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Stokes’ acoustic wave equation is solved for the impulse response of an isotropic viscous fluid. Two exact
integral forms of solution are derived, both of which are causal, predicting a zero response before the source
is activated at time t=0. Moreover, both integral solutions satisfy a stronger causality condition: the pressure
pulse is maximally flat, with all its time derivatives identically zero at t=0, signifying that there is no instan-
taneous response to the source anywhere in the fluid. A closed-form approximation for each of the two integrals
is derived, with distinctly different properties in the two cases, even though the original integrals are equivalent
in that they predict identical pulse shapes. One of these approximations, reminiscent of transient solutions that
have appeared previously in the literature, is noncausal due to the incorrect representation of high-frequency
components in the propagating pulse. In the second approximation, all frequency components are treated
correctly, leading to an impulse response that satisfies the strong causality condition, also satisfied by the
original integrals, whereby the predicted pressure pulse is zero when t�0 and maximally flat everywhere in
the fluid immediately after t=0.
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I. INTRODUCTION

Acoustic propagation in a viscous fluid is characterized by
a classical wave equation that was originally published by
Stokes �1�. Assuming an impulsive source of strength Q at
position r=r�, the three-dimensional, inhomogeneous form
of Stokes’ equation is

�2g −
1

co
2

�2g

�t2 + �
�

�t
�2g = − Q��r − r����t� , �1�

where �� � is the Dirac � function, g is the velocity potential,
t is time, �2 is the Laplacian, co is the speed of sound in the
fluid in the absence of viscous loss, and the coefficient � is
related to the dynamic viscosity, �, and fluid density, �, as
follows:

� =
4�

3�co
2 . �2�

Equation �1� is a parabolic, third-order partial differential
equation. Solutions of the homogeneous form of Eq. �1� for
harmonic waves are well known, dating back to Stokes �1�
himself, Stefan �2�, Rayleigh �3�, and many others. Such
solutions yield the dispersion relations �4–6� for the medium,
that is, the sound speed and attenuation as functions of fre-
quency, and these expressions are consistent with the
Kramers-Kronig relations, which is a necessary and suffi-
cient condition if the transient solutions of Eq. �1� are to
satisfy causality.

Transient solutions of Stokes’ wave equation are less well
understood than those for harmonic waves. Basically, two
types of solution to the transient problem have been devel-
oped: �i� closed-form approximations �7� and �ii� solutions in

the form of series �8,9� or integrals �10� suitable for numeri-
cal evaluation. As stated recently by Cobbold et al. �11�, a
difficulty with the approximate, closed-form type of solution
has been, that “… approximate solutions to such problems
do not satisfy causality in the strict sense, i.e., a propagated
pulse does not have a sharp front but extends asymptotically
to plus and minus infinity, ….”. Examples of noncausal ap-
proximations for transient solutions of Stokes’ equation may
be found in White �4�.

A more serious objection, however, has been raised by
several authors �7,12�, who have questioned the validity of
Stokes’ equation itself, with Jordan et al. �12� making the
categorical statement that “… solutions of the classical equa-
tion of motion for this problem do not satisfy causality”. If
this claim were true, it would be inconsistent with the fact
that the dispersion relations derived from the harmonic form
of Stokes’ equation satisfy Kramers-Kronig. The same au-
thors also claim �12� that transient solutions of Stokes’ equa-
tion “are felt instantly” throughout the entire fluid domain,
echoing a conclusion reached earlier by Blackstock �7� and
by Norwood �9�. Generally, these authors have recognized,
of course, that an instantaneous response throughout the fluid
is unphysical, since it implies an infinite wave speed.

The prediction of an apparently instantaneous response is
not unique to Stokes’ equation. As pointed out by Weyman
�13�, another parabolic equation, the diffusion equation, is
commonly said to lead to an infinite speed of propagation
through the medium supporting the motion, even though
such behavior is entirely unphysical. In this case, the upper
limit on the diffusion speed is expected be of the order of the
speed of sound in the medium. Parabolic differential equa-
tions, it seems, even though derived correctly to represent a
particular physical process, lead to unphysical results. But
this is a paradoxical situation that must have a rational reso-
lution, which is the topic of this article.

It is demonstrated below that the Green’s function, or im-
pulse response, of a viscous fluid, as derived from Stokes’*Corresponding author. E-mail address: mjb@mpl.ucsd.edu
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equation, is strictly causal, with an identically zero response
in the medium at all times, t�0, prior to the source being
activated at t=0. Furthermore, it is shown that the instanta-
neous response at t=0+ is zero everywhere within the fluid.
The latter condition follows from the fact that at the origin of
time the received pulse everywhere in the fluid is perfectly
smooth in the sense of being maximally flat: at t=0 the pres-
sure and all its time-derivatives are identically zero. It fol-
lows that the coefficient of every term in the Taylor expan-
sion of the pressure pulse about the origin of time is zero and
hence there is no disturbance anywhere in the fluid at time
t=0+. Since the impulse response is causal and maximally
flat at the origin, it is easily shown that the same is true of
any switched signal propagating through the fluid. By satis-
fying causality and exhibiting the maximally flat condition,
the transient solutions of Stokes’ equation are not only per-
fectly physical but also consistent with the dispersion rela-
tions.

Before developing the impulse-response solutions of
Stokes’ equation, the dispersion relationships are derived and
their implications discussed in the context of pulse propaga-
tion. This is followed by an analysis of the impulse response
from a planar source of the type considered recently by Jor-
dan et al. �12�. Analogous solutions are then outlined for an
infinite line source and a point source. Besides the geometri-
cal spreading factors, the shapes of the impulse responses
from the planar, line, and point sources differ, but all satisfy
causality and all are maximally flat everywhere in the fluid at
the origin of time.

In all three cases, the exact impulse response can be ex-
pressed in two ways, either as an inversion integral over
wave number or an inversion integral over frequency. The
two forms are equivalent in that they yield identical pulse
shapes. From each of the inversion integrals, a closed-form,
approximate solution is derived for the case of the planar
source. One of these approximations is noncausal, exhibiting
nonphysical properties reminiscent of those that have been
found and discussed by a number of previous authors
�7,9,11,12�. In contrast, the second approximation, like the
inversion integrals themselves, is strictly causal and maxi-
mally flat everywhere in the fluid domain. The fundamental
difference between the two approximations is that in the non-
causal case, the high-frequency components of the pulse are
approximated poorly, whereas the high frequencies are
treated correctly in the causal approximation. The high-
frequency Fourier components, of course, dictate the behav-
ior of the pulse around the origin of time.

To conclude the discussion, the diffusion equation is
briefly considered and shown to yield transient solutions
with properties similar to those of Stokes’ equation: the flux
is strictly causal, and it is maximally flat at the origin of
time, indicating no instantaneous arrivals anywhere in the
medium. The essential conclusion is that Stokes’ wave equa-
tion and the diffusion equation are well behaved, with tran-
sient solutions that are entirely physical for all causal driving
functions.

II. DISPERSION RELATIONS

To establish the dispersion relations associated with
Stokes’ equation, a bilateral Fourier transform is applied to

Eq. �1�. The bilateral form of the transform is essential here,
since this is the beginning of the investigation of causality. If
any noncausal disturbance were predicted in the fluid at
negative times, it would be included in the bilateral trans-
form. In contrast, any unilateral transform presupposes that
the field is strictly causal, which is the very property that is
to be proved.

The bilateral Fourier transform and its inverse are

g��x� = �
−�

�

g�t,x� exp�− i�t�dt �3a�

g�t,x� =
1

2	
�

−�

�

g��x� exp�i�t�d� , �3b�

where i=�−1, � is angular frequency, and the transform
variable used as a subscript identifies the transformed field, a
convenient convention when multiple transforms are em-
ployed �14�. When Eq. �3a� is applied to Eq. �1�, Stokes’
equation reduces to

�2g� +
�2

co
2�1 + i���

g� = −
Q

�1 + i���
��r − r�� , �4�

which is the inhomogeneous form of the familiar Helmholtz
equation.

In the absence of viscosity, it is obvious from Eq. �4� that
the fluid is nondispersive with a sound speed equal to co and
an attenuation coefficient of zero. When ��0, a complex
sound speed ĉ may be introduced through the expression

�

ĉ
=

�

c
+ i
 , �5�

where c is the phase speed and 
 is the attenuation coeffi-
cient, both of which vary with frequency. By comparing Eq.
�5� with the coefficient of the second term in Eq. �4�, the
dispersion relations for the viscous fluid may be written im-
mediately as

c =
co

Re��1 + i���−1/2�
=

�2co
�1 + �2�2

�1 + �1 + �2�2�1/2

→ �co for � � �−1

co
�2�� for � � �−1� �6�

and


 = −
� Im��1 − i���

co
�1 + �2�2

=
�

co
�2
��1 + �2�2 − 1

1 + �2�2 �1/2

→ 	
�2�

2co
for � � �−1

1

co
� �

2�
for � � �−1
 . �7�

These expressions are plotted in dimensionless form in Fig.
1. Below the transition �angular� frequency �−1, the sound
speed is essentially constant, with a value equal to co, while
the attenuation varies as the square of the frequency. Above
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the transition frequency, both the sound speed and the attenu-
ation increase to indefinitely high values, although relatively
slowly, as the square root of frequency. This is the classic
dispersion behavior of acoustic waves in a viscous fluid.

The dispersion relations in Eqs. �6� and �7� satisfy the
Kramers-Kronig relations, indicating that the field derived
from the originating partial differential equation, Eq. �1�,
must satisfy causality. In addition, the dispersion relations
prohibit an instantaneous response to the source anywhere in
the fluid, a fact which may be appreciated from the following
argument.

As illustrated in Fig. 1, the phase speed increases to an
infinite value in the limit of high frequency, suggesting at
first glance that an instantaneous response at points in the
medium remote from the source might be possible. But such
a conclusion would be false because, as shown in Fig. 1, any
infinitely fast wave suffers an infinite attenuation and accord-
ingly its propagation distance in the medium is zero. Such
waves cannot, therefore, contribute to the field at any finite
distance from the source. If there are no infinitely fast Fou-
rier components in the propagating pulse, there can be no
instantaneous response to the source anywhere in the fluid.
At all finite frequencies, the wave speed and the attenuation
are themselves finite and the associated Fourier components
are therefore well behaved and physical. Moreover, since the
highest frequencies suffer the highest attenuation, it may be
anticipated that the amplitude of the transmitted pulse every-
where in the fluid will increase very smoothly after the
source is activated at t=0.

Although this is a qualitative view of the pulse arrivals in
the viscous fluid, it is representative of the physical situation.
The pulses that are derived below, for three different source
geometries, are strictly causal and are extremely smooth
around the origin of time, with zero response at the instant
immediately after the source is activated.

The solution of Eq. �1� is the Green’s function, or impulse
response, of the viscous fluid. Once the Green’s function is
known, the field generated by a source with arbitrary time
dependence may be readily obtained using standard tech-

niques of linear systems theory. To obtain the Green’s func-
tion, it is necessary to apply an appropriate integral trans-
form to the Helmholtz equation in Eq. �4�, the type of
transform depending on the source. To begin, a planar source
is considered, of the type discussed by Jordan et al. �12�.

III. PLANAR SOURCE

It is assumed that a planar source is located at x=0 and
that identical, plane-wave pulses propagate away from the
source in the positive and negative x directions. Adopting
Cartesian coordinates, the Helmholtz equation, Eq. �4�, may
then be expressed in one-dimensional form as

�2g�

�x2 +
�2

co
2�1 + i���

g� = −
Qp

�1 + i���
��x� , �8�

where Qp has dimensions of volume per unit area.
This equation may be solved by the application of a bilat-

eral Fourier transform over distance, x, defined as

g�p�x� = �
−�

�

g��x� exp�− ipx�dx �9a�

with inverse

g��x� =
1

2	
�

−�

�

g�p exp�ipx�dp , �9b�

where p is the wave number. Bearing in mind the radiation
condition and the familiar properties of the transforms of
derivatives, when Eq. �9a� is applied to Eq. �8�, the following
algebraic expression for the doubly transformed field is ob-
tained:

g�p =
Qp

p2�1 + i��� − ko
2 , �10�

where ko=� /co is the acoustic wave number. Obviously, Eq.
�10� represents an exact solution of Stokes’ equation, since
no approximations have been introduced.

To return to the time domain, two Fourier inversions must
be applied to Eq. �10�, which will yield the impulse-response
function. The order in which these inversions is performed is
arbitary but, either way, the result is an integral that cannot
be expressed explicitly. In one case, however, the integral
leads to an approximation that is noncausal, whereas in the
other case, the approximation for the integral is strictly
causal and well behaved. The integrals themselves, of
course, are equivalent and both satisfy causality, it is only the
approximations that differ.

A. A noncausal approximation for the pressure pulse

It is perhaps natural to perform the inverse transform over
wave number first, to obtain an expression for the frequency
spectrum of the pulse

g� =
Qp

2	�1 + i����−�

� exp�ipx�
�p − p+��p − p−�

dp , �11�

where the simple poles p± are the roots of the quadratic
denominator in Eq. �10�, which are given by the expression

FIG. 1. Phase speed �Eq. �6�� and attenuation �Eq. �7�� as func-
tions of frequency, all in dimensionless form.
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p± = ±
ko

�1 + i��
. �12�

For real �positive or negative� �, the poles p+ and p−, respec-
tively, lie in the bottom half and top half of the complex p
plane. To evaluate the integral in Eq. �11�, the appropriate
contour of integration is around the top �bottom� half plane
for x0 �x�0�, which leads to the following exact expres-
sion for the spectrum of the velocity potential �4�:

g� =
Qp

2iko
�1 + i��

exp�−
iko�x�

�1 + i��
 . �13�

Converting from velocity potential g�t ,x� to pressure p�t ,x�,
the Fourier inversion over frequency leads to the exact inte-
gral representation

p�t,x� = �
dg

dt
=

�coQp

4	
�

−�

�

�1 + i���−1/2

�exp�−
iko�x�

�1 + i��
exp�i�t�d� . �14�

The integral in Eq. �14� cannot be evaluated explicitly but
an approximate form may be obtained by expanding the radi-
cal in a Taylor series, as follows:

�1 + i���−1/2 = 1 −
i��

2
+ ¯ . �15�

The expression for the pressure then becomes

p�t,x� �
�coQ

4	
�

−�

�

exp�i��t −
�x�
co
�exp�−

�2��x�
2co

d� ,

�16�

where the terms up to first order in �� in the expansion of
the radical in Eq. �15� have been included in the argument of
the exponential but elsewhere the radical has been set equal
to unity. With these approximations, the integral for the pres-
sure pulse has been reduced to a known form �15�, allowing
the solution to be expressed as

p�t,x� �
�coQ

2
� co

2	��x�
exp�−

�cot − �x��2

2co��x� � . �17�

Notice that this is not a retarded potential solution, since it
depends on t and x individually and not on �cot−x� alone.
However, in the limit of zero viscosity �i.e., �→0�, Eq. �17�
reduces to the correct retarded-potential form

lim
�→0

p�t,x� =
�coQ

2
��t −

�x�
co
 . �18�

This limit was derived using a well-known �-function iden-
tity �16�.

An expression equivalent to Eq. �17� but for particle dis-
placement has been discussed by White �4�. The Gaussian
form exhibited by Eq. �17� is reminiscent of Blackstock’s �7�
approximate expression for the behavior of a switched sinu-
soid in a viscous fluid, although the details of the two solu-
tions are distinct since they represent different types of tran-

sient signals. All such approximate solutions suffer from the
same problem: they fail to satisfy causality. This difficulty is
apparent in Eq. �17�, which predicts a finite pressure every-
where in the viscous fluid for nonpositive times. Although
several authors have suggested otherwise �7,12�, such non-
causal behavior is not due to a failure of Stokes’ viscous
wave equation �Eq. �1��. In the present case, the problem is a
consequence of an unsatisfactory approximation, Eq. �15�,
which misrepresents the high frequencies in the pulse, hence
leading to the unphysical solution for the impulse response in
Eq. �17�.

B. A causal approximation for the pressure pulse

Equation �17� fails to predict the correct behavior not only
for negative times but also at t=0 and immediately thereaf-
ter. In particular, Eq. �17� indicates �erroneously� that a sig-
nal appears everywhere throughout the viscous fluid at the
instant the source is activated. Such an unphysical prediction
is a consequence of the poorly represented high frequencies
in the pulse, arising from the approximation in Eq. �15�. To
derive a causal approximation for the pressure pulse, an al-
ternative approach must be adopted in which Eq. �15� is
abandoned and all frequencies are treated correctly.

To this end, consider again the exact algebraic expression
for the doubly transformed velocity potential in Eq. �10�.
Now, the inverse Fourier transform over frequency is per-
formed first, to return the wave number spectrum

gp = −
Qpco

2

2	
�

−�

� exp�i�t�
�� − �+��� − �−�

d� , �19�

where the simple poles �± are the roots of the quadratic
denominator in Eq. �10�:

�± =
i�co

2p2 ± �4co
2p2 − �2co

4p4

2
. �20�

With p real, both poles lie above the real axis in the top
half of the complex � plane. From Jordan’s lemma and
Cauchy’s theorem, the D-shaped integration contour used in
evaluating Eq. �19� for negative times must be taken around
the lower half plane. Since this contour encloses no poles, it
follows immediately that the field for t�0 is identically
zero. For positive times, the integration contour must be
taken around the top half plane, yielding a nonzero result
since the contour encloses the two poles in Eq. �20�. By
adding the residues of these poles, the wave-number spec-
trum of the field can be written exactly for all times t as

gp = u�t�
2Qpco

2

�4co
2p2 − �2co

4p4
exp�−

�co
2p2t

2


�sin��4co
2p2 − �2co

4p4

2
t , �21�

where u�t� is the Heaviside unit step function.
Obviously, Eq. �21� satisfies causality, since it is identi-

cally zero for all negative times. As every wave number
component of the field is strictly causal, it follows that the
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field itself must also be causal. To obtain the Green’s func-
tion for the field, the inverse Fourier transform with respect
to wave number p is applied to Eq. �21�:

g�t,x� = u�t�
Qpco

2	
�

−�

� 1

p�
exp�−

�co
2p2t

2


�sin�cop�t�exp�ipx�dp , �22�

where

� =�1 −
�2co

2p2

4
. �23�

By differentiating Eq. �22� with respect to t, the exact solu-
tion for the pressure pulse is found to be

p�t,x� = �
dg

dt
= u�t�

�co
2Qp

4	
�

−�

�

eipx��1 +
i�cop

2�
exp��icop� −

�co
2p2

2
t� + �1 −

i�cop

2�
exp�− �icop� +

�co
2p2

2
t��dp .

�24�

Although Eq. �24� is obviously causal, there is a stronger
condition on the field at the origin of time that emerges from
the integral formulation of Eq. �24�: at t=0, the pressure and
all its time-derivatives are identically zero at every point in
the viscous medium. This is proved by taking the nth time
derivative under the integral sign and then setting t=0. A
sum of terms is obtained, each one of which is an even
moment of the function cos�px�, that is, each of the terms is
an integral of the form

m2q = �
0

�

p2q cos�px�dp , �25�

where q is a non-negative integer. Since the zeroth moment
is

mo = �
0

�

cos�px�dp = 	��x� , �26�

all the higher, even moments may be expressed as even-order
derivatives of the delta function

m2q = �− 1�qd2qmo

dx2q = �− 1�q	��2q��x� , �27�

where the superscript on the � function denotes the �2q�
derivative with respect to x. Thus, all the moments repre-
sented by Eq. �25� exhibit a singularity at the origin of x �the
source position� and are precisely zero everywhere else
throughout the fluid. It follows that the field expression in
Eq. �24� satisfies causality in the strong sense that, at the
origin of time when the source is activated, t=0, the pressure
is maximally flat everywhere throughout the viscous fluid:
not only is the pressure identically zero at t=0+ but so too
are all the time derivatives of the pressure pulse. The Taylor
expansion of the pressure taken around the origin of time is
therefore zero and hence there are no instantaneous arrivals
predicted anywhere in the fluid.

Returning now to the evaluation of Eq. �24�, the integrals
cannot be expressed explicitly but, on approximating the
radical in Eq. �23� as unity, the impulse response reduces to

p�t,x� � u�t�
�Qpco

2

4	
�

−�

� ��1 +
i�pco

2
exp�−

�co
2p2t

2
exp�ip�x + cot�� + �1 −

i�pco

2
exp�−

�co
2p2t

2
exp�ip�x − cot���dp .

�28�

The integrals here are known forms �17�, allowing the pres-
sure to be approximated as

p�t,x� � u�t�
�coQp

4�2	�t
�F�t,x� + F�t,− x�� , �29a�

where

F�t,x� = �1 +
x

cot
exp�−

�cot − x�2

2�co
2t

� . �29b�

In common with the noncausal approximation for the
pressure in Eq. �17�, the pressure pulse in Eqs. �29a� and
�29b� is not a retarded potential, since it depends on x and t

CAUSALITY, STOKES’ WAVE EQUATION, AND … PHYSICAL REVIEW E 72, 026610 �2005�

026610-5



independently and not on �cot−x� alone. And like Eq. �17�, in
the limit of zero viscosity, Eq. �29a� reduces to

lim
�→0

p�t,x� =
�coQp

2
��t −

�x�
co
 , �30�

which has been derived with the aid of a well-known � func-
tion identity. Equation �30� is the correct, retarded-potential
solution for an impulse of pressure propagating through an
inviscid fluid.

As with the exact, integral expression for the impulse
response in Eq. �24�, the approximation in Eqs. �29� is
strictly causal in the strong sense of being maximally flat
everywhere throughout the viscous fluid at the origin of time,
t=0. This is readily shown to be true, since, in the limit
of small �positive� time, all the time derivatives of the
pressure in Eqs. �29� are dominated by the function
exp�−x2 / �2�co

2t��→0 for x�0. Thus, everywhere in the vis-
cous fluid, the pressure makes a perfectly smooth, flat tran-
sition from zero at negative and zero times to finite values as
t becomes positive. Such behavior is entirely physical, with
no arrivals anywhere in the fluid at the instant the source
begins to transmit, which is consistent with the dispersion
relations in Eqs. �6� and �7�. There are arrivals, however,
before the retarded time to= �x� /co, as expected, since, ac-
cording to Eq. �6�, the phase speed increases indefinitely
with increasing frequency, albeit slowly, as �1/2.

C. Comparison of impulse-response solutions

To compare the noncausal approximation �Eq. �17��, the
causal approximation �Eqs. �29�� and the exact integrals �Eq.
�14� and �24�� for the pressure pulse in a viscous fluid, it is
convenient to introduce a normalization scheme based on the
retarded time to= �x� /co. The normalizing pressure is taken to
be the peak value of the noncausal, symmetrical Gaussian
pulse in Eq. �17�, which coincides with the retarded time to:

p�to� =
�coQp

2�2	�to

. �31�

Since � has dimensions of time, the appropriate normaliza-
tion is

�̄ =
�

to
, �32�

where the convention of using an overbar to denote a nor-
malized quantity has been introduced.

The normalized pressures may now be expressed as func-
tions of normalized time, t̄= t / to. Then the noncausal ap-
proximation in Eq. �17� reduces to

p̄nc�t̄� � exp�−
�t̄ − 1�2

2�̄
�; �33�

and the causal approximation in Eqs. �29� becomes

p̄c�t̄� �
1

2�t̄
�f�t̄� + f�− t̄�� , �34a�

where

f�t̄� = �1 +
1

t̄
exp�−

�t̄ − 1�2

2�̄t̄
� . �34b�

In Eqs. �33� and �34�, the subscripts nc and c denote “non-
causal” and “causal,” respectively. The same normalization
scheme may also be applied to the �exact� integrals for the
pressure pulse in Eqs. �14� and �24�. Since these two integral
formulations yield identical results, only the simpler of the
two, Eq. �14�, is considered here. This reduces to the normal-
ized form

p̄fi�t̄� =� �̄

2	
�

−�

�

�1 + i�̄�̄�−1/2exp�i�̄� t̄ −
1

�1 + i�̄�̄
�d�̄ ,

�35�

where �̄=�to, and the subscript fi denotes “frequency inte-
gral.”

Notice that the propagation distance x no longer appears
explicitly in the normalized expressions for the pressure but
instead is embedded in the normalized parameter �̄ and the
normalized time t̄. The effect of the normalization is to re-
duce the expressions for the pressure to functions of a single
variable t̄, involving just one parameter �̄. Under this
scheme, if the distance x and viscosity � are scaled by the
same factor, �̄ stays the same and hence the shape of the
normalized pressure pulse remains unchanged.

Figure 2 shows the dimensionless pressure pulses in Eqs.
�33�–�35� for a value of �̄=0.3, which is unrealistically high
for the experimental conditions found in most fluids but
serves to illustrate the differences between the two approxi-
mations and the exact solution. The causal approximation
�Eqs. �34�� and the exact solution �Eq. �35�� match reason-
ably well and both are well behaved around the origin of

FIG. 2. �Color� Impulse response of a viscous fluid, as predicted
by a numerical integration of the exact expression in Eq. �35� �black
line�, by the causal approximation in Eqs. �34a� and �34b� �red line�,
and by the noncausal approximation in Eq. �33� �green line�, with
�̄=0.3 in all three cases. Notice that the �causal� red and black
curves are maximally flat at the origin of time.
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time, showing zero responses for t�0 and no arrivals �maxi-
mally flat behavior� at t=0+, the instant immediately after
the source begins to transmit. Both pulses are asymmetrical
about the peak, each exhibits a leading edge that is consid-
erably steeper than the trailing edge, and the two peaks arrive
in advance of the retarded time to. In contrast, the symmetri-
cal �Gaussian� peak of the noncausal approximation arrives
relatively late, at exactly the retarded time to, and the tail of
the leading edge extends into negative times, hence the fail-
ure to satisfy causality.

The differences between the three curves in Fig. 2 become
progressively less pronounced as the viscosity is reduced, as
is illustrated in Fig. 3 for the case �̄=0.003. Of course, the
Gaussian pulse in Eq. �33� still fails to satisfy causality,
while the curves from Eqs. �34� and �35� remain strictly
causal in the strong sense, but the differences between the
shapes of the three curves are now almost imperceptible.
Notice that the skewness, such a prominent feature of the
two causal pulses in Fig. 2, has all but vanished in Fig. 3,
where all three pulses are seen to be essentially symmetrical
about the retarded time to. Indeed, as �̄ is reduced further, all
three pulses approach the symmetrical, delta-function form
of Eqs. �18� and �30�.

IV. INFINITE LINE SOURCE

For a line source, cylindrical coordinates are appropriate,
with the axis coincident with the source itself. As with the
planar source, the field is one dimensional, in this case de-
pending only on the radial distance r; and the Helmholtz
equation, Eq. �4�, takes the form

1

r

�

�r
�r

�g�

�r
 +

�2

co
2�1 + i���

g� = −
QL

�1 + i���
��r�
	r

, �36�

where QL is the source strength with dimensions of volume
per unit length. The solution for the field is similar to that for

the planar source except that, instead of a bilateral Fourier
transform, a Hankel transform of zero order is applied to the
Helmholtz equation.

On performing the inverse transform over frequency first,
the inversion integral is found to be exactly the same as that
in Eqs. �19� and �20�, which has already been evaluated ex-
actly. Taking this result and performing the Hankel inversion,
the following expression for the pressure pulse is obtained:

p�t,x� = �
dg

dt
= u�t�

�c0
2QL

4	
�

0

�

pJo�pr���1 +
i�cop

2�


�exp��icop� −
�co

2p2

2
t� + �1 −

i�cop

2�


�exp�− �icop� +
�co

2p2

2
t��dp , �37�

where the integration variable p is now the radial wave num-
ber, Jo�. . � is the Bessel function of the first kind of order
zero, and � is as defined in Eq. �23�. From the presence of
the Heaviside unit step function in this expression, it is clear
that the pressure pulse is strictly causal, with zero response
prior to t=0, the time at which the source is activated.

Immediately afterwards, at t=0+, the pressure everywhere
in the fluid is zero and so too are all its time derivatives. This
may be proved from a similar argument to that for the planar
source. Thus, around the origin of time, the cylindrical pulse
is maximally flat, its Taylor expansion is identically zero, and
hence there are no instantaneous arrivals anywhere in the
fluid.

V. POINT SOURCE

Again the field is one dimensional, depending only on the
radial distance r from the source. The Helmholtz equation,
Eq. �4�, in spherical polar coordinates is therefore

1

r2

�

�r
�r2�g�

�r
 +

�2

co
2�1 + i���

g� = −
Q

�1 + i���
��r�
2	r2 ,

�38�

where Q is the source strength with dimensions of volume.
By making the substitution

g� =
��

�r
, �39�

Eq. �38� reduces to Bessel’s equation, which is solved by
applying a Hankel transform of order one-half. Then, pro-
ceeding much as with the line source, the pressure is even-
tually found to be

p�t,x� = �
dg

dt
= u�t�

2�co
2Q

	r
�

0

� sin�pr�
�

exp�−
�co

2p2t

2


���p2co
2

2
sin�p�cot� + p�co cos�p�cot��dp , �40�

where p is the radial wave number and � is as defined in Eq.
�23�.

FIG. 3. �Color� Impulse response of a viscous fluid, as predicted
by a numerical integration of the exact expression in Eq. �35� �black
line�, by the causal approximation in Eqs. �34a� and �34b� �red line�,
and by the noncausal approximation in Eq. �33� �green line�, with
�̄=0.003 in all three cases.
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Clearly, the pressure pulse in Eq. �40� is causal, since it is
zero for negative times. As with the pulses from the planar
and line sources, all the time derivatives of Eq. �40� at t=0
are zero, hence the pulse is maximally flat around t=0, the
Taylor expansion is zero for t=0+ and there are no instanta-
neous arrivals anywhere in the fluid.

VI. TRANSIENT SIGNALS IN GENERAL

Knowing the impulse response, the velocity potential
��t ,x�, due to any source function s�t�, may be determined
almost immediately. In terms of Fourier transforms with re-
spect to time, it is almost self-evident from the Helmholtz
equation �Eq. �4�� that the velocity potential is the product of
the impulse response and the source function

���r� = s��r��g��r� . �41�

On converting to the time domain, this product becomes a
convolution between the source function and the Green’s
function

��t,r� = �
−�

�

s��,r��g�t − �,r�d� . �42�

The nth time derivative of the velocity potential is therefore

dn�

dtn = �
−�

�

s��,r��
dn

dtng�t − �,r�d� , �43�

which returns the pressure when n=1 and all the time deriva-
tives of the pressure when n�2.

Assuming that the source is causal, such that s�t ,r��=0
for t�0, the lower limit on the integral in Eq. �43� may be
replaced by zero. Moreover, since it has been proved above
that all the time derivatives of the impulse-response function
are zero for t�0, the upper limit on the integral in Eq. �43�
may be replaced by t. Thus, the convolution for the time
derivatives of the velocity potential becomes

dn�

dtn = �
0

t

s��,r��
dn

dtng�t − �,r�d� . �44�

At t=0, the instant the source activates, it is clear from Eq.
�44� that the pressure �n=1� and all its time derivatives �n
�2� are identically zero, regardless of the shape of the
source function.

Evidently, for any causal source function, the solution of
Stokes’ wave equation �Eq. �1�� for the acoustic field in a
viscous fluid is a transient �possibly followed by a steady-
state disturbance, for instance, in the case of a switched si-
nusoid� that satisfies causality in the strong sense, that is to
say, the pressure is maximally flat at the origin of time t=0.
Although several authors �7,9,11,12� have stated otherwise,
this precludes the possibility that any acoustic disturbance is
felt throughout the medium at the instant the source is acti-
vated. Stokes’ wave equation yields perfectly physical solu-
tions for the transient pressure in a viscous fluid, regardless
of the detailed shape of the causal source function.

VII. THE DIFFUSION EQUATION

The diffusion equation is, perhaps, a simpler example of a
parabolic partial differential equation than Stokes’ wave
equation. With regard to causality, the solutions of the two
equations have several important properties in common. To
illustrate the causal nature of the solutions of the diffusion
equation, a simple one-dimensional problem is briefly con-
sidered below.

Suppose a planar source of fluid, in the x=0 plane, is
injected instantaneously into an isotropic host fluid at time
t=0. If, after time t at distance x from the source, the con-
centration of introduced fluid is ��t ,x�, then � is a solution
of the inhomogeneous diffusion equation �18�

D
�2�

�x2 −
��

�t
= − q��x���t� , �45�

where D is the diffusion coefficient and q is the source
“strength” with dimensions of concentration times length.

Equation �45� may be solved for the “pulse” of concen-
trate diffusing through the host fluid by using similar integral
transform techniques to those applied earlier to Stokes’ equa-
tion. In the present case, the two transforms in question are
both bilateral Fourier transforms, taken over time and dis-
tance, which lead to the following doubly transformed ex-
pression for the concentration:

��p =
q

�Dp2 + i��
, �46�

where � and p are the integration variables in the temporal
and spatial Fourier transforms, respectively. In the complex
frequency plane, and for p real, Eq. �46� has a simple pole on
the imaginary axis at �o= + iDp2. Therefore, on performing
the inverse Fourier transform with respect to frequency, tak-
ing a D contour in the top half plane for t0 and in the
lower half plane for t�0, the solution for the spatial spec-
trum of the concentration pulse is immediately found to be

�p = u�t�qe−Dp2t. �47�

The presence of the Heaviside unit step function here signi-
fies that every spatial Fourier component is strictly causal,
exhibiting a zero response for all negative times. It follows
that the pulse itself must also satisfy causality.

The solution for � is now obtained by applying the in-
verse spatial Fourier transform to Eq. �47�, which yields

��t,x� = u�t�
q

4�	Dt
exp�−

x2

4Dt
 . �48�

This familiar, unimodal expression for the concentration as a
function of time and distance from the source exhibits a
maximum when

t = tm =
x2

2D
. �49�

The leading edge of this peak does not rise up from zero in a
discontinuous fashion, since all the time derivatives of �
have as a dominant factor the exponential function in Eq.
�48�. Hence, at the origin of time, every time derivative of �
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is zero. Thus, like the acoustic pulses treated earlier, the ex-
pression for the concentration in Eq. �48� is perfectly smooth
in the sense of being maximally flat at the origin of time, t
=0. It follows that the Taylor expansion of the pulse about
the origin of time is zero, indicating that there is no instan-
taneous arrival anywhere in the host fluid, that is, ��0+ ,x�
=0. As its solutions satisfy this strong causality condition,
the essential conclusion is that the diffusion equation pro-
vides a perfectly physical representation of diffusive pro-
cesses.

VIII. CONCLUDING REMARKS

Since 1845, when Stokes �1� introduced his acoustic wave
equation for a viscous fluid, its solutions for pulse propaga-
tion have proved to be elusive. Over recent years, it appears
to have become accepted that Stokes’ wave equation leads to
predictions of noncausal propagation in the form of acoustic
arrivals everywhere throughout the fluid at the instant the
source is activated. Such behavior would imply an infinite
speed of wave propagation, which is unphysical.

In this article, the Green’s function, or impulse response,
of a viscous fluid is derived from Stokes’ wave equation for
the cases of a planar, linear, and point source. These exact
solutions are not only zero for negative times but also satisfy
a stronger causality condition: everywhere in the fluid, the
predicted pressure pulse is maximally flat at the instant the
source is activated, that is to say, the pressure and all its time
derivatives are identically zero at the origin of time. It is

demonstrated that this strong causality condition is satisfied
not only by the impulse response but by any �exact� transient
solution of Stokes’ wave equation.

The condition of strong causality ensures that no acoustic
disturbances are felt anywhere in the viscous fluid at the
instant the source is triggered. It follows that all transient
solutions of Stokes’ equation are perfectly physical in their
behavior and, in particular, no infinite wave speed is implied.
This is consistent with the dispersion relations, which indi-
cate that in the limit of high frequency, although the phase
speed does in fact diverge, the attenuation also becomes in-
definitely high, thus completely suppressing the infinitely
fast, nonphysical Fourier components in the acoustic field.

In a brief discussion of the diffusion equation, the condi-
tion of strong causality is also shown to hold. Thus, the so-
lution for a diffusive pulse and all its time derivatives are
zero at the origin of time: at the instant the source is acti-
vated, the pulse is perfectly smooth, in the sense of being
maximally flat, everywhere in the host fluid, with no instan-
taneous arrivals anywhere. As with Stokes’ wave equation, it
is concluded that the diffusion equation provides a valid,
physical representation of transient processes in the host me-
dium.
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