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A complete description of the particle motion in a three-dimensional marginal minimum-B mirror field is
obtained, including two new constants of motion. The energy and the two Clebsch coordinates of the gyro-
center motion are constants of motion, and the magnetic moment is an adiabatic invariant. The invariance of
the gyrocenter Clebsch coordinates implies that each gyrocenter bounces back and forth on a single magnetic
field line. Complete solutions of the Vlasov equation can be constructed in the equilibrium field. A small
gyroradius expansion of the Clebsch coordinate invariants splits the distribution function into a gyroaveraged
part and a new gyro-oscillating part that gives rise to perpendicular plasma current. Locally omnigenous
Vlasov equilibria to the first order in the plasma � can be constructed by including the diamagnetic drift. More
than three time-independent invariants are required to obtain the general solution of the stationary Vlasov
equation.
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I. INTRODUCTION

Particle motion in magnetic traps involves several key
problems �1�, such as the question of the existence of drift
surfaces and the resonant interactions in microinstabilities
and radio-frequency heating. A study of the particle motion
is simplified when symmetry implies constancy of a gener-
alized momentum, but a complete set of cyclic coordinates
does not exist in three-dimensional mirror fields. Despite
this, two simple constants of motions are found here for a
marginal minimum-B mirror field.

Confinement of charges in a magnetic field is of interest
in many branches of physics. A common topology is the
toroidal geometry, but particles can also be confined in an
open magnetic geometry in a region between magnetic
maxima. Particles with large enough perpendicular velocity
are reflected by the magnetic mirror. This phenomenon is
exploited in the simple mirror trap �2�, the Budker-Post mir-
ror trap. Mirror trapping of charges appear around the earths
magnetic field, and simple magnetic mirrors are common in
laboratory experiments where reliable single particle con-
finement is crucial. Several experiments have confirmed that
particles can be confined in magnetic mirror traps for times
exceeding years. Although single-particle confinement ap-
pears to be ideal, plasma confinement is more complex and
collisions, plasma instabilities, and resonant cyclotron fre-
quency heating can push particles out from the mirror trap.

The first demand on the confining field is to provide sta-
bility toward large-scale magnetohydrodynamic �MHD�
modes. In mirrors, a minimum-B magnetic field has been
demonstrated both theoretically and experimentally to be
sufficient for MHD stable plasma confinement �2�. The sta-
bility can be expected since the magnetic well of a

minimum-B mirror field provides an increased magnetic field
pressure in all directions. MHD stable confinement is
achieved for plasma � values close to unity. The plasma � is
the ratio of the plasma pressure to the magnetic field pressure
B2 /2�0, and a fusion reactor based on magnetic plasma con-
finement would require a � value exceeding 10% or so to
provide an energy gain factor �the ratio of produced fusion
power to the input power required to sustain the plasma�
exceeding 10.

Superimposing a multipole field on the field produced by
the mirror coils can create a minimum-B field. A drawback is
that the multipole field gives a highly elliptic cross section of
the magnetic flux surface near the mirrors. The optimal
choice for a MHD stable mirror field from this point of view
should be a marginal minimum-B field. For a plasma con-
fined in a long and thin mirror trap, the unique solution for
the vacuum magnetic field is derived in �3,4�. The optimal
field corresponds to a “straight field line mirror” where the
magnetic field lines are straight but nonparallel in the con-
fining region. The straight field line mirror is a peculiar con-
figuration with unique properties. Owing to them it may be
useful in different applications.

In the directions perpendicular to the magnetic field, the
charged particles gyrate around the magnetic field line of the
gyrocenter, and a slow perpendicular gyrocenter drift is su-
perimposed on this fast gyromotion. To first order in the ratio
of the gyroradius to the gradient scale length of the electro-
magnetic fields, the perpendicular gyrocenter drift velocity is
determined by

vd,� =
E � B

B2 +
�

q

B � � B

B2 +
mv�

2

qB4 B � ��B · � �B� ,

where �=mv�
2 /2B is the magnetic moment of the gyrating

particle. A second demand on plasma confinement is that the
drifts in the radial direction out from the flux surfaces should
vanish on average. The gyrocenter moves along an orbit that
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is nearly tangential to the flux surface, but a small “banana
orbit width” associated with radial excursions from the mag-
netic surfaces appear in most confining fields. If the radial
drift is zero and the drift surface lies on a flux surface, the
field is said to be locally omnigenous in the confining region
�5,6�. No locally omnigenous fields are known for toroidal
devices, but tokamak magnetic fields are quasiomnigenous in
the sense that the “mean drift surface” �the average over the
radial banana excursions”� lies on a flux surface. The banana
widths can exceed the gyroradius by a large factor, providing
increased radial steps in collisions events and thereby an en-
hanced radial leakage of the plasma from the confining field
as predicted by the neoclassical transport theory. An interest-
ing property with the “straight field line mirror” is that each
gyrocenter moves along a single magnetic field line, and the
neoclassical enhancement of the radial loss is thereby zero
for this unique field.

Constants of motion are basic tools to analyze single par-
ticle and plasma properties derivable from the collisionless
Boltzmann equation, i.e., the Vlasov equation. Jean’s theo-
rem states that an arbitrary function of the motional invari-
ants is a solution of the Vlasov equation. Apart from excep-
tional cases involving global symmetries, a complete set of
motional invariants has not been found for any realistic con-
fining magnetic field. In this paper, we will show that a com-
plete set of invariants can be constructed for the straight field
line mirror, and this is a realistic three-dimensional field
where this has been achieved. In addition to its relevance for
plasma confinement, the straight field line mirror field could
be instructive as an example of a nontrivial case with closed-
form expressions for the motional invariants.

Because of the complexity involved in deriving expres-
sions for a three-dimensional field and thereafter finding con-
stants of motions, single particle studies for plasmas are of-
ten limited to the drift motion and designs of fields providing
mean drift surfaces that nearly lie on the magnetic flux sur-
faces. For the straight field line mirror, we will prove, by
applying the motional invariants derived in this paper to the
collisionless Boltzmann equation, that the field is locally om-
nigenous to the first order in the plasma �. This means that
each gyrocenter moves on a single flux surface even when
the plasma currents are included, and there should be no
neoclassical increase of the radial losses with this mirror
magnetic field.

Additional critical requirements for a fusion reactor based
on a magnetic mirror trap are control of plasma microinsta-
bilities and plugging of end losses induced by these instabili-
ties and collisions. A possibility to achieve this in a straight
field line mirror by a “modified thermal barrier” is briefly
analyzed theoretically in �7� and numerically in �8�.

Catto and Hazeltine �6� have derived criteria from macro-
scopic fluid and gyrocenter drift equations for the existence
of locally omnigenous mirror equilibria. Such equilibria are
possible, for instance, if the plasma current has no compo-
nent along the magnetic field �6�.

Ryutov and Stupakov �9� have studied the problem of
finite banana orbit widths by analyzing the gyroaveraged
Vlasov equation and the longitudinal invariant. A velocity
integration over the gyroaveraged distribution function gives
no current, and when the gyrating part of the distribution

function is unknown, the current can only be determined in
an indirect manner from the general momentum balance,
which involves gradients of the gyroaveraged pressure tensor
and the condition of a divergence free current �9�.

II. MAGNETIC FIELD AND FLUX COORDINATES

In this paper, we will show how the gyrating part of the
distribution function and the associated diamagnetic current
can be found by using the complete set of motional invari-
ants in the marginal minimum-B field. All the invariants are
found to be even functions of the parallel velocity, and no
parallel plasma current exists in this field. A plasma confined
in such a vacuum field would therefore give a locally omni-
genous equilibrium to the first order in the plasma �, if some
mild restrictions are satisfied by the pressure tensor compo-
nents �2�.

To show this, we use the expression, derived in Refs. �3,4�
in the near paraxial limit, for a marginal minimum-B vacuum
field,

Bv = Bv�s� � s + O�a4

c4� , �1�

where Bv�s�=B0 / �1−s2 /c2�, s is the arc length along the
magnetic field lines, the constant B0 is the magnetic field
strength at the central surface s=0, c is the characteristic
longitudinal length scale, and a is the central surface flux
tube radius. No particles are able to transit the infinite field at
s= ±c. A finite region �s��s1, where s1�c, can be defined to
which the particle motion is bounded by stipulating condi-
tions on the pitch angle at the central surface �cf. Ref. �10��.
The infinite model field in the outer region is of no real
concern, since it has been shown in Ref. �4� how a realistic
field can be constructed that is bounded at the outer region
and practically identical to the model field in the confinement
region �s��s1.

The error for the vacuum field is insignificant for a long
and thin flux tube, since the representative parameter range
a /c�5% gives a4 /c4�10−5. Neglecting the correction term,
we may write

Bv

B0
= � x0 � � y0 =

�s

1 − s2/c2 , �2�

where �x0 ,y0� are Cartesian-like Clebsch coordinates. A flux
coordinate system is introduced by the transformation
�x ,y ,z�→ �x0 ,y0 ,s�. In Ref. �4�, expressions for the flux co-
ordinates have been derived

s�x,y,z� = z +
c

2
� x2/c2

1 + z̄
−

y2/c2

1 − z̄
� + O�a4

c4� , �3�

x0�x,y,z� =
x

1 + s̄
	1 +

1

6
� x/c

1 + s̄
�2
 + O�a5

c5� , �4�

y0�x,y,z� =
y

1 − s̄
	1 +

1

6
� y/c

1 − s̄
�2
 + O�a5

c5� , �5�

where z̄=z /c and s̄=s /c. Equation �3� shows that
the surface s=0 is slightly curved, since at s=0 we obtain
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z̄�−�x2−y2� / �2c2�. Extending the analysis to more general
fields would be a complex procedure, since analytical ex-
pressions for the flux coordinates cannot be obtained analyti-
cally other than in exceptional cases. For any given field
B�x ,y ,z�, numerical ray tracing along the field lines from a
prescribed surface s�x ,y ,z�=0 is the standard means to gen-
erate flux coordinates.

The scale factors in terms of the coordinates �x0 ,y0 ,s� are
��x0�= �1+ s̄�−1, ��y0�= �1− s̄�−1 and �x0 · �y0=−�x0y0 /c2�
��1− s̄2�−1, where the corrections are O�a4 /c4�. The x0 and
y0 coordinates are stretched or contracted as Bv�s� increases
away from its minimum at s=0. We also have ��s�=1

+O�a4 /c4� and �s� B̂v is a unit vector along the vacuum
magnetic field. In addition, x0 and y0 are constant along Bv
since �x0 ·Bv= �y0 ·Bv=0.

The flux lines corresponding to Eqs. �3�–�5� can to the
leading order be parametrized as

x�s� = �1 + s̄�x0 � �1 + z̄�x0, �6�

y�s� = �1 − s̄�y0 � �1 − z̄�y0. �7�

This corresponds to straight �nonparallel� flux lines in the
confining region with “focal lines” at z= ±c �cf. �4��. With a
circular flux tube cross section at the central surface, the flux
tube boundary is determined by

a2 = x0
2 + y0

2 = � x

1 + s̄
�2

+ � y

1 − s̄
�2

�8�

and the local ellipticity is �ell�s�= �1+ �s̄�� / �1− �s̄��= ��Rm

+�Rm−1�2, where Rm�s�=Bv�s� /B0 is the local mirror ratio.
The maximum ellipticity in the confinement region appears
at the mirrors, where the magnetic field strength has the larg-
est magnitude in the confinement region. Since it is plausible
that a marginal minimum-B field gives the optimal ellipticity
�4�, this expression may determine the smallest possible el-
lipticity at the mirrors for a MHD stable confinement.

Another important property with the marginal minimum-
B vacuum field is that the gyrocenter drift formula shows
that the x0 and y0 gyrocenter coordinates are constant during
the motion, since the perpendicular gyrocenter drift motion is
zero �3�. Each gyrocenter moves on a single field line, as
pointed out in Ref. �3�.

III. NEW MOTIONAL INVARIANTS

To include the Larmor circles, we use that the Lagrangian
L=mv2/2−q��s�+qv ·A is invariant under point transforma-
tions, and it is here assumed that the electric potential only
depends on the arc lengths s. We choose the vector potential

A =
B0

2
�x0 � y0 − y0 � x0� . �9�

To be able to express the Lagrangian in the �x0 ,y0 ,s� coor-
dinates, we use

�x

�x0



�y0 � �s

�s · ��x0 � �y0�
= �1 − s̄2� � y0 � B̂v, �10�

�x

�y0

 −

�x0 � �s

�s · ��x0 � �y0�
= − �1 − s̄2� � x0 � B̂v, �11�

�x

�s



�x0 � �y0

�s · ��x0 � �y0�
= B̂v. �12�

The velocity is determined by

v 

dx

dt
= ṡB̂v + ẋ0

�x

�x0
+ ẏ0

�x

�y0
= v� + v�, �13�

where ṡ
ds /dt, v� = ṡB̂v and

v� = �1 − s̄2��ẋ0 � y0 − ẏ0 � x0� � B̂v. �14�

From this follows qv ·A= �−ẋ0y0+ ẏ0x0�m�0 /2, where �0

=qB0 /m. Errors of order O�a2 /c2� are insignificant for a long
and thin mirror flux tube. The Lagrangian may thus be ap-
proximated by

L

m
= −

q

m
��s� +

�0

2
�− ẋ0y0 + ẏ0x0�

+
ṡ2

2
+

�1 + s̄�2ẋ0
2

2
+

�1 − s̄�2ẏ0
2

2
. �15�

For the perpendicular motion, the Lagrange equations for the
�x0 ,y0� coordinates give two first integrals:

�1 + s̄�2ẋ0 − �0y0 = − �0Iy , �16�

�1 − s̄�2ẏ0 + �0x0 = �0Ix. �17�

Although the Lagrangian �15� gives exactly constant values
of Ix and Iy, a more accurate derivation, including terms of
order O�a2 /c2� in the Lagangian, would give a slow time
dependence for Ix and Iy; but this is expected to be insignifi-
cant for sufficiently small values of a /c. A check shows that
the Poisson bracket �Iy , Ix�q,p=1/�0�0, i.e., the invariants
are not in involution, and this implies that these invariants
cannot be connected with a pair of cyclic coordinates in the
Hamilton-Jacobi theory. We will show that the constants of
motion Ix and Iy are the guiding center values of the �x0 ,y0�
coordinates, and this explains why there is no perpendicular
drift of the gyrocenter motion. After introducing new time
variables by dt� /dt= �1+�s̄�−2, where �=±, we obtain by
combining the pair of equations for the invariants

d2x0

dt+
2 + �x0 − Ix��0

2 �1 + s̄�2

�1 − s̄�2 = 0, �18�

d2y0

dt−
2 + �y0 − Iy��0

2 �1 − s̄�2

�1 + s̄�2 = 0. �19�

Particular solutions are simply the constants x0= Ix and y0
= Iy, which can be identified as the guiding center values,
since the homogenous part of the equations describe oscilla-
tory motions. Since a /c	1, the gyrofrequency is slowly
varying and a WKB �Wentzel-Kramers-Brillouin� approxi-
mation gives to the leading order
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x0 = Ix +
�2�Bv�s�/m

�0
�1 − s̄�cos 
g, �20�

y0 = Iy −
�2�Bv�s�/m

�0
�1 + s̄�sin 
g, �21�

where 
g=
g,0+�0���s�t���dt� is the gyroangle, the constant

g,0 determines the gyrophase, and ��s�=�0 / �1− s̄2� is the
local gyrofrequency. The constant � can be interpreted from

� �
1

Bv�s�
m

2
��1 + s̄�2ẋ0

2 + �1 − s̄�2ẏ0
2� =

mv�
2 /2

Bv�s�
. �22�

Thus, � is the adiabatic invariant �the magnetic moment�,
and � is to the leading order proportional to the ratio of the
perpendicular kinetic energy to the slowly varying gyrofre-
quency.

The motion along the magnetic field is constrained by the
constancy of the energy �,

ṡ = ±� 2

m
�� − q��s�� − �1 + s̄�2ẋ0

2 − �1 − s̄�2ẏ0
2. �23�

The relation mv�
2 /2��Bv�s� implies that the leading-order

parallel motion can be solved independently of the perpen-
dicular motion. In this standard gyroaveraged approximation,
the periodic parallel motion s���� is obtained by inverting the
formula

���s� − ���s0� = ± �
s0

s ds

� 2

m
�� − q��s� −

�B0

1 − s̄2

, �24�

where the constant ���s0� determines the phase of the motion
along the field line. In case ��s�=0, ���s� can be expressed in
terms of an elliptic integral �10�.

IV. LOCALLY OMNIGENUOS VLASOV EQULIBRIA
WITH FINITE �

Let us proceed to show how the diamagnetic current can
be determined with the help of the gyrocenter Clebsch coor-
dinate invariants. We illustrate the procedure by considering
solutions of the Vlasov equation of the form

F = n0�Ix,Iy�F̄��,�� = Fc + Fg, �25�

where n0�x0 ,y0� can be identified with the density at s=0,

provided a proper normalization of F̄�� ,�� is chosen. If the
gyroradius is small compared to the gradient scale length of
n0�x0 ,y0�, a Taylor expansion around �Ix , Iy�= �x0 ,y0� gives

n0�Ix,Iy� = n0�x0,y0� +
�n0

�x0

�1 − s̄�2ẏ0

�0
−

�n0

�y0

�1 + s̄�2ẋ0

�0
.

�26�

This results in Fc=n0�x0 ,y0�F̄�� ,�� for the gyroaveraged
part, which is identical to the form used in Ref. �10�. This
expression requires that the �x0 ,y0� gyrocenter coordinates

are constant during the motion, but this property is not sat-
isfied in arbitrary mirror fields. One possible approach for
those kinds of mirror fields is to choose a gyrocenter distri-
bution function of the form Fc�J� ,� ,��, provided the longi-
tudinal action J��x0 ,y0 ,� ,�� is invariant, as was done in Ref.
�9�. The perpendicular pressure tensor component is

P� 
� d3v
mv�

2

2
F = �

−�

�

dv��
0

�

dv�v�� d
g

mv�
2

2
Fc.

�27�

Although the gyrating part of Eq. �25�, i.e.,

Fg = 	−
�n0

�x0

�1 − s̄�v� cos 
g

�0
+

�n0

�y0

�1 + s̄�v� sin 
g

�0

F̄��,�� ,

�28�

gives no contribution to the density and the pressure tensor
components, a finite plasma current can be calculated from

j=�qvFgd3v, with the result j=−� P�� B̂v /Bv. As expected,
this gives the momentum balance j�Bv=��P� �cf. Ref.
�9��. Since j� =0, locally omnigenous Vlasov equilibria to the
first order in the plasma � can be constructed �6�. A sufficient
criterion is that P� is independent of the Clebsch angle
coordinate �6�, which is satisfied if n0=n0��Ix

2+ Iy
2�. Finally,

with �=2�0P� /Bv
2�s�, the plasma currents gives rise to the

magnetic field

Bpl = −
�

2

B0

1 − s̄2 � s + � �m,pl, �29�

where the condition � ·Bpl=0 is satisfied if �m,pl is given by
the Coulomb integral

�m,pl�x� = −
B0

8

� dV�

1 − s̄�2

��/�s�

�x − x��
. �30�

V. THE HAMILTON-JACOBI EQUATION

The Hamilton-Jacobi equation with a generating function
G�q ,P� of the old canonical coordinates, and the new mo-
menta reads for the “straight field line mirror”

2m� = � �G

�s
�2

+
� �G

�x0
+ y0

m�0

2
�2

�1 + s̄�2 +
� �G

�y0
− x0

m�0

2
�2

�1 − s̄�2 .

�31�

We select for the new coordinates Q1=Q1�Ix , Iy� as an arbi-
trary function of the Clebsch coordinate invariants, Q2
=
g�t� is the gyroangle and Q3=s is the arc length along B.
We choose a generating function independent of Q1 and P1

G�q,P� = sP3 + ��s�P2 +
�3

4
m�0�1 + s̄

1 − s̄
x0,g

2 +
1 − s̄

1 + s̄
y0,g

2 �
−

m�0

2
�x0Iy − y0Ix� ,

where x0,g=x0− Ix and y0,g=y0− Iy, and �Ix , Iy� are integration
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constants �not canonical variables�. Within the accuracy of
the WKB approximation in Eqs. �20� and �21� �which gives
an exact solution in the limit of a constant magnetic field,
i.e., c→��, this gives the result �=�B�s�+mṡ2 /2+O�a /c�
for the guiding center motion, compare �11� or �12� where a
Hamilton-Jacobi treatment of RF heating is carried out. The
Hamiltonian in the new canonical coordinates reads

K�Q,P� =
P3

2

2m
+ ��Q3�P2,

where P2=m� /q is proportional to the conserved magnetic
moment. Since this Hamiltonian is independent of both Q1
and P1, these canonical variables are arbitrary functions of
the motional invariants. A convenient choice, whereby the
phase space can be spanned by the canonical variables, is
Q1= Ix and P1= Iy. It is straightforward to make a subsequent
canonical transformation with the bounce time ���s� as a new
canonical coordinate, to obtain a Hamiltonian that is inde-
pendent on the coordinates, whereby all momenta in this set
of canonical variables are constant during the motion.

A “quasiparadox” is that, at most, three time-independent
invariants are typically expected from the Hamilton-Jacoby
equation, but it is obvious from this calculations that four
time-independent invariants exist in certain systems, in par-
ticular if there is a degeneracy in the frequencies. This is not
in contradiction with the theorem by Liouville that states if

three constants of motions in involution are found, the equa-
tions of motion for a point mass can be integrated by quadra-
tures, see �13�. Although three invariants are sufficient to
integrate the motion, it needs to be stressed that the general
solution of the stationary collisionless Boltzmann equation is
an arbitrary function of all stationary invariants.

VI. CONCLUSION

The invariance of the gyrocenter flux coordinates gives
two different constants of motion Ix and Iy, defined in Eqs.
�16� and �17�, for a marginal minimum-B field. This pair of
invariants, as well as the energy and magnetic moment, are
even functions of the parallel velocity, and, thus, j� =0 for
any distribution function of the form F�Ix , Iy ,� ,��. Locally
omnigenous equilibria to the first order in the plasma beta
are derived in this paper, and a closed-form expression for a
finite � magnetic field is determined. This minimum-B mag-
netic field provides MHD stability, even for a finite � �cf.
Ref. �14�� and gives well-defined drift surfaces with respect
to �B and curvature drifts. This minimum-B field may also
correspond to the minimal ellipticity at the mirrors.
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