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Modulated optical structures over a modulationally stable medium

Céline Durniak and Majid Taki*

Laboratoire de Physique des Lasers, Atomes et Molécules, UMR CNRS 8523, Université des Sciences et Technologies de Lille,

F-59655 Villeneuve d’Ascq, France

Mustapha TIidi"
Optique Nonlinéaire Théorique, Université Libre de Bruxelles, Code Postal 231, B-1050 Bruxelles, Belgium

Pier Luigi Ramazza and Umberto Bortolozzo
Istituto Nazionale di Ottica Applicata, 150125 Florence, Italy

Gregory Kozyreff
Oxford Centre for Industrial and Applied Mathematics, Oxford University, Oxford OX1 3LB, United Kingdom
(Received 18 October 2004; revised manuscript received 8 June 2005; published 17 August 2005)

Evidence of modulated dissipative structures with an intrinsic wavelength in a nonlinear optical system
devoid of Turing instability is given. They are found in the transverse field distribution of an optical cavity
containing a liquid crystal light valve. Their existence is related to a transition from flat to modulated fronts
connecting the unstable middle branch of a bistability cycle and either of the two stable uniform states. We first
analyze the cavity in the limit of nascent bistability, where a modified Swift-Hohenberg equation is derived.
This allows for a simple analytical expression of the threshold associated with the transition as well as the
wavelength of the emerging structure. Numerical simulations show development of ring-shaped modulated
fronts and confirm analytical predictions. We then turn to the full model and find the same transition, both

analytically and numerically, proving that this transition in not limited to nascent bistability regimes.
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I. INTRODUCTION

Pattern formation in extended systems has attracted much
attention in fields as different as physics, hydrodynamics,
chemistry, and biology [1]. Nonlinear optics, in particular,
represents a fruitful area of activity [2,3]. This is due to the
fact that patterned states arise naturally in many optical de-
vices from the interplay of diffraction, nonlinearities and dis-
sipation. Among the nonlinear systems analyzed, the optical
devices formed by a thin slice of nonlinear material with
feedback [4] are the subject of intense research, both theo-
retical and experimental, owing to their ability to exhibit a
rich variety of ordered or complex structures, including regu-
lar patterns [5], space-time chaotic dynamics [6], and dissi-
pative solitons [7]. Experimental realizations of this scheme
are typically based on liquid crystal cells or the liquid crystal
light valve (LCLV) as nonlinear media. Recent investigations
in these experimental systems have focused on localized
structures [8] and the occurrence of noise-sustained struc-
tures in the presence of drift transport [9]. More recently,
bistability between round and triangular localized structures
has been demonstrated experimentally in this system [10].

The purpose of this article is to report on the occurrence
of modulated structures with an intrinsic wavelength in a
modulationally stable regime, i.e., in a regime far from any
modulational instability (Turing instability, [11]). These
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modulations spontaneously develop from localized perturba-
tions of the unstable homogeneous steady state that separates
the two stable states of a hysteresis cycle. This constitutes
the counterpart of Turing spontaneous modulations initiated
by extended perturbations. They occur in the wings of the
traveling fronts and eventually give rise to a self-organized
propagating pattern. The analytical expressions of their
wavelengths and velocities are explicitly derived. Such non-
Turing structures have been predicted in some one-
dimensional models in fluid mechanics [12]. But, as far as
we are aware, they have never been observed in any experi-
mental system. In this paper, we analyze the LCLV nonlinear
optical cavity as a candidate for this purpose.

Note that different types of non-Turing modulations have
been reported in optical bistability [13], and in the degener-
ate optical parametric oscillator with walk-off [14]. In the
former case, the modulation results from the tail interaction
between switching waves (see also the book by Rosanov on
this subject, [3]). In the latter case, the modulated structures
are directly produced by walk-off; without it, they do not
exist, at least in the range of parameters considered in [14].
By contrast, in the dynamical regime considered here, no
walk-off nor any form of preexisting drift is necessary to
generate the pattern. In particular, the modulations are char-
acterized by an intrinsic wavelength which is determined
solely by dynamical parameters and not by convection. In
addition, we establish their existence in the parameter space,
and observe a transition from flat to two-dimensional modu-
lated non-Turing structures in the form of ring-shaped fronts.

The remainder of the paper is organized as follows. In
Sec. II, we recall the model describing a LCLV cavity and
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FIG. 1. Typical experimental setup. E,, input field (I,=|Ey|?); O,
microscope objective; Py,A, pinholes; BS;,BS,, beam splitters;
LCLYV, liquid crystal light valve; L;, lenses, all with focal length f;
P, polarizer; CCD, charge-coupled device video camera; the feed-
back is achieved through the fiber bundle FB.

derive the modified Swift-Hohenberg equation in the limit of
nascent bistability. We exploit this simplification in Sec. III,
where we investigate in detail the origin of structuring in the
system, namely the appearance of modulations in the front
connecting an unstable homogeneous steady state to another
stable one. In Sec. IV, we return to the full model and study
the transition between flat and modulated front without any
approximation. Finally, we summarize and conclude.

II. FULL AND SIMPLIFIED MODELS

The system we consider is a cavity whose nonlinear ac-
tive element is a LCLV. Figure 1 depicts a typical experimen-
tal setup. The main control parameters are the injected field
E,, the polarizer P, and the rms voltage V,, applied across the
LCLV. A certain fraction of V|, applies to the nematic liquid
crystals cell inside the LCLV and reorients them. This reori-
entation induces a phase retardation on the electromagnetic
wave going through the cell. In first approximation, the
phase retardation is proportional to the impinging intensity
and thus causes a Kerr effect. The dynamics of the electro-
magnetic field inside the cavity is thus described by the op-
tical phase ¢ retardation in the LCLV. Normalizing the time
and space variables by the response time and diffusion length
of the LCLV, ¢ satisfies [15]

0;_¢=¢0—¢+V2¢+f(1ﬂ7), (1)
r

where ¢y=dy(V,) is a constant phase retardation due to the
voltage applied to the cell, V2 is the Laplacian acting on the
transverse coordinates x=(x;,x,), and f(I) is the nonlinear
response to the feedback field intensity /g,

We shall assume a Kerr-type response with coefficient «
and saturation ¢,,,, so that

f(Ifb) = @Sut(l - e_alfb/%m) = alfb - (alfb)zlz(Pmt'

2 the

As explained in [15], for an injected intensity I,=|E,
feedback intensity is given by
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Iy =Iole ™ (Me ' + N)|%,

where [M|=cos?6, |N|=sin?6, and a=cL/(2wf?). The expres-
sion for Iy, arises from the formal resolution of the free-
space propagation problem in the cavity feedback loop. The
amplitudes M and N are relative to the field components
polarized along the LC director and perpendicular to it, re-
spectively. These two components are projected, via a polar-
izer, on a common direction # with respect to the LC direc-
tor. In the expression for a, L is the free propagation length,
c is the speed of light, w is the frequency of the electromag-
netic wave, and € is the phase diffusion length in the LCLV.
The parameter a is the normalized diffraction coefficient,
which can be controlled through w and L.

The expression for I, greatly complicates the study of Eq.
(1). Fortunately, one can simplify this equation while retain-
ing the dynamics we wish to describe by considering this
equation near the limit of nascent bistability and assuming,
for the sake of simplicity, 8= /4. This last assumption is by
no means necessary but simplifies notably the algebra arising
from trigonometric nonlinearties. We shall follow the same
methodology as that recently described in [16] and, previ-
ously, in [17].

We first recall that the homogeneous solutions of Eq. (1)
are given by

0= ¢0 - (;b - (psat{l - exp[alocosz(qb/Z)/gom]}
= ¢y~ F(,aly, 0) (2)

and that linear perturbations «exp(ikx+\7) obey the disper-
sion relation

A=—(1+K) - aloe_alf’b/‘psafcos(%)>sin<%S - akz) . (3)

The input-output characteristic will be close to bistability
regime when JF/d¢,#F/d¢*~0. These two conditions
yield the critical values ¢=¢,. and aly=al,., such that

C!I(.Sin ¢c[(1 + Cos ¢c)a1c - Zqosat] - 4QDsat =0

and

( cos 2¢,
1+

I.—2¢,,=0.

cos ¢C )a (& (Pédl

If we particularize the linear stability analysis to ¢=d,,
aly=al, and to small wave numbers k<1, Eq. (3) simplifies
into

)\~—k2{1+acot<%>+a2k2/2+---]. (4)

The k* factor above means that homogeneous perturbations
are marginally stable. This results from the coalescence of
two limit points at ¢=d,. In addition, Eq. (4) clearly indi-
cates the possibility of a nontrivial dynamics at small but
finite k’s if the diffraction parameter a is close to
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a.=-— tan(ﬂ).
2

For a typical value ¢,,=5, we find al.=2.55, ¢.=4.42, and
a.=1.35.

Let us now introduce a small parameter & and the expan-
sions

d=p.+ep&1), aly=al, +eal,,
™ 3

b= +ebi do=Fldoaly0)+ e,

a=a,+ea;,, &=(sla)?x, t=¢er.

A simple substitution in Eq. (1) yields, after lengthy calcula-
tions, the following amplitude equation:

0 1
2o o BY= P+ DT V= 3T, (5

where V now means (d/9¢,,9/0&,) and D(p)=D—-Eis is a
nonlinear diffusion coefficient. The quantities B, C, D, and
E are related to all physical parameters defined in Eq. (1)
through

sin
B= l{[(l +cos ¢ )al,. — g lal,

sat

+4al (g, — al.cos ¢,) 01},

1 sin ¢,
_ ac_¢¢[(1 +4 cos ¢)al. = 2@,
24Q,4
1,
p= % [(L+cos ¢.)al, —2¢,]
4ac(psat
X [(1+cos ¢)a; —4a.0,],
1 sin ¢,
E= ac_d’t[(] +C0S po)al, = @y

205,
For ¢,,=5, we have

B=03al,-566, C=0.21,

D=4.176,-0.55a,, E=0.77.

Note that Eq. (5) has been first introduced in the context of
semiconductor laser dynamics [16], and later derived inde-
pendently by us and in [18] for the LCLV close to nascent
bistability. It resembles the well-known Swift-Hohenberg
equation but the nonlinear diffusive term breaks the reflec-
tion invariance <« —i.

III. THE MODIFIED SWIFT-HOHENBERG EQUATION

The homogeneous steady states (HSSs) of Eq. (5) are im-
plicitly given by
o= Cus = By

The coefficient C is always positive and, in what follows, we
assume B>0 in order to ensure that the system is bistable.
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FIG. 2. Bistability cycle in the modified Swift-Hohenberg equa-
tion, when B>0.

The unstable branch connecting the two stable states of the
hysteresis cycle extends from ,=—VB/3C to ,=\VB/3C
and is illustrated in Fig. 2. Let us now analyze the linear
stability of the HSSs with respect to perturbations of the
form =+ Sexp(\t+ik-&€) where k is the (real) wave vec-
tor of the perturbation and N its growth rate. Keeping only
linear contributions in &, we soon find that N\ and k must
satisfy

__ 4 2 Ly
A== gy~ DR - Sk (6)
where
d
d_z =-B+3Cy;

and k? stands for the square modulus of k. A Turing instabil-
ity occurs when A=0 and d\/dk=0 for a finite and real k.
One can easily show that this does not occur for any steady
state ¢, provided that

D > EVB/3C.

In the sequel we focus on this range of parameters. Since the
system is stable to Hopf and Turing bifurcations, no ex-
tended modulation, either in space or time, can grow in the
system. However, Fig. 3 shows that localized disturbances
from the unstable branch —VB/3C < ¢, <\B/3C can in fact
display oscillations. In the numerical simulations, the pertur-
bation is initiated in the form of a radially symmetric impul-
sion, as could physically be caused by a laser beam. For
sufficiently large values of B, the front leaves a spatial modu-
lation behind its passage, so that, eventually, the entire do-
main is covered by a spatially modulated solution.

The classical linear stability theory is insufficient, as it
stands, to explain the above observations because it applies
to extended perturbations characterized by a single wave
number. By contrast, in order to determine the linear re-
sponse of the system to a localized perturbation, it is neces-
sary to include a finite band of modes in the dynamical de-
scription. This can be achieved by reformulating the linear
stability analysis as an initial-value problem. For a detailed
description of the concept and techniques of instabilities in
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FIG. 3. Transition from flat to two-dimensional non-Turing
modulated dissipative structures obtained numerically from the
model Eq. (5). The parameters are E=0.77, C=1.5. D=1, and
=0.04.

B=0.27

terms of an initial-value problem analysis (including absolute
and convective instabilities), the reader is referred to the
original work by Briggs [19], or the new formulations by
Brevdo [20], and the recent works in optics [14,21,22].

In one spatial direction, let us consider the evolution of
P=1p+ SA(€,1), where, initially,

A(£,0) = f A(k)e™edk.
From Eq. (6), at later times we have
1M§0=f A(k)e™ Ok, (7

where A(k)=N\(k)+ik&/t and we need to evaluate this inte-
gral asymptotically as r— o, with &/t=V=0(1).

Following the method of steepest descent [23], we deform
the path of integration in Eq. (7) in the complex plane k
=k,+ik; and look for the complex wave number k.=k,
+ik; ., such that (9/ ok,)Re[ A(k,,k;) ]=(d/ dk;)Re[ A(k,, k;) ]=0.
We then use the result that, asymptotically,

A(&1) oc 2k = ARV ®

Finally, the front is the part of the perturbation that travels
into the unstable region without changing amplitude. Hence,
we require that Re[A(k,,k;)]=0. This happens when the
group velocity is identical to the envelope velocity of the
front [12]. These three conditions on Re[A(k,,k;)] determine
k,, k;, and V=§&/t as a function of . The value of k, char-
acterizes the spatial modulation of the front, k; determines its
spatial decay, and V its speed.

We find that both modulated (k,#0) and flat (k,=0)
fronts are indeed possible. We have characterized the param-
eter range for each one of the two dynamical behaviors. We
find that the formation of propagating patterns is possible
only if

i
dyg,’

where we recall that ¢, is on the unstable middle branch of
the bistability cycle. The modulated front characteristics are
then given by

D()*<-6 ©)
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FIG. 4. Transition from flat to modulated fronts in the modified
Swift-Hohenberg model in the (¢, B) plane. MF, modulated fronts;
FF, flat fronts. Dashed lines delimit the region of existence of the
unstable homogeneous steady state. The parameters are the same as
in Fig. 3.

K= (1/4) = [— 3D(,) + \/ TD(,)* - 1221—?}, (10)

s

12 = (1/3)[D(i) + k1, (11)

Vige= (43/9)[D(g) + 4 IND() + k2. (12)

On the other hand, flat fronts occur when D(i,)>=
—-6(dy/dip), and propagate with a velocity Vpp
=2k,~[D(dfx)+kf] where

2 (g 4 620
ki —(1/3){9(%) D(4hy) +6d¢ } (13)

s

In two spatial dimensions, the complex wave number be-
comes a complex wave vector kK= (k,+ik,;,k,,+iky;). After a
lengthy calculation, we find that a calculation of the same
kind as above leads to the same formulas (5)—(9) but where

2 . 72 2., .2

k, and k; are replaced by Vkj,+k;, and vki;+k5;. The above
results are summarized in the bifurcation diagram of Figs. 4
and 5. Figure 4 shows the transition between flat fronts (FF)
and modulated fronts (MF) in the (i,,B) plane, as given by
the limiting curve of expression (9). The transition threshold
is determined by the minimum of this curve and is reached
at B'=3CD?*/(18C+E?) and ,=Ci.>~Byy,, with ¢,
=DE/(18C+E?). Modulated structures only exist inside the
hysteresis cycle, which is delimited by ,=+(2/3)BVB/3C
(dashed lines). The asymmetry of their domain of existence
is a consequence of the nonlinear diffusion term, whose
strength is fixed by the parameter E, and which breaks the
inversion symmetry ¢« —i. Figure 5, on the other hand,
illustrates how the wave number and the velocity of the
emerging non-Turing modulated structure depends on the in-
put voltage ¢, for a fixed value of B.

Note that in Fig. 5, we plotted k,+Im(\)/V,r instead of
k, in order to characterize the front oscillations. This is based
on the flux of nodes across the front [12] but also follows
directly from (8).
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FIG. 5. The predicted wave number of flat (FF) and emerging
non-Turing modulated (MF) structures and their velocities versus
the input voltage #,. The parameters and notations are the same as
in Fig. 3 with B=0.2.

The transition is fully confirmed by the numerical simu-
lations of Eq. (5), with localized Gaussian initial conditions
(Fig. 3). At the first stage, the peak of the localized pertur-
bation grows gradually in time until it reaches its maximum
value (upper branch). This amplification process is accompa-
nied by a propagation of the fronts into the region occupied
by the unstable HSSs. Once flat fronts are established, small
oscillations systematically start in the wings of the structures,
as shown in Fig. 3 (second snapshot of the first line). These
oscillations dominate the dynamics only asymptotically in
time, according to the initial-value problem analysis. Finally,
after a sufficiently long time, we observe that the whole do-
main can be covered by a textured solution that alternatively
switches between upper and lower branches of the hysteresis
cycle. This is consistent with the one-dimensional study in
[12].

Equation (9) nicely emphasizes the roles of diffusion and
bistability in the formation of modulated fronts. On the one
hand, diffusion smoothes inhomogeneities and is therefore
detrimental to the formation of fronts. On the other hand, the
slope of ¥, (i) gives the tendency for the system to jump as
a whole towards either of the stable states of the hysteresis
cycle. Hence it is no surprise that the maximum nonlinear
diffusion D compatible with oscillations is directly given in
terms of the slope diyy/di,=(dis,/diyy)~", which is negative
on the unstable branch. Intuitively, if the curve o (i) is
nearly vertical, the system rapidly switches to either of the
two stable states, leaving no time for oscillations to set in.
Conversely, if the middle branch i, (i) is nearly horizontal,
the system hesitates for a longer time between the upper or
the lower stable state, making front oscillations possible. In
this case indeed, we have |di,/di| <1, i.e. [dy/dip|>1 in
Eq. (9). This simple criterion is illustrated in Fig. 3: all other
things being equal, the fronts are modulated for the largest
value of B, i.e., for the widest hysteresis cycle.

IV. BACK TO THE FULL MODEL

Let us now examine the transition from flat to modulated
fronts in the original model. Specifically, we wish to draw
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the bifurcation diagram of Fig. 4 in the (¢, al,) plane. To
this end, we apply the method of steepest descent to the
dispersion relation (3). Hence, as before, we look for the
complex saddle point of A(k), which yields

P P
= —Re[Ak.k)], —{Re[\(k,.k))]-k;V}=0,
m e[ (k,.k;)] &kr{ e[N(k,.k)] = k;V}

and we impose that Re[A(k,,k;)] vanishes. The resulting ex-
pressions are now much more complicated, but on the tran-
sition curve between flat and modulated fronts, k,=0. This

gives
V= ki{2 - ajcos(éi))cos(;is + ak?)} ,
0=-1 +aJcos(%})
X {lcos<is +akiz) —ak?sin(is +ak?)}, (14)
2 2 2

0=—1—kl-2+jcos(%s>

1
X ak?cos(is + ak?) - —sin(i) + akiz) ,  (15)
2 2 2
where J stands for

J = aloexp[— alpl @] = alpexp[— alycos®(¢/2)/ ¢y,

(16)
Eliminating 7 between Egs. (14) and (15), we obtain
a—ak? ( o) 2)
———F——=tan| — +ak;|. 17
2a°k} + 2a%k! — 1 2 (17)

This last equation is easily solved:

a—aki2

=¢lk)=2arctan| —5—— 17— —2ak?.
¢ = ¢(k) <2a2kl.2+2a2k;‘—1) :

Meanwhile, Eq. (14) yields

2 sec(/2)
a cos(p/2 + ak?) — a*ksin( /2 + ak?)”

Jk;) =

Hence, taking k; as a parameter along the bifurcation curve
between flat and modulated fronts, we have explicit formulas
for ¢(k;) and J(k;). For each value of k;, we can thus solve
(16) numerically and obtain aly(k;). Finally, from (2),
dolk)=F(P(k;), aly(k;), m/4).

The result is illustrated in Fig. 6 for a set of parameter
values that are far from the conditions of nascent bistability.
In particular, we take a=0.51, very different from a.. The
picture is essentially the same as in the simplified model,
with ¢, and B replaced by ¢, and al),, respectively. Although
a modulational instability exists, its threshold is everywhere
above al,=~50. Hence it has no influence at pumping inten-
sities aly=5.
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FIG. 6. (Color on line) Bifurcation diagram from flat to modu-
lated fronts in the full model of the LCLV cavity. Dashed lines
delimit the bistability domain. The region of existence of modulated
fronts is the upper left part of the diagram enclosed by the full line.
Parameter values, w=3.14X 10 s™!, L=1.335 cm, £=50 um, ¢
=5. This gives a=0.51.

The results of numerical simulations displayed in Figs
7-10 correspond to the four dots in Fig. 6, with aly=5.5 and
¢y=3.32, 3.16, 3.11, and 3.0, respectively. Figure 7 shows a
flat front initiated by a Gaussian perturbation at the center of
the domain. Initially, the system is on the unstable middle
branch of the hysteresis cycle. The front invades the unstable
domain from left to right. In the subsequent figures, modu-
lated fronts are observed, in full agreement with the predic-
tions. In Fig. 9, the front leaves behind a long-lived structure
where domains in the upper stable state and in the lower
stable state alternate. This is due to the fact that ¢y=3.11 is
close to the Maxwell point for switching fronts between the

7 T T T

6.5 1
6 L .
55k time = 99.3516 1

5t J

2 . L L
0 50 100 150 200

X

FIG. 7. Flat front in the full LCLV model. The front propagates
from left to right. a=0.51, aly=5.5, ¢py=3.32. The initial condition
is the unstable middle-branch solution plus a Gaussian perturbation
0.01 exp(=2x?) centered at the origin.
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FIG. 8. Modulated front in the full LCLV model. a=0.51, al,
=5.5, ¢pp=3.16. The initial condition is the unstable middle-branch
solution plus a Gaussian perturbation 0.01 exp(—2x?). The final
state long after the passage of the front is the upper stable state of
the hysteresis cycle.

two stable states [3]. For ¢,=3.16 (Fig. 8), these switching
fronts move into the domain occupied by the lower branch,
so that eventually, only the upper state remains. The reverse
is true for ¢=3.00 as shown in Fig. 10.

V. SUMMARY

In summary, starting from the model describing the LCLV
system with feedback, we have derived the modified Swift-
Hohenberg equation in the nascent bistability limit. This al-
lowed an in-depth analysis of the flat-modulated front tran-
sition. In particular, we found the particularly simple and
physically meaningful formula (9) as a criterion for appear-

fme = 164.7422

0 50 100 150 200

FIG. 9. Modulated front in the full LCLV model. a=0.51, al,
=5.5, ¢pp=3.11. The initial condition is the unstable middle-branch
solution plus a Gaussian perturbation 0.01 exp(—2x2). A long-lasting
structure persists in the medium: the system is close to the Maxwell
point for switching fronts between the two stable states.
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time = 126.7734
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FIG. 10. Modulated front in the full LCLV model. a=0.51,
aly=5.5, ¢9=3.00. The initial condition is the unstable middle-
branch solution plus a Gaussian perturbation 0.01 exp(~2x2). The
final state is the lower stable state off the bistability cycle.

ance of modulations in the front, which involves the nonlin-
ear damping of modulations [through D(¢)] and the propen-
sity for the system to jump as a whole into a stable state
(through dyy/di,). A simple conclusion was that a wide bi-
stability range is favorable to modulations. Clearly, from Fig.
6, this conclusion is valid in the full model too. In order for
the modulated front to imprint a robust modulation in the
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system, it is necessary to be near the Maxwell point for the
switching fronts between the upper and lower stable homo-
geneous steady states. At this point, these switching fronts
are close to immobile.

We emphasize that the phenomenon exists in the absence
of Turing (or modulational) instability and does not require
any form of drift. Moreover it is not restricted to the limit of
nascent bistability. This study constitutes the first step to-
wards an experimental observation of non-Turing oscilla-
tions. The specific laboratory system considered, namely a
LCLV with feedback, is promising because of the existence
of many control parameters, and of its relatively slow (order
of 1s) dynamics.
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