (Born Series
technique) [4]. Max Born used this technique in the context
of quantum mechanical collision theory [5], and the scalar
theory of optical scattering is from a mathematical point of
view closely related to the scalar wave function scattering in
quantum physics [4]. If the scattering of the external field is
sufficiently weak usually only a few terms in the Born series
expansion are needed. The Born approach is very illuminat-
ing from a physical point of view because it allows one to
describe single, double, etc., and multiple scattering events
in a direct manner [4,6]. In the given framework all self-
sustaining solutions (eigenmodes) in the nonmagnetic me-
dium under considerations in principle can be determined
from the homogeneous integral equation one obtains by set-
ting E“(r; w)=0 in Eq. (3). If the electromagnetic interac-
tion of the external field with the particle system is strong it
may be necessary to seek the exact solution to Eq. (3), and in
most cases this means that one has to resort to numerical
methods. The exact solution incorporates multiple scattering
events to infinite order. The understanding of many macro-
scopic problems in near-field optics and in light scattering
from mesocopic media (quantum dots, wires, and wells, e.g.)
require exact solutions of Eq. (3). In near-field optics this is
often so in situations where the external source and the me-
dium are in close contact electromagnetically, and in meso-
scopic systems the presence of only few electronic reso-
nances in the optical frequency range of excitation often
allows one to drive the system in resonance. Strong interac-
tion of course makes the need for incorporation of nonlinear
phenomena more urgent in general, and these phenomena are
not included in Eq. (3).

Numerical solutions of Eq. (3) are based on a discretiza-
tion procedure in direct space. Although the replacement of
the integral by a sum of terms over volume elements so small

that G- X-E can be taken as a constant in each cell works
well in many situations it is in general not the case in meso-
scopic electrodynamics and near-field optics. Despite this
fact one often comes across calculations where people have
divided the integral into volume elements of linear extension
(almost) comparable to atomic (unit cell) size. Such calcula-
tions often aim at understanding local-field effects and inter-
face dynamics. As the need for a shrink in the cell volume
size becomes more urgent the macroscopic susceptibility
concept, x(r;w), tends to be meaningless [7-10]. Basically,
one should always ask oneself the following question when
using geometrical (spatial) diecretization procedures: how
small do I dare to make the cell volume and still believe in
the numerical result? Many researchers attempting to deter-
mine the local field in so-called “hot spots” have over the
years applied macroscopic analyses [based on Eq. (3)] far
beyond their limit of validity and often come up with the
local-field enhancements orders of magnitude larger than es-
timated by quantum physics.

To understand the linear electrodynamics of mesoscopic
media as well as many aspects of near-field optics it is usu-
ally necessary to replace the macroscopic susceptibility
X(r;w) by a microscopic two-point response tensor
X(r,r’; w) realizing that the constitutive relation between the
relevant polarization P (to be defined later) and the micro-

PHYSICAL REVIEW E 72, 026612 (2005)

scopic electric field e in general is nonlocal in space, that is
[7-10]

P(r;w)= f Xr.r' o) - e ;o)dr . (4)

In the micro- and mesoscopic regimes a somewhat simplified
version of the integral equation for the microscopic local
field reads [10]

e(r;m) =e“(r;w) + e (r;w)
—q(z)f f&(r-r';w)-;(r',r";w).e(r";w)
e—0

Xdr'dr', (5)

where €% (r;w) is the microscopic electric self-field in the
given contraction scheme. Although the external electric
field most often can be considered as a macroscopic quantity
we allow it to be a microscopic quantity (e“’(r;w)) in Eq.
(5). At a first glance it seems hopeless to solve a double
integral equation like the one in Eq. (5), even by numerical
methods, taking into account the complications already en-
countered with equations a la Eq. (3). One of the main ob-
jectives of this work is to show that this is not necessarily
correct. The reason is associated with the fact that the micro-
scopic susceptibility has a quite simple tensor product struc-
tures, i.e.,

X(Er' o) = 2 ay(0)By(r;o)Cylr'; o). (6)
N

The form in Eq. (6) relates to microscopic physics in an
intimite and clear manner and allows one to make a discreti-
zation of Eq. (5) in pairs of energy eigenstates (index N) for
the light-unperturbed mesoscopic medium as we shall see
below. This kind of discretization is valid right down to the
atomic domain and can thus be used with confidence. An-
other main objective of the present study is a quantitative
analysis of the physics underlying Eq. (5), and similar inte-
gral equations of wider generality. In the course of our de-
scription we shall see how macroscopic integral equations
such as Eq. (3) appear, and understand the basic premises for
using such equations. It is also a goal of this paper to point
out certain approximations made in most linear light scatter-
ing but not properly identified or even not generally known.

II. MICROSCOPIC POTENTIAL DESCRIPTION

The starting point for us is the microscopic Maxwell
equations

V Xe(r,t)=- ib(r,t) (7)

ot
V X b(r,1) = woJ(r,0) + caza%e(r,t), (8)
V-e(r,1) = &'p(r,1) )
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V- b(r,r)=0 (10)

which relate the microscopic electric (e(r,7)) and magnetic
(b(r,?)) fields to the microscopic charge (p(r,7)) and current
(J(r,?)) densities. The (contravariant) current density four-
vector {J*}=(cyp,J) is the only one appearing in the rigorous
electrodynamic description of the microscopic particles of
matter (in the following our mesoscopic scattering system).
The microscopic Maxwell equations lead to the following
well-known inhomogeneous wave equations for the micro-
scopic fields in space (r) time (7):

(Dﬁ -VV)-e(r,r) = ,U,O%J(r,t), (11)
Ob(r,)=—uy V X J(r,1) (12)

where [1=V?-c;?#/dr* is the d’Alembertian operator and

U is the 3X 3 unit tensor.

Important insight in the physics behind the light scattering
process can be obtained in the so-called generalized potential
description, which now will be discussed. The potential ap-
proach is based on the division of the microscopic current
density into two parts, i.e.,

I = %P(r,t) £V X M(r.) (13)

where P(r,7) and M(r,t) are generalized polarization and
magnetization vector fields, respectively [11]. I have stressed
the word generalized because P(r,7) and M(r,¢) are not the
textbook quantities defined as the electric and magnetic di-
pole moments per unit volume [4,12]. Microscopic aspects
of P(r,t) and M(r,?) are discussed in detail in Ref. [13]. The
potential description is fruitful because it allows one to make
contacts to (i) the spatial photon localization problem which
appears in both photon wave mechanical (first-quantized)
and field-theoretic (second-quantized) studies of the scatter-
ing process [15-18], (ii) the macroscopic scattering theory,
(iii) response theories based on various choices for the mi-
croscopic permittivity and permeability tensors, and to see
(iv) longitudinal and transverse electrodynamics in a broader
perspective [19]. If one divides the vector fields J,P, and M
into their divergence-free and rotational-free parts, in the fol-
lowing called the transverse (subscript 7) and longitudinal
(subscript L) components, Eq. (13) splits into the relations

3.0 = 2P, () (14)

Jo(r0) = (%PT(I',I) VX My(r.0). (15)

The L-T division of a vector field is unique in a given inertial
system, and from a knowledge of J(r,r) the microscopic
quantities J(r,7) and J,(r,7) are determined. Apart from an
unimportant constant the longitudinal part of the polarization
is fixed by the microscopic charge density via
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p(r,)) ==V -P,(r,1), (16)

as one readily sees by combining Eq. (14) and the equation
of continuity, V-J,(r,f)+dp(r,t)/dt=0. The transverse
quantities Py(r,7) and My(r,t) are not uniquely determined
since old (P2 M%) and new (PYEY , MYEW) sets related
by

PYEY(r,1) = P2 (r,1) + V X N(r,1) (17)
a
MYEY(r,1) = MO P (x, 1) - a—tN(r,t) (18)

where N(r,?) is an arbitrary vector field, yet differentiable in
space and time, lead to the same transverse current density
(JYEV=J2P=J;) as one readily may realize. Due to the fact
that only M, enters the potential description [VXM=V
XMy in Eq. (13)] one may choose M, as appropriate (see
Ref. [11]), and for instance take M; =0(=M=M;).

On the micorscopic level only J and p are of physical
significance. The longitudinal part ot the polarization is fixed
by Eq. (16), and this part of the generalized polarization can
be synthesized by adding up a (linear) distribution of point
dipoles as described in Ref. [19], for instance. The nonu-
niqueness of the transverse part of the polarization geometri-
cally can be associated to the fact that one can add to this
distribution an arbitrary number of point dipoles arranged to
form a closed curve in space, without affecting the prevailing
microscopic charge and current densities. Various loops re-
sult in various choices for the transverse polarization and the
individual loops have their own magnetic moment [19]. For
a detailed discussion of this picture the reader is referred to
Ref. [19], and references therein. Generalized potentials are
also discussed in Ref. [9], and here the relation to linear
response theory is treated.

Having decided on a given choice for P, a generalized
microscopic electric displacement (d) field is defined by

d(r,r) = gep(r,t) + Py(r,1), (19)

where e;(r,7) is the uniquely determined transverse part of
the microscopic electric field. Since (apart from a trivial con-
stant)

€. (r,t) + P, (r,1)=0, (20)

as one may realize by combining Egs. (9) and (16), the D
field can also be written as

d(r,r) = ge(r,t) + P(r,1). (21)

The d field is a transverse vector field per definition, cf. Eq.
(19).

In the potential formalism the dynamical microscopic
field (Maxwell) equations take the flexible form

V X [&'d(r,0)]+ F%b(r,t) =€,'V XP(r,), (22)

d
V X b(r,7) - caza—t[eald(r,t)] =uoV X M(r,1), (23)
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V. [&'d(r,n]=0, (24)

V- b(r,r)=0 (25)

In photon wave mechanics based on the Riemann-
Silberstein-Bialynicki energy wave function the combina-
tions eald(r,t)iicob(r,t) play an important role [14-18],
and I have emphasized this by using €, 'd(r,?) and b(r,?) as
primary microscopic field quantities in Egs. (22)—(25). In the
potential description the inhomogeneous wave equations for
d(r,?)/ €, and b(r,) become
-1 J -1
Ole, d(r,1)]=V X [Moa—tM(r,t) -¢ V X P(r,t)] ,

(26)

Ob(r,1) = — po V. X [(%P(r,t) +V X M(r,;)]. (27)

III. ELECTROMAGNETIC PROPAGATOR
FORMALISM

In the space-frequency domain where
Jr;w)=—iwP(r;w) +V X M(r;w), (28)
and

d(r;w) = ger(r;w) + Py(r;w)[=€e(r;o) + P(r;w)],
(29)

the inhomogeneous wave equation for the microscopic elec-
tric displacement field takes the form

(V2+q(2))[651d(r;w)] =—ipuwS(r;w), (30)

where
2
S(r:w)=V X {M(r;w)+i@V X P(r;w)} 31)

is the effective source current density. In integral form the
relevant solution of Eq. (30) is

;0)S(r' s w)d’r,

eald(r;w)= ald”’(r;w)+i,u0wfg(|r—r’
(32)

where d“(r;w)=¢€ye*(r;w) is the external displacement
field, and with R=r-r’, and R=|R

k]

o(R:w) = % (33)

is the Huygens scalar propagator. To make the bridge to the
dyadic propagator formalism mentioned in the Introduction
Eq. (32) is rewritten in the form [10]
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1

L€y

eald(r;cu) = eald"’x’(r;w) +

S(r;w)

—iuo“’fa(r—r’;w)'S(r’;w)fr’, (34)

using spherical contraction around the singularity located at
r’=r. Here, and in the following I omit for brevity to put an
“e—0” at the foot of the integral sign. The self-field contri-
bution is S(r;w)/(3i€yw) in spherical contraction, and the
dyadic (standard) propagator relates to the Huygens propa-
gator via

G(R;w) =— (U +¢;’ VV)g(R;w). (35)

The minus sign in front of the parenthesis in Eq. (35) origi-
nates in a convention. The explicit from of G(R;w) in
spherical coordinates may be found in Ref. [20], e.g.

An important point should be emphasized here. Thus, due
to the fact that the S(r’;w) is a transverse vector field, see
Eq. (31), one may replace the standard propagator G(R; )
by the transverse dyadic Green function [10,20]

G1(R;0) = g2 V Vg(R;0) + G(R; w), (36)

which explicit spherical coordinate form is given elsewhere
[20]. The use of aT(R;w) instead of E(R;w) in Eq. (34)
underlines the fact that d(r;w) is a transverse vector field.

A particular choice namely M ;=0 is adequate in nonlocal
light scattering studies where all magnetic properties are in-
cluded in the microscopic “dielectric” response function,
€(r,r';w), and for making the bridge to the macroscopic
scattering theory for nonmagnetic media. It readily appears
from Eq. (18) that such a choice is possible. Since VX (V
X P)=-V?P;, Egs. (30) and (31) show that

(V2 + qpd(r;w) = V?P4(r; 0), (37)
or equivalently, in the view of Eq. (19),
(V2 + goer(r; o) = - &' qPr(r; ). (38)

Since Eq. (30) leads to Eq. (34), the relevant dyadic propa-
gator solution of Eq. (37) is (in spherical contraction)

1
e(r;o) =€ (r;w) - gPT(r;w)
0

- ,U,szf a(R;w) Prr";0)d . (39)

If one includes only electric-dipole (ED) contributions in Py,
nonlocal phenomena are omitted and Eq. (39) is reduced to
the macroscopic result

1
E/(r;0) = E(r;0) - —P’(r;0)
3 60

—/,Lolx)zf E(R;w) . P?D(r’;w)d3r’. (40)

The inclusion of only electric-dipole terms in the transverse
polarization field is stressed above by the superscript ED
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added to P;. All magnetic scattering phenomena are still in-
cluded in Eq. (39). Magnetic phenomena all are of spatially
nonlocal nature [7,10]. Light scattering related to electric-
quadrupole (EQ) and magnetic-dipole (MD) effects can be
studied making a multipole expansion of P, i.e., PT=P?D
+PEOMD .

In macroscopic light scattering investigations it is often
(implicitly!) implied that the polarization field P and the
electric field E are transverse vector fields, and one often
sees the macroscopic integral equation in the form displayed
in Eq. (1) without the attached conditions V-E(r;w)
=V -P(r;w)=0, P(r;w)=P;(r;w). In the most naive macro-
scopic approach P?D is simply replaced (approximated) by
P, with the consequence that the self-field in Eq. (1) is taken
as B (r; w)=-P(r;w)/(3¢).

With the possible [see Eq. (17)] choice P;=0, one gets
VXM=]J; [see Eq. (15)], S=J; [Eq. (31)], and d=€ye [Eq.
(19)], so that Eq. (34) attains the form

1

3iegw

er(r;m) =ef'(r;w) +

Ji(r;m)

—i,u,owfa(r—r’;w)-JT(r’;w)d3r’. (41)

possible with G(r-r’;w) replaced by G4{(r-r’;w), cf. the
remark made immediately above Eq. (36). The integral equa-
tion in Eq. (41) can readily be obtained also from Eq. (39)
noting that J(r; w) =—iwP(r; w) when M(r; w)=0, cf. Eq.
(15). The integral form in Eq. (41) has in recent years been
used to study near-local phenomea attached to single-photon
scattering from atoms, and the relation between spatial pho-
ton localization and the photon source problem [17,18].
Equation (41) is a good starting point for photon wave me-
chanical investigations of space-time photon localization,
and on the basis of Eq. (41) the upgraduation of the first-
quantized version of spatial photon localization to the
second-quantized level is quite easily carried out.

IV. ASPECTS OF MICROSCOPIC RESPONSE THEORY

The microscopic Maxwell equations have led to an inte-
gral (propagator) relation between the transverse electric
field e;(r;w) and the transverse current density of the par-
ticle system J(r; w), viz. Eq. (41). The two unknown vector
fields E{(r;w) and J;(r;w) can only be determined if an-
other relation between the two can be established. In the
macroscopic standard theory of light scattering the same
kind of problem arises. The integral relation between E(r; w)
and P(r;w) [Eq. (1)] here is supplemented by the constitu-
tive equation in Eq. (2), and this supplement leads us to the
standard integral equation in Eq. (3) for the macroscopic
electric field. To solve this equation the r dependence of the
macroscopic susceptibility ¥(r;w) must be known (postu-
lated or found by a model calculation). In the microscopic
theory the constitutive relation is no longer local in space, cf.
Eq. (4). Instead one gets in the linear regime [10]
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J(r;w):J o(r,r' ;o) - eir ;w)d’r, (42)

where &(r,r’;w) is the so-called microscopic conductivity
response function. The reader may wonder why only the
transverse part of the microscopic electric field, e;(r; w), and
not the entire microscopic field, e(r;w), appears under the
integral sign in Eq. (42). The reason is due to the fact that the
longitudinal electric field can be eliminated as a dynamical
variable in favor of the particle position coordinates [19]. In
nonrelativistic microscopic electrodynamics &(r,r’; w) most
often is calculated on the basis of the (many-body)
Schrodinger equation, or the Pauli equation if spin dynamics
is of importance. The transverse part J(r; ) of the micro-
scopic current density J(r; w) entering Eq. (42) can be ob-
tained via

Ji(r;w) =f S(r—r')- I ;0)d (43)

where S{r-r’) is the transverse delta-function tensor. By
insertion of Eq. (43), with J(r’;w) given by Eq. (42), into
Eq. (41) the basic integral equation for the transverse part of
the microscopic electric field emerges.

Let us now assume that we know the energies and wave
functions of the various stationary states of the mesoscopic
medium. For a mesoscopic object, which linear dimensions
are in the nanometer region (or smaller) and which geometri-
cal form is simple, it is not out of scope to calculate these
eigenenergies and wave functions with a sufficient accuracy
for optical purposes, at least numerically. If one denotes the
various stationary (many-body) states by 1,J, ..., the associ-
ated eigenenergies by E;,E;,..., and the probability that
these states are occupied by P;,Py,... it can be shown that
the conductivity tensor is given by (I#.J) [21]

5(r,r’;w)=§2< frw )

o \E—E;

P,-P,
hw+EJ—E]

JI*?J(r)JJﬂI(r,) >

(44)

if one starts from the (many-body) Schrédinger equation, and
neglects irreversible damping mechanisms. To a certain ex-
tent these mechanisms can be included phenomenologically
by adding suitable damping terms, if/7j, to the Aw+E,
—E; denominators. The spin contribution to o{(r,r’;w) can
be calculated starting from the Pauli equation but in linear
optics this contribution usually is negligible [22]. To include
spin-orbit contributions to &(r;r’;w) a relativistic calcula-
tion is required. In the present context where main principles
are at focus there is no need to include the above-mentioned
phenomena. The expression in Eq. (44) does include both
so-called para- and diamagnetic terms, so that the scattering
from dielectric, semiconducting, and metallic mesoscopic
objects can be studied. The vectors J,_,(r) and J,_,(r’) in
Eq. (44) denote the (many-body) transition current densities
from state 7 to state J(I—J) and from J to I(J—1I), respec-
tively. In a single-particle description the transition current
density from state A to state B is given by
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i

2mi

Jap(0) = S—[4u(0) V ¢5(0) = () V ()], (45)
where i, (r) and (r) are the time-independent parts of the
wave functions belonging to the energy eigenstates A and B,
and m, and —e denote the electron mass and charge, respec-
tively. In the following we shall need also the transverse part,
Ji_, (1), of J4_p(r), and this can be calculated from

JZ_>3(I')=J Sy(r—1") - Ty p(x s, (46)

cf. Eq. (43). The microscopic two-point susceptibility re-
sponse tensor appearing in Eq. (5) is related to &(r,r’; w) via

Xr,r';o) = & w), (47)
60(0

remembering the choice J=dP/dr.

V. SOLUTION OF THE MICROSCOPIC SCATTERING
PROBLEM

At this stage we are prepared to take up the central issue
of this paper, namely the establishment of a self-consistent
solution of the linear light scattering problem which does not
invoke geometrical discretization, a principle most often
used for macroscopic scattering but certainly of doubtful
value for mesoscopic media.

A. Physical structure of the prevailing transverse
current density

With the abbreviation

2ih P,-P
Aylw) = — (48)
E,—Ejﬁw+EJ—E1
the microscopic conductivity tensor is given by
(49)

E(r,r’ ) = E AIJ(w)JI—J(r)JJ—J(r,)s
1J

and it appears that it consists of weighted (weight factor .A;))
tensor  products  (J,_,(r)J,_(x") =T ,(r) @J,_,(r"))
[® is the dyadic (outer) product operator]. The two-
coordinate (r,r’) structure of a given tensor product is very
simple, indeed. Thus the first factor, J,_,,(r), is a function of
r alone, and the second factor, J,_,(r’), depends only on r’.
As we shall realize below it is this property which allows one
to go beyond the geometrical discretization scheme. Let us
next introduce what may be called the double-transverse
(TT) microscopic conductivity tensor

Frr(rr’;0) = 2 Ay(@) I, (x"),  (50)
LJ

which involves only the transverse parts of the various tran-
sition current densities. With the help of &/(r,r';w) the
spatially nonlocal relation between J;(r; ) and e;(r;w) can
be written in the form
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JT(r;w):J ar(r,r’ ;o) - er’ ;w)d’r, (51)

since

J J7(r) - eg(r;0)d’r=0, (52)
Jfﬁl(r)=J Jﬂ,(r)—JL,(r) being the longitudinal part of the
transition current density J,_,,(r).

By inserting Eq. (50) into Eq. (51) it appears that the
transverse current density takes the form

Jir;w) = 2 Au(w)ﬁﬂ(w)JLJ(r)’ (53)
1J
with the abbreviation
Blw) = f J_/x) - ex(r;w)d’r. (54)

The physical interpretation of Eq. (53) is very transparent.
Hence it is seen that the transverse current density entering
the basic integral equation in Eq. (41) consists of a weighted
superposition of the transverse current densities which are
related to the various electronic /—J transitions. The spatial
form of the individual transverse current densities only de-
pends on the wave functions entering the given /—J transi-
tion. The various J ,T_, ,(r)’s are independent of the solution of
the integral equation problem, and in a sense therefore serve
as spatial constraints on the final solution. The strength with
which a given J]_,(r) enters the prevailing J(r; ) is given
by the frequency-dependent product A;;(w)B;;(w). The pres-
ence of the factor Aw+E;—E; in the denominator of A;,(w),
shows, as expected that transitions which are near the elec-
tronic resonance condition

ﬁ(l)'f‘EJ—E]:O (55)

contribute more to J;(r;w) than transitions far from reso-
nance. At resonance one at least must include the irreversible
damping originating in spontaneous emission. The factor
A;;(w) also accounts for the fact that the individual weight
factors must be proportional to the population probability
difference P;— P, prevailing in the absence of the light exci-
tation. The strength of a given J; ,(r) contribution to
J:(r; w) also depends on the strength with which the oppo-
site electronic transition J—1 is pumped. All transitions are
pumped by the prevailing microscopic electric field e/(r; ),
and the pump strength of the J—/ transition essentially is
given by the work carried out per unit time by the field
distribution e;(r;w) on the given (transverse) transition cur-
rent density distribution, J7_,(r). The afore-mentioned work
per unit time is precisely given by the B8,(w) in Eq. (54). As
long as the selfconsistent field e{r; ) has not been deter-
mined the B;,(w)’s are unknown numbers.

All mesoscopic quantum systems interact with their sur-
roundings and irreversible damping mechanisms therefore
inevitably are present. If these mechanisms can be described
via the inclusion of suitable phenomenological damping
terms [as indicated in the text below Eq. (44)] the (many-

026612-6



MICROSCOPIC THEORY OF LINEAR LIGHT ...

body) stationary states become quasistationary with finite
lifetimes, 7;;. Technically the real angular frequency (w) now
must be replaced by the complex quantity w+i/;; in the 1J
transition. The separation techniques used in Secs. V B and
V C to determine the local field is not affected by the inclu-
sion of the irreversible damping times 7;;, because the tensor
product structure of the conductivity tensor is retained. In
most cases it will be necessary to include irreversible damp-
ings. The damping parameters need not be so big in a meso-
scopic system. Thus it might be sufficient in a two-level
metallic quantum well system to include just one damping
term for the (sub)interband transition and one for the free-
electron-like intraband dynamics.

B. The Huygens propagator formalism revisited:
Physical interpretation

Returning to the equivalence between Egs. (32) and (34)
it is obvious that the integral equation in Eq. (41) can be
rewritten in the Huygens propagator form

ext,

er(r;w)=e7(r;m) + ipgw f g(r=r'[;0)J(r";0)dr .
(56)

For numerical purposes it is perhaps easier to use Eq. (56)
than Eq. (41). In Eq. (41) appears a |[r—r’|™ singularity in
the Green’s function a(r—r’;w) and with the use of this
propagator and the self-field term J;(r; )/ (3i€yw) principal
integration with spherical contraction must be used. With
J(r; w) as the source current density one may use the trans-
verse propagator 6T(r—r’;w) instead of (H}(r—r';w). The
transverse propagator exhibits a weaker ([r—r’|™!) singular-
ity [20], and use of aT(r—r’;w) makes the integral abso-
lutely convergent.

A combination of Egs. (53) and (56) results in the follow-
ing integral equation for e/(r;w):

er(r; o) =e(r;0) + X, Fjyr; o) By(w), (57)
1.J

where

;w)JITﬂJ(r’)d3r’ )

F(r;o) = igywA; (o) f g(lr-r’
(58)

The physical interpretation of Egs. (57) and (58) is clear.
Thus, the local field e;(r;w) at r in Eq. (57) consists of the
sum of the external field, e7'(r;w), and the field,
F;(r;w)B;(w), generated by the various /—J transitions.
The field created by a given I—J transition at the space
point r originates in the microscopic transverse transition
current density J7_,(r’) multiplied by the factor
ipowA(w) By (w). From each point r' in the J7 _,(r') distri-
bution the field propagators outwards as described by the
Huygens propagator, and the field propagation from r’ to r is
described by g(|r—r’|;w) in @ space.
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C. Last step: Conversion from integral to matrix equation

If the yet unknown field strengths 3,,(w) appearing in Eq.
(58) can be determined the transverse local field ef(r;w) is
readily found. To determine the B;,(w)’s, Eq. (58) is inserted
into Eq. (54). This leads to the following matrix equation for
the unknown field strengths:

() - %N{)’P(w)ﬁ()p(w) = Hy(w), (59)
where |
NJOIP(w)EiMOwAPO(w)ffg(|r_r, ;)
XJh(x) - I (e &r, (60)
and
Hyj(w) = f J7i(1) - e (r; 0)dr. (61)

Let us take a closer look at the physics contained in the result
of Egs. (59)—(61). To each pair of electronic energy eigen-
states there is associated two unknown matrix elements in
Eq. (59). Thus for the arbitrary states O and P, the elements
Bop and Bpy describe the pumping of the O— P and P
— O transitions by the local field e/(r; w), respectively. Near
the electronic resonance, given by fiw+E,—Ep=0, Byp ele-
ments usually will be much larger than Bp,, and in certain
situations it may be justified to neglect Bpo (and other
counter-resonant terms) completely. This has for instance
turned out to be possible in nonlocal studies of the linear
optical properties of few-level quantum wells [10]. Essen-
tially, such an approximation is analogous to making the ro-
tating wave approximation (RWA) in semiclassical and quan-
tum optics [23]. The various sets of transitions, say J— I and
P— 0O, are coupled radiatively together, and this coupling
manifests itself through the N’OIP factors given in Eq. (60). In
this equation the radiation emitted the transverse transition
current density J ,T3_>0(r’) at r' propagates to the space point
r as described by the Huygens propagator g([r—r’|; ), and
at r the radiation carries out a work on the transverse particle
current density distribution J;_> ,(r) resulting in an electronic
J— 1 transition. The local-field problem among the various
transitions is solved in a selfconsistent manner by solving the
matrix-equation problem in Eq. (59) for the unknown
B(w)’s. The matrix-equation set is inhomogeneous and the
inhomogeneous terms are the various Hj(w)’s. It appears
that H,(w) describes the work carried out per unit time on
the J— 1 transition by the given external field e5'(r; w), see
Eq. (61). Once the various B;(w)’s have been determined
from Eq. (59) insertion into (57) gives us the local field
e;(r; w). The procedure described above thus in principle has
allowed us to obtain a selfconsistent solution to the linear
light scattering problem without making use of the doubtful
geometrical discretization. The principle used can be em-
ployed right down to the atomic domain. In practice (numeri-
cally) one can deal with matrix equations up to a certain
dimension, which means that one can include only a limited
number of (bound) transitions in a given calculation. It is not
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least this limitation which makes the present theory of par-
ticular value for light scattering from mesoscopic (or micro-
scopic) objects. In a mesoscopic system the number of bound
states can be quite small, and the optical local-field calcula-
tion therefore carried out with matrices of relatively small
dimensions. Near a given resonance perhaps only a few ma-
trix elements are needed in the numerical calculation, but as
always one has to worry about the importance of nonlinear
effects near resonance.

D. Local-field resonances

In recent years the importance of local-field effects in
mesoscopic optics and in near-field optics has been in focus,
and many macroscopic studies have been carried out. From a
survey of the literature one may get the impression that mac-
roscopic approaches often overestimate the local-field en-
hancement, sometimes by orders of magnitude. There is hope
that the present microscopic light scattering theory will en-
able us to obtain a more realistic estimate of local-field phe-
nomena in mesoscopic and near-field optics. Neglecting
local-field effects the resonances are those of the electronic
transitions [given by Eq. (55)]. In the presence of local-field
effects the resonance condition for the mesoscopic object
under study is given by

det{ Sy, 0p — Npp(w)} =0, (62)

where det{- -} means the determinant of {---}, and &), op is
the Kronecker delta. Once the various resonance (RES) fre-
quencies (generic name: »™) have been obtained from Eq.
(62) the relative values of the B '(w™*)’s belonging to the
given ™ are obtained from the set of equations one gets by
letting JI run through all (relevant) level combinations, i.e.,

B3 (@) = 2 Np(@™™) Bisi(@™) =0. (63)
o,pP

With a knowledge of the 87 (") values (for the given ')
the spatial form of the resonant electric field e7(r; w™) is

given by

e (r; o) = > Fy(r;0™) B (). (64)
J

The different resonant fields e7°(r; w™*) can only be deter-
mined to within an arbitrary (space-independent) constant,
cf. the fact that they represent the solutions to Eq. (57) in the

absence of the external source field, e7'(r; w).

VI. OUTLOOK

The central goal of the present theory was to establish a
microscopic formalism for light scattering from mesoscopic
media which allows one to go beyond the geometrical dis-
cretization scheme usually employed for instance in near-
field optics, but generally of doubtful value on a length scale
much shorter than the optical wavelength.

Perhaps the theory might enable one to obtain different
insight also in classical diffraction theory. Classical diffrac-
tion theory is based on the Helmholtz-Kirchhoff integral

PHYSICAL REVIEW E 72, 026612 (2005)

theorem [24-26,4]. When this theorem is used in connection
with studies of the light diffraction from a (small) hole in an
opaque screen the main theoretical challenge is the establish-
ment of a self-consistent solution to the boundary value
problem for the field at the screen. An important step towards
obtaining a rigorous solution to the hole diffraction problem
was taken originally by Bethe [27] who investigated the dif-
fraction from a hole of linear dimension much less than the
wavelength of the electromagnetic field. The theory of Bethe
is insufficient when it comes to an understanding of for in-
stance the role of plasmon (polariton) effects in near-field
hole diffraction. Usually modern problems as this are at-
tacked on the basis of macroscopic diffraction (scattering)
theory, and therefore the various shortcomings mentioned in
this paper are inherent also in hole diffraction analyses. Since
in particular the electronic excitations of matter in the vicin-
ity of the hole play a role for the diffraction problem self-
consistent quantum mechanical calculations carried out
along the lines indicated in this paper may be feasible as I
shall argue in a forthcoming paper devoted to the quantum
theory of near-field aperture diffraction.

From a fundamental point of view a quantum optical un-
derstanding of single-photon transmission through a sub-
wavelength hole can hardly be achieved without invoking
quantum mechanical considerations of the field-matter inter-
action in the vicinity (near-field zone) of the hole. The
present theory might be of importance also in this context.

APPENDIX: GREEN’S FUNCTION SINGULARITY
AND SELF-FIELD

Due to the fact that the issue of the electromagnetic
propagator singularity and the associated self-field plays an
important role for the present work I here discuss the issue in
some detail. The Appendix also is meant to serve the purpose
of making the paper more accesible to the general reader.
The final result of the analysis which is well known has been
derived in various manners technically, cf. the works by Van
Kranendonk and Sipe [1] and Yaghijan [2], and the present
author [10]. A good preparation for studies of the afore-
mentioned derivations can be obtained consulting Appendix
V in the book by Born and Wolf [4]. Here a useful math-
ematical dilemma, used by Born and Wolf in a rigorous deri-
vation of the Lorenz-Lorentz formula, is established. Since
the essential parts of the analysis is the same for the macro-
scopic [2], semi-microscopic [1], and microscopic [10] prob-
lem, it is sufficient below to refer to microscopic electrody-
namics. From a physical point of view the so-called spherical
contraction scheme perhaps is the most important one,
among other things because it relates directly to the isotropy
of the speed of light in vacuum and is a natural scheme for
studying light scattering from well-localized (mesoscopic,
molecular, atomic) objects. The spherical contraction scheme
is in focus below and the analysis given (in brief) deviates
slightly from these found in Refs. [1,2,10].

The starting point for our analysis thus is the integral
equation for the microscopic displacement field [Eq. (32)].
Although the Huygens scalar propagator, g(R; ), exhibits a
R~! singularity at r’ =r, the integral in Eq. (32) is absolutely
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convergent and no (infinitesimally small) exclusion volume €
need to be introduced in Eq. (32). In order to replace the
Huygens propagator by the dyadic standard propagator

G(R; w), we perform the operation V X (V X)) on both sides
of Eq. (32). On the right hand side of the resulting equation
we would like to change the order of integration and double
differentiation. This cannot be done just like that. This per-
haps is obvious because double differentiation under the in-
tegral sign [on g(R;w)] leads to the occurence of a R~ sin-
gularity, and in the presence of such a singularity the integral
is conditionally convergent only. By cutting out an infinitesi-
mally small spherical volume (e—0) around r’=r, it is
shown, e.g., in Ref. [4] that

V X (V X f g(R;w)S(r’;w)d3r'>

:f V X {V X [g(R;w)S(r";0)}d*r" + %S(r;w).
e—0

(A1)

To interchange the integral and differential operations [ap-
pearing on the left-hand side of Eq. (A1)] a high price in a
sense has been paid: (i) the new integral is only conditionally
convergent, and (ii) an extra term, 2S/3, must be added. The
extra term is the one which evolves into the so-called (trans-
verse) self-field contribution to the microscopic electric field.
If instead of spherical contraction another contraction form
had been chosen the self-field term would also have been
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different. Thus only the sum of the two terms on the right-
hand side of Eq. (A1) can be ascribed a physical meaning
basically. We have here paid the “high” price in order to put
the standard propagator on the scene.

The usefulness of the lemma in Eq. (A1) is also related to
the fact that it in certain cases allows one to reduce the geo-
metrical size of what is considered to be the source of the
field [10].

Since, first,

4>V X[V % (g8)]=-G -8, (A2)

as one readily proves using the differential equation for the
Huygens scalar propagator, i.e.,

(V2+qé)g=0, r' #r (A3)
and the identity VX[V X (- -)]:(VV—ﬁVz)(- -+), and sec-
ond,

iw
)

VX (VXd)=-Vid=gld+—S, (A4)

Co
where the first equality follows from the transverse nature of
d(r;w) and the second from the inhomogeneous wave equa-
tion for d(r; ) [Eq. (30)], the final step in the analysis can
be taken. Hence a combination of Egs. (A2)-(A4), easily
allows one to obtain Eq. (34) from Eq. (32), noting that the
effective external source current density distribution
S®(r; w) is located outside the domain of space in consider-
ation [(V2+q(2))de’”=0].

[177J. Van Kranendonk and J. E. Sipe, in Progress in Optics, edited
by E. Wolf (North-Holland, Amsterdam, 1977), Vol. XV, p.
245.

[2] A. D. Yaghjian, Proc. IEEE 68, 248 (1980).

[3] C. Girard and A. Dereux, Prog. Phys. 59, 657 (1996).

[4] M. Born and E. Wolf, Principles of Optics. Electromagnetic
Theory of Propagation, Interference and Diffraction of Light
(Cambridge University Press, Cambridge, England, 1999).

[5] M. Born, Z. Phys. 38, 803 (1926).

[6] O. Keller and P. Sgnderker, Proc. SPIE 954, 344 (1988).

[7] V. M. Agranovich and V. L. Ginzburg, Crystal Optics with
Spatial Dispersion and Excitons (Springer, Heidelberg, 1984).

[8] P. J. Feibelman, Prog. Surf. Sci. 12, 287 (1982).

[9] The Dielectric Function of Condensed Systems, Vol. 24 of
Modern Problems in Condensed Matter Sciences edited by L.
V. Keldysh, D. A. Kirznitz, and A. A. Maradudin (North-
Holland, Amsterdam, 1989).

[10] O. Keller, Phys. Rep. 268, 85 (1996).

[11] O. Keller, in Quantum Optics and the Spectroscopy of Solids,
edited by T. Hakioglu and A. S. Shumovsky (Kluwer, Dor-
drecht, 1997), p. 1.

[12]J. D. Jackson, Classical Electrodynamics (Wiley, New York,
1999).

[13] S. R. de Groot, The Maxwell Equations (North-Holland, Am-
sterdam, 1969).

[14] 1. Bialynicki-Birula, in Progress in Optics, edited by E. Wolf
(Elsevier, Amsterdam, 1991), Vol. XXXVI, p. 245.

[15] I Bialynicki-Birula, Acta Phys. Pol. A 86, 97 (1994).

[16]J. E. Sipe, Phys. Rev. A 52, 1875 (1995).

[17] O. Keller, Phys. Rev. A 58, 3407 (1998); 62, 022111 (2000).

[18] O. Keller, J. Opt. Soc. Am. B 18, 206 (2001).

[19] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Pho-
tons and Atoms. Introduction to Quantum Electrodynamics
(Wiley, New York, 1989).

[20] O. Keller, J. Opt. Soc. Am. B 16, 835 (1999).

[21] O. Keller, in Progress in Optics, edited by E. Wolf (Elsevier,
Amsterdam, 1997), Vol. XXXVII, p. 257.

[22] T. Andersen, O. Keller, W. Hiibner, and B. Johansson, Phys.
Rev. A 70, 043806 (2004).

[23] S. M. Barnett and P. M. Radmore, Methods in Theoretical
Quantum Optics (Clarendon, Oxford, 1997).

[24] H. von Helmholtz, J. F. Math. 57, 7 (1859).

[25] G. Kirchhoff, Berl. Ber. 641 (1882); Ann. Phys. (Leipzig) 18,
663 (1883).

[26] F. Kottler, Ann. Phys. 71, 457 (1923); 72, 320 (1923).

[27] H. A. Bethe, Phys. Rev. 66, 163 (1944).

026612-9



