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Nonlinear fronts between spatially extended traveling wave �TW� convection and quiescent fluid and spa-
tially localized traveling waves �LTWs� are investigated in quantitative detail in the bistable regime of binary
fluid mixtures heated from below. A finite-difference method is used to solve the full hydrodynamic field
equations in a vertical cross section of the layer perpendicular to the convection roll axes. Results are presented
for ethanol-water parameters with several strongly negative separation ratios where TW solutions bifurcate
subcritically. Fronts and LTWs are compared with each other and similarities and differences are elucidated.
Phase propagation out of the quiescent fluid into the convective structure entails a unique selection of the latter
while fronts and interfaces where the phase moves into the quiescent state behave differently. Interpretations of
various experimental observations are suggested.
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I. INTRODUCTION

Many nonlinear dissipative systems that are driven suffi-
ciently far away from thermal equilibrium show self-
organization out of an unstructured state: A structured one
can appear that is characterized by a �spatially extended�
pattern which retains some of the symmetries of the system
�1�. Convection in binary miscible fluids such as ethanol wa-
ter, 3He– 4He, or various gas mixtures is an example of such
systems. It shows rich and interesting pattern formation be-
havior and it is paradigmatic for problems related to insta-
bilities, bifurcations, and self-organization with complex spa-
tiotemporal behavior.

Compared to convection in one-component fluids such as,
e.g., pure water the spatiotemporal properties are far more
complex. The reason is that concentration variations which
are generated via thermodiffusion, i.e., the Soret effect by
externally imposed and by internal temperature gradients in-
fluence the buoyancy, i.e., the driving force for convective
flow. The latter in turn mixes by advectively redistributing
concentration. This nonlinear advection gets in developed
convective flow typically much larger than the smoothening
by linear diffusion—Péclet numbers measuring the strength
of advective concentration transport relative to diffusion are
easily O�1000�. Thus, the concentration balance is strongly
nonlinear giving rise to strong variations of the concentration
field and to boundary layer behavior. In contrast to that, mo-
mentum and heat balances remain weakly nonlinear close to
onset as in pure fluids implying only smooth and basically
harmonic variations of velocity and temperature fields as of
the critical modes.

Without the thermodiffusive Soret coupling between tem-
perature and concentration any initial concentration devia-
tion from the mean diffuses away and influences no longer
the balances of the other fields. Hence, the feedback inter-
play between �i� the Soret generated concentration varia-
tions, �ii� the resulting modified buoyancy, and �iii� the
strongly nonlinear advective transport and mixing causes bi-
nary mixture convection to be rather complex with respect to
its spatiotemporal properties and its bifurcation behavior.

Take, for example, the case of negative Soret coupling �
�0 between temperature and concentration fields �2� when
the lighter component migrates to the colder regions thereby
stabilizing the density stratification in the quiescent, laterally
homogeneous conductive fluid state. Then the above de-
scribed feedback interplay generates oscillations. In fact the
buoyancy difference in regions with different concentrations
was identified already in Ref. �3� as the cause for traveling
wave convection.

Oscillatory convection appears in the form of the transient
growth of convection at supercritical heating, in spatially ex-
tended nonlinear traveling wave �TW� and standing wave
solutions that branch in general subcritically out of the con-
ductive state via a common Hopf bifurcation, in spatially
localized traveling wave �LTW� states, and in various types
of fronts. TW and LTW convection has been studied experi-
mentally and theoretically for some time �1,4–14�. The tran-
sient oscillatory growth of convection was investigated by
numerical simulations �15�. Nonlinear standing wave solu-
tions were obtained only recently �16,17�. Freely propagating
convection fronts that connect subcritically bifurcating non-
linear TW convection with the stable quiescent fluid do not
seem to have been investigated in detail beyond some first
preliminary results �18–20�. Here we determine such fronts
in quantitative detail and compare their properties with those
of LTWs.

In narrow rectangular and annular channels convection
occurs in the form of rolls with axes oriented perpendicular
to the long sidewalls �1,21�. These structures can efficiently
be described in the two-dimensional vertical x-z cross sec-
tion in the middle of the channel perpendicular to the roll
axes ignoring variations in axis direction. Furthermore, these
convection structures have relevant phase gradients only in
the x direction thus causing effectively one-dimensional pat-
terns �22�.

When comparing experiments with analytical calculations
or numerical simulations performed under the above de-
scribed conditions it is useful to do that on the basis of re-
duced Rayleigh numbers r=R /Rc

0, with Rc
0 being the critical

one for onset of pure fluid convection for the respective ex-
periment, analytical method, or numerical method. This sig-
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nificantly reduces the dependence of, say, the bifurcation dia-
grams of convective states on the specific geometry of the
respective setup. In laterally unbounded systems the analyti-
cal value for Rc

0 is 1707.762.
Localized traveling waves. For weak negative Soret cou-

pling one has observed in experiments a competition be-
tween homogeneous laterally extended TW convection and
so-called dispersive chaos with an irregular repetitive forma-
tion and collapse of spatially localized TW pulses �9,23�.
During the pulse formation their drift velocities can drop
abruptly to about a tenth of the initial group velocity �23�.
We consider this to be a characteristic signal that the lateral
redistribution of concentration over the pulse �14� becomes
important and that the strongly nonlinear dynamics sets in.
For more negative ��−0.06 the collapse is, in general, less
dramatic. There, convection is dominated by isolated
strongly peaked localized states. Eventually, at ��−0.07 a
regime is reached where stable LTWs coexist near onset with
extended TWs �4,7,24–28�. Increasing the Soret coupling
strength further to more negative � the band �rmin

LTW,rmax
LTW� of

Rayleigh numbers in which stable LTWs exist increases
monotonically while shifting upwards as a whole—rmax

LTW���
grows stronger than rmin

LTW���. Simultaneosly, the lower band
limit for the existence of extended TW states rmin

TW���, i.e., the
lowest saddle-node of TWs increases even steeper so that
eventually for ��−0.4 the complete LTW band comes to lie
below the existence range of TWs, rmax

LTW�rmin
TW �14�.

LTWs consist of slowly drifting, spatially confined con-
vective regions that are embedded in the quiescent fluid.
These intriguing structures have been investigated in experi-
ments �4,5,7,10,18,27–34� and numerical simulations
�14,24,26,35�. A discussion of various theoretical models
aiming at their explanation is contained in Sec. III E. Roll
vortices grow in a LTW structure out of the quiescent fluid at
one end, travel with spatially varying phase velocity vp�x� to
the other end, and decay there back into the basic state. The
two interfaces to conduction and with it the whole convec-
tive region move with constant, uniquely selected drift ve-
locity vd. The latter is a function of r, � with magnitude
much smaller than the phase velocities. Also the oscillation
frequency of the LTW is uniquely selected; it is constant in
space and time in the frame that is comoving with its drift
velocity. And finally, the length l�r ,�� of the convective re-
gion of stable LTWs and their spatial structure are uniquely
selected. This length grows with increasing heating r.

A central role for the stable existence of LTWs plays a
large-scale mean concentration current. Extending over the
whole LTW it redistributes concentration and thereby
changes the buoyancy in a decisive way �24�. This effect can
sustain LTWs even at low r where no extended TWs exist
�14�.

Blinking states in rectangular channels. The LTW con-
finement of convection occurring in translationally invariant
annular channels is obviously an inherent process of the hy-
drodynamic balances. But one has also observed end-wall-
assisted or at least end-wall-modified confinement of convec-
tion close to the ends of rectangular channels. The weakly
nonlinear varieties of such a confinement can largely be un-
derstood in terms of the convective behavior of TW packets,

their reflection properties at the end walls, and the destruc-
tive interaction between left and right traveling patterns
�36–38�. These effects give rise near onset to a wide range of
weakly nonlinear and effectively low-dimensional spatiotem-
poral behavior that depends sensitively on the specific ex-
perimental setup such as, e.g., the end-wall boundary condi-
tions and the system length �13,39–42�. While the linear
eigenmodes of such systems �“linear counterpropagating
waves” or “chevrons”� �13,21,43,44� are laterally symmetric
or antisymmetric localization sets in via a temporal ampli-
tude modulation. Thereby convection is alternatingly weak-
ened and enhanced in the left and the right part of the system
part giving rise to a “blinking” state �21,29,39,40,42�. The
so-called “chaotic blinking” states �29,39,40,42� seem to be
the analog of the “chaotic dispersive” pulse formation in an-
nular containers �9,29�. Also “blinking” modes with different
frequencies at both ends of the channel were observed
�29,40�. But their possible relation to a large-scale mean con-
centration variation �45� produced by nonlinear propagating
waves in a finite cell has not been discussed.

Wall-attached structures. At larger r one has observed
wall-attached TW structures with amplitudes confined to the
vicinity of one or both end walls. These wall-attached con-
vective patches �4,39,40,46–50� are closely related to free
LTWs �30�. They are strongly nonlinear as indicated by their
low frequency �39,40�. Moreover, their spatial structure and
their region of existence is largely unaffected by the details
of the lateral boundaries or by the container length in con-
trast to the linear and weakly nonlinear behavior described
above �40�. The more extensive wall-attached structures
show some similarities with frontlike states. Note, however,
that here the source or the sink of the propagating rolls is
pinned near a wall and the interface to the quiescent fluid in
the bulk of the channel does not move �46�.

Our numerical simulations. Our numerical simulations
have been performed in order to elucidate in quantitative
detail the properties of relaxed nonlinear TW convection
structures that contain an interface �or two of them� to the
quiescent fluid as an integrated structural element. We com-
pare for a wide range of Soret coupling strengths front states
and LTW states showing what they have in common and
how they differ. We focus our interest to those parameters
where the quiescent conductive state of the fluid is stable and
where the solutions describing spatially extended, laterally
periodic TW convection bifurcate subcritically out of it.

The system we have in mind is a binary fluid layer of
thickness d which is bounded by two solid horizontal plates
perpendicular to the gravitational acceleration g. The fluid
might be a mixture of water with the lighter component eth-

anol at a mean concentration C̄. It is heated from below. The

temperatures at the plates are T̄±�T /2. The variation of the
fluid density � due to temperature and concentration varia-
tions is governed by the linear thermal and solutal expansion
coefficients 	=−�1/����� /�T� and 
=−�1/����� /�C�, re-
spectively. Both are positive for ethanol water. The solutal
diffusivity of the binary mixture is D, its thermal diffusivity
is �, and its viscosity is �. Length and time is scaled by d and
d2 /�, respectively, so that velocity is measured in units of
� /d. Temperatures are reduced by the vertical temperature
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difference �T across the layer and concentrations by
�	 /
��T. The scale for the pressure is given by ��2 /d2.

Then, the balance equations for mass, momentum, heat,
and concentration �51,52� read in Oberbeck-Boussinesq ap-
proximation �25�

� · u = 0, �1.1a�

�tu = − � �u:u + p −  � :u� + B, B = R��T + �C�ez,

�1.1b�

�t�T = − � · �u�T − � �T� , �1.1c�

�t�C = − � · �u�C − L � ��C − ��T�� . �1.1d�

Here, �T and �C denote deviations of the temperature and

concentration fields, respectively, from their mean T̄ and C̄
and B is the buoyancy. The Dufour effect �53,54� that pro-
vides a coupling of concentration gradients into the heat cur-
rent and a change of the thermal diffusivity is discarded in
Eq. �1.1c� since it is relevant only in few binary gas mixtures
�55� and possibly in liquids near the liquid-vapor critical
point �56�.

In addition to the Rayleigh number R= �	gd3 /����T
measuring the thermal driving of the fluid three additional
numbers enter into the field equations: the Prandtl number
=� /�, the Lewis number L=D /�, and the separation ratio

�=−�
 /	��kT / T̄�=−STC̄�1− C̄�
 /	. Here kT= T̄C̄�1− C̄�ST is
the thermodiffusion coefficient �51� and ST the Soret coeffi-
cient. They measure changes of concentration fluctuations
due to temperature gradients in the fluid. � characterizes the
sign and the strength of the Soret effect. Negative Soret cou-
pling � �i.e., positive ST for mixtures such as ethanol water
with positive 	 and 
� induces concentration gradients of the
lighter component that are antiparallel to temperature gradi-
ents. In this situation, the buoyancy induced by solutal
changes in density is opposed to the thermal buoyancy.

When the gradient of the total buoyancy exceeds a thresh-
old, convection sets in—typically in the form of straight
rolls. For sufficiently negative � the primary instability is
oscillatory. Ignoring field variations along the roll axes we
describe here 2D convection in an x-z plane perpendicular to
the roll axes with a velocity field

u�x,z,t� = u�x,z,t�ex + w�x,z,t�ez. �1.2�

To find the time-dependent solutions of the above partial
differential equations subject to realistic horizontal boundary
conditions �25� we performed numerical simulations with a
modification of the SOLA code that is based on the MAC

method �57,58�. This is a finite-difference method of second
order in space formulated on staggered grids for the different
fields. The Poisson equation for the pressure field that results
from taking the divergence of Eq. �1.1b� was solved itera-
tively with the artificial compressibility method �58� by in-
corporating a multigrid technique.

Throughout this paper we consider mixtures with L
=0.01, =10, and various negative values of � that are eas-
ily accessible with ethanol-water experiments. The paper is
organized as follows. In Sec. II we first describe our methods

for characterizing the various convective states. Then we
present results for the two different types of TW front states
that can arise in laterally homogeneous mirror symmetric
systems with either the phase propagating out of the quies-
cent fluid or into it. Also transient two-front structures are
discussed. Section III deals with LTW states and their rela-
tion to fronts. The transient dynamics towards the selected
LTW, the stabilization via front repulsion, the difference be-
tween long and short LTWs, and a critical appraisal of LTW
models are topics covered here. In Sec. IV we present a
comparison with experiments and a discussion. The last sec-
tion contains a conclusion.

II. FRONTS

Here we discuss front solutions where part of the system
is occupied by the quiescent fluid while the other one shows
fully developed, saturated, strongly nonlinear TW convection
with laterally homogeneous amplitude. Strictly speaking
these two states are realized only in the two opposing limits
of x→ ±�. We focus our investigation of fronts on param-
eters where the quiescent fluid state is stable and where the
TW solutions bifurcate subcritically out of the conductive
state. Then, any linear growing and spreading of infinitesi-
mal, localized convective perturbations in the quiescent fluid
which could possibly dominate the low amplitude behavior
of fronts as in the case of an unstable zero amplitude state
�59,60� is absent.

Little general is known about pattern forming fronts in
real bistable systems �1�. Most of the research activities were
centered on fronts in the quintic Ginzburg-Landau equation
�59,61–65�. One can expect that the front properties are fixed
by a strongly nonlinear eigenvalue problem describing a het-
eroclinic orbit between the two involved states. Some of
these front solutions will be unstable. There might be also
multistable coexistence of fronts so that depending on initial
conditions and on the history of the �control� parameters dif-
ferent fronts could finally be realized. We call a front
uniquely selected when our numerical simulations indicated
that different formation processes ended in the same front for
a fixed parameter combination.

Fronts can be classified into coherent and incoherent ones
�60�. We focus here on the first kind which in our system are
characterized as strictly time periodic states in a frame that is
comoving with the front’s velocity vF. Such a front state
being monochromatic is a global nonlinear mode. Its fre-
quency is an eigenvalue, i.e., a global constant in space and
time so that the convection oscillations have everywhere the
same period.

Thus, we do not consider here, e.g., complex large scale
or chaotic spatiotemporal interface behavior. The coherent
fronts of the various hydrodynamic fields and quantities in
this paper have a smooth and basically monotonous profile
which connects the quiescent fluid with the nonlinear satu-
rated extended TW. The transition region between conduc-
tion and convection that is characterized by large amplitude
variations is quite short and consists typically only of about
3–4 convection rolls. We call this transition region also the
interface between conduction and convection.
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If the selected front pattern is incompatible with any
stable bulk structure there are two possibilities: �i� A pertur-
bation in the unstable convection bulk grows and expands
towards the interface. This would destroy front coherence
and could lead to more complex large scale variations, per-
haps chaotic spatiotemporal behavior. �ii� The interface re-
gion is only convectively unstable against perturbations of
the bulk nonlinear TW. Then initially localized perturbations
would be advected out of every finite system and could not
reach the unperturbed interface region of the front.

A. Methods of characterization

1. Definitions

We call a front to be of type � when its envelope grows
at x=−� out of the basic quiescent state. Otherwise it is a �
front. Then the amplitude falls to zero at x= +� �66�. The
phase of the convection pattern in a front state of type � can
either propagate to the left or to the right and similarly for
the � front state. Hence, one would have to discuss four
front states separately. However, because of the invariance of
the system under x→−x a � front state with positive �nega-
tive� phase velocity vp is the mirror image of the � front
state with negative �positive� vp. Therefore, it suffices to con-
sider only the front states that consist of roll vortices travel-
ing, say, in the positive x direction and to use the superscript
� or � to identify the properties of the front in question in a
unique way. So, the phase velocities of all oscillatory con-
vective structures investigated in this paper are positive. We
call the direction of positive x into which the phase propa-
gates also “downstream” and the opposite one “upstream.”

So, to sum up our notation: In a � front state the quies-
cent fluid is located “upstream” and a source of phase with
the latter propagating out of the conductive state into con-
vection. In a � front the quiescent fluid is located in a
“downstream” direction and a sink since phase moves out of
convection into conduction.

Figure 1 shows fronts of each type. Under the � front
�left half of Fig. 1� convection rolls grow out of the quiescent
fluid and saturate in a “downstream” bulk TW. On the other
hand, a � front �right half of Fig. 1� annihilates roll vortices.
In this process their phase velocity is accelerated �see the
increase in the lateral profile of vp�x� in Fig. 1�f�� and they
are stretched horizontally. It is clear from Fig. 1 that the
quiescent �convecting� region expands into the convecting
�quiescent� one when the velocity vF

+ of the � front is posi-
tive �negative� and vice versa for the � front.

2. Mixing number

In order to monitor how well the fluid is mixed along the
front we always determined for the relaxed front states the
mixing number

M�x� = ����C�2�/��Ccond�2�1/2 �2.1�

as a function of lateral position x. It basically measures the
mean square of the deviations �C�x ,z , t� of the concentration
field from its global mean: the overbars imply a vertical av-
erage and the brackets a temporal average at the specific

horizontal location x in the frame comoving with the front
velocity vF. The subscript “cond” denotes the reference qui-
escent conductive state with its linear vertical concentration
variation. The mixing number is defined such that M =0 in a
perfectly mixed fluid and M =1 in the quiescent state.

In laterally extended TWs � and with it vp increase when
the concentration variations become larger �24,25�. In fact,
there is a universal scaling relation between M and � �67�
which shows that M and vp are linearly related to each other.
This relation also holds for the bulk part of front states far
away from the interface where the convection is TW-like
with only slow spatial amplitude variation �Fig. 1�.

3. Concentration current

The phase shift between the concentration and velocity
waves in the TW-like bulk of the front states sustains as in
extended TW states a mean lateral concentration current �J�
�x ,z� �24,25,68,69�:

�J� = �u�C − L � ��C − ��T�� , �2.2�

where u is the velocity field and �T the temperature devia-
tion from the global mean. Again, the brackets imply a tem-
poral average in the frame that is comoving with the front
velocity. A small term from the Galilean transformation to
this frame is discarded. The Lewis number L=0.01 being
rather small in our simulations implies that �J� is dominated
by the advective contribution except in those boundary re-
gions in which u becomes small.

The vertical variation of �J� is such that positive �nega-
tive� �C is transported in phase direction in the upper �lower�
half of the layer. This transport causes a large-scale concen-
tration redistribution in a front state between its TW bulk and
its interface to the quiescent fluid and it is responsible for the
different characteristic structures of the interfaces in a � and
a � front as we will see further below.

4. Preparation and lateral boundary conditions

We simulated systems containing up to 160 rolls. The
initial state was prepared by filling one half of the system
with a nonlinear TW that was previously generated with pe-
riodic boundaries to have some fixed wavelength �. The
other half contained the stable temperature and concentration
distribution of the pure quiescent basic state.

To simulate � fronts in infinite systems that connect to
developed TW convection with some wavelength � far away
from the interface between conduction and convection we
imposed at the “downstream” boundary x=L of our compu-
tation domain the periodicity condition f�L�= f�L−��. For
the case of � fronts we found that imposing the analogous
condition at the “upstream” boundary of the developed TW
part at x=−L typically will introduce perturbations that can
grow in the “downstream” direction, for example, when the
TW region is Eckhaus unstable. The different aspects of the
stability of � and � fronts are discussed further below in the
paper.

After a relaxation time of typically 100 to 200 vertical
thermal diffusion times we then could observe under certain
conditions a coherent front state connecting a quiescent re-
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gion of the system to a TW with asymptotic wavelength �.
Here the fact that the frequency � of such a coherent front
state is constant in space and time in the frame that is co-
moving with the front velocity vF proved to be a good relax-
ation criterion to effectively determine whether such a state
had been obtained.

B. � Fronts

1. Structure and dynamics

As soon as the growing convection rolls in a � front have
become sufficiently nonlinear, i.e., when their lateral flow
velocity u has grown up to about their phase velocity vp

�e.g., close to the vertical arrow in Fig. 1�c�� they start to
alternatingly suck in positive �“blue”� and negative �“red”�
�C from the top and bottom concentration boundary layers,
respectively. It is transported away into the well mixing con-
vection bulk and replaced at the interface location by neutral
�“yellow/green”� �C. Note that increasing u beyond vp

causes the appearence of closed streamlines of the velocity
field in the frame comoving with the phase velocity of a
traveling roll �16,24,68�. These closed streamlines regions
are responsible for the characteristic roll structure of the C
field in Fig. 1�a�: Positive �negative� �C is collected from the
top �bottom� boundary layers and transported within the ho-
mogeneously mixed closed streamline regions in phase di-

FIG. 1. �Color� Typical structures of a coherent � front �left� and of a � front �right� with nearly the same asymptotic wavelength �
=1.90. Only the vicinity of the respective interfaces between convection and conduction is shown. Both fronts propagate to the left �vF

+

=−0.022,vF
− =−0.067�, i.e., opposite to the direction of the phase velocity vp. �a�, �b� Color coded snapshot of concentration deviation �C

from its global mean in a vertical cross section of the layer. The color code is shown at the right end of �b�. �c�, �d� Instantaneous lateral wave
profile at midheight, z=0, of �C �green�, vertical velocity w �blue�, and its envelope. Arrows mark the positions where w has grown up to
vp. �e�, �f� Mixing number M �green�, Eq. �2.1�, and phase velocity vp �black� of the nodes of w in the comoving frames. The variation of
��x�=2�vp�x� /� is the same since the frequency � is a global constant. �g�, �h� Time averaged deviations from the conductive state at z
=−0.25 for concentration �green�, temperature �red�, and their sum ��b�� measuring the convective contribution to the buoyancy. �i�, �j�
Streamlines of the averaged concentration current �J� �green� and velocity field �u� �blue�. The latter results from �b� and documents roll
shaped contributions of �u���C� to �J� at the interfaces. Thick blue and green arrows indicate �u� and transport of positive �C �alcohol
surplus�, respectively. Temporal averaging is always performed in the frame comoving with the respective front velocity. Dashed lines show
the decay part of the long LTW that coexists at the same parameters �r=1.3586,�=−0.35,L=0.01� with the fronts. Differences between the
interfaces of the � front and the corresponding LTW interface are not visible on the scale of the above plots.
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rection while mean concentration �C�0 is advected along
the meandering “green-yellow stripe” in Fig. 1�a� to the left
�14�. The mean concentration current �J� resulting from this
complicated concentration redistribution is shown in Fig.
1�i�. All in all, mean concentration is accumulated �depleted�
at the � ��� front interface.

The concentration redistribution reduces at the interface
of the � front the Soret-induced solutal stabilization that
occurs to the left of it as a result of the large conductive
vertical concentration gradient: at the interface one can ob-
serve a minimal mixing number �Fig. 1�e�� and with it a
buoyancy overshoot �Fig. 1�g�� which is sufficiently large to
sustain local convection growth there and cause even inva-
sion of convection into the quiescent region whenever vF

+

�0. With the fluid being well mixed there, i.e., with M being
small the local phase velocity is also small there—in fact the
minimum of vp�x� in Fig. 1�e� lies close to the one in M.

Since the strongly stable quiescent fluid to the left of the
� front prohibits a well developed advectively mixing front
tail the reduction of �C variations there is driven primarily
by diffusion. The latter having a characteristic time scale
given by L=0.01 explains why the front velocities are much
smaller than the fast phase velocity.

When r is increased vF
+ tends to become �more� negative:

convection to the right of the � interface can now, with
increased heating, better invade the quiescent fluid to the left
of it and thus �rvF

+�r ,���0. Similarly, when � is increased,
i.e., when the convection suppressing Soret effect is dimin-
ished the expansion of TW convection is favored and thus
��vF

+�r ,���0.
Moving along the � front in Fig. 1 to the right from the

interface towards the asymptotic TW state at large x there
develops an equilibrium between the �C feed-in from the
boundary layers at the plates and the amount of advective
mixing: The concentration contrast between two neighboring
rolls increases on the way towards the TW bulk. With it the
phase speed vp�x�, the wavelength ��x�=2�vp�x� /�, and the
lateral concentration current �J� grow monotonously up to
their asymptotic TW values. This growth extends laterally
over a wide interval which itself increases when the Soret
coupling becomes stronger.

We found that the minimal wavelength in a � front state
is located at the interface and—more remarkably—that it is
about �min�1.4 for all r and � that we have simulated. We
have no real quantitative explanation for this strong universal
selection of the local wavelength at the interface. Intuitively
the growing rolls are squeezed in the region with the nega-
tive lateral gradient of M. The squeezing is relaxed when the
rolls begin to absorb high concentration contrasts from the
plate layers which increases vp again �arrow in Fig. 1�c��.

It is interesting to note that the mean concentration cur-
rent �J� of TWs becomes maximal close to the TW saddle
node, i.e., where the asymptotic TW parts of our front states
are located. Finally we mention that the front states do not
sustain a measurable lateral meanflow; the quiescent fluid
prohibits that. On the other hand, extended TWs in laterally
periodic systems show in general a Reynolds stress-induced
mean flow of the order 10−3 �24,25,68�. But it goes through
zero just near the TW saddle node.

2. Bifurcation properties

In Figs. 2–5 we show the bifurcation properties of fronts
in comparison with LTWs and laterally periodic TW states.
We use front velocities and frequencies being temporally and

FIG. 2. Front and LTW bifurcation properties versus reduced
Rayleigh number r=R /Rc

0 for �=−0.25. Left and right pointing
triangles with dashed lines denote � and � fronts, respectively.
Open and shaded circles refer to long and short LTWs, respectively.
�a� Front velocities of relaxed single-front states �thick dashed lines
with filled triangles�, of expanding two-front states �thin dashed
lines with open triangles�, and drift velocities of LTWs �circles�.
The inset shows the drastic increase of LTW length l at r�

LTW=req
F ,

where the front velocities of the � and � single-front states be-
come equal. �b� Frequencies of front states and of long LTWs in
comparison with the rest frame frequencies of laterally periodic
TWs. The saddle-node vicinities of the latter are shown by full lines
for several wave numbers k=2� /�. TW states with frequencies
above the dotted line of saddle-node TWs are unstable. �c� Wave
numbers selected by front states in the bulk part far away from the
interface �triangles� and in the central part of long LTWs �open
circles�. Horizontal lines indicate the laterally periodic TWs that are
shown in �b� by full lines. The continuum of these TW states is
bounded in the r-k plane by the dotted line of TW saddle nodes
ks

TW�r�. Here we show only the large-k branch of it �see the dotted
line marked rs

TW in Fig. 5 for another perspective�.
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spatially constant as order parameters to characterize all of
the aforementioned oscillatory states. In addition we also
consider the local wave numbers of front states and of LTWs
in the bulk spatial regions where ��x� has reached a plateau,
i.e., sufficiently away from any interface to conduction.

Figures 2 and 3 show that the front velocities of � and �
fronts vary quite differently as a function of r. The former
decrease linearly with growing r and the latter increase, al-
beit not linearly. Thus, there is a crossing at req

F where vF
+

becomes equal to vF
−, so that both fronts move with the same

velocity. At this Rayleigh number the length l of the LTWs
diverges, i.e., r�

LTW=req
F . There, and strictly speaking only

there, this limiting LTW can be seen as a state consisting of
two fronts.

The frequency and bulk wave number selected by a �
front and of a very long LTW are close to those of the re-
spective, laterally extended saddle-node TW �Figs. 2, 4, and
5�. A somewhat hand-waving explanation for the selection of
the saddle-node frequency is as follows: With �i� convection
growing out of conduction in a � front, with �ii� small-
amplitude extended TW perturbations of the latter oscillating
according to a purely linear balance with the large Hopf fre-
quency, and with �iii� the tendency to decrease � with grow-
ing convection amplitude the saddle-node frequency is the
first, i.e., the largest possible eigenfrequency of the full non-
linear front problem to allow for a stable TW region away
from the interface.

A stable front state that has a TW bulk part extending
laterally to infinity with frequency � and wave number k

FIG. 3. Front states and LTWs for different �. �a� Front veloci-
ties vF of � fronts �left pointing triangles�, of � fronts �right point-
ing triangles�, and drift velocities vd of LTWs �circles� versus r.
Note that short LTWs �shaded circles� and long LTWs �open
circles� show different vd�r� behavior. The latter varying linearly
with r is nearly indistinguishable from vF

+�r�. Arrows mark the low-
r existence boundary rmin

TW of laterally periodic TWs and with it of
front states. LTWs exist below this threshold �14� with drift veloci-
ties that show the above mentioned linear variation with r as long as
the LTWs are long enough. To identify an LTW as a long one we
required a clearly visible plateau in the spatial properties. �b�
Length l of the LTWs of �a� measured as the distance between the
half maximum values of the envelope of the vertical velocity field w
�cf. blue line in Figs. 1�c� and 1�d��. �c� Maximal vertical flow
velocities wmax of LTWs.

FIG. 4. Wave properties of � fronts �dashed lines with tri-
angles�, long LTWs �circles�, and laterally extended saddle-node
TWs �dotted lines� for different �. The wave numbers of the two
former refer to plateau values in the bulk part away from the inter-
face. �a� Frequency � �for TWs in the rest frame and for LTWs and
fronts in the comoving frame� versus wave number k. �b� The same
convection structures in the k-r plane. The wave numbers and fre-
quencies of LTWs with l→� �arrows� coincide at r�

LTW=req
F with

those of the respective � fronts.
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cannot be realized at r values that lie below the saddle-node
curve of laterally extended TWs, see the curve marked rs

TW

in the k-r plane of Fig. 5. Thus, the lowest Rayleigh number
rmin

F for the existence of fronts is rmin
TW=rs

TW�k���, i.e., the
location of the tip of the nose-shaped TW bifurcation surface
similar to the grey surface in Fig. 5. Ahead of this nose one
cannot realize front states because at such locations there are
no TWs to which the interface from conduction could con-
nect.

The TW bulk parts of our � fronts are practically saddle-
node TWs that have bulk wave numbers on the saddle-node
curve rs

TW�k�. Furthermore, it is interesting to note that they
are on the large-k branch of rs

TW�k�—the big plusses in Fig. 5
marking the bulk values of the front states lie all above k

��. In fact, in all our simulations we did not find front
states with bulk wave numbers smaller than �. This value
marks for all � that we investigated the tip of the nose-
shaped TW bifurcation surface such as the grey surface in
Fig. 5.

In contrast to fronts, however, LTWs of finite length l can
coexist bistably together with the conductive state at r values
well below rs

TW�k�: They can sustain over a finite lateral
length convection with frequencies and bulk wave numbers
�big bullets in Fig. 5� “ahead” of the grey TW surface for
reasons that are explained in Ref. �14�. This also shows that
fronts and LTWs are quite different states. In the limit
l→� the LTW states merge at r�

LTW=req
F with a TW whose

wave number and frequency is close to the TW saddle-node
as shown in Figs. 2, 4, and 5. Therefore, ��r�

LTW� increases
when the Soret coupling becomes more negative but k�r�

LTW�
decreases. For ��−0.4 it moves towards the tip of the TW
nose at k��.

3. Front selection and stability

Simulations of � fronts that were done at fixed control
parameters r ,� with different initial conditions, e.g., differ-

FIG. 5. Laterally periodic TWs, � fronts, and LTWs in the
three-dimensional k-r-� parameter space. Grey, nose-shaped sur-
face �14� denotes TWs. They are unstable when � is above the
dotted line of saddle nodes. Its projection onto the k-r is marked by
rs

TW�k�. A particular bifurcation branch for a given k �e.g., the long-
dashed line for k��� starts backwards with a large Hopf frequency
�not shown� and becomes stable by a saddle-node bifurcation at the
dotted line. The big plus signs on the TW surface mark asymptotic
� fronts. The small plusses at large k denote the highest wave
numbers occurring at the � front interface. Long LTWs are repre-
sented with their plateau values by big bullets. They coexist with
fronts �big plusses� in a very narrow r interval at r�

LTW close to the
tip of the TW nose. The small bullets at large k denote the largest
local wave numbers occurring at the interface of convection growth.
Each horizontal line indicates at fixed r and � the spatial variation
of the local wave number k within a � front or a long LTW from
the growth interface to the asymptotic plateau value. The k variation
of LTWs from plateau to the decay interface into conduction is not
shown.

FIG. 6. Typical spatiotemporal evolution of a � front. Shown
are the extrema positions of the vertical velocity field w. The initial
condition at time t=−5 �not visible� consisted of an extended TW
for x�8 with wavelength �=1.85 and phase velocity vp=1.032 and
quiescent fluid for x�8. Boundary conditions are conduction at x
=0 and f�x=160�= f�x=160−1.85� that imposes at x=160 a wave-
length of �=1.85. First, a pulse that causes a quite regular sequence
of roll-pair annihilation events �lower line of defects� propagates to
the right with velocity greater than vp. The intermediate wave pat-
tern resulting from this primary sequence of defects is then trans-
formed via further, somewhat erratically occurring phase defects
into the fast asymptotic TW with �=1.80,vp=1.258 that is favored
by the � front. The boundary condition at x=160 that imposes a
“wrong” wavelength there does not influence the bulk behavior
which is selected by the front. The parameters are r=1.237,
�=−0.25.
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ent wave numbers of an initial TW part produced in general
a uniquely selected final front state with the same frequency
and the same asymptotic bulk TW part. During the formation
process initial wave structures with the “wrong” wave pat-
terns propagated out of the system in the direction of the
phase velocity and were substituted by convection that was
selected by the front. That also explains why our TW bound-
ary condition f�L�= f�L−�� at the “downstream” end has no
measurable influence on the � front state even when � dif-
fers from the front-selected value.

The substitution dynamics is documented in Fig. 6. There
a TW bulk part was prepared initially at x�8 with a wave-
length of �=1.85 and phase velocity vp=1.032. The spatial
region to the right of the interface to conduction is then
invaded by the front-selected TW pattern that has a smaller
bulk wavelength of �=1.80 and that propagates with a faster
phase velocity of vp=1.258. The wave number is increased
via several phase annihilating defects.

All our � interface selected bulk TW wave numbers close
to the large-k branch of the TW saddle-node curve; see Figs.
4�b� and 5 for rs

TW�k� and Fig. 2�c� for ks
TW�r�. Thus, these

wave numbers are too large to be Eckhaus stable �20,70–72�.
However, these fully developed TWs were only convectively
unstable �20�: Perturbations could grow but while doing so
they were advected sufficiently fast downstream in the direc-
tion of the TW phase propagation so that they could not
influence the upstream part of the � front state in a persistent

way. In systems with sufficiently long downstream section of
the front state the growing fluctuations have sufficient
time—or are sufficiently fast growing, respectively—to
reach a critical amplitude at which two neighboring rolls are
annihilated �70,71� as, e.g., for the parameters of Fig. 7.

Because noise cannot be prevented in general one ob-
serves then such phase defects as in Fig. 7 at irregular points
in time and space beyond a certain downstream growth
length that is related to size of the noise and the growth rate.
The associated roll-annihilation events can lead to an effec-
tively reduced mean wave number in the very far down-
stream region of the convection bulk. Thus, the coherent part
of the � front close to the interface to conduction is followed
by a second incoherent, chaotic phase front consisting of the
erratically occurring phase defects. This phase front connects
the smooth primary Eckhaus unstable section to a smooth
Eckhaus stable TW with smaller wave number that is real-
ized at larger downstream distances. For parameters for
which the growth rate of perturbations of the primary front-
selected TW is lower than the one of Fig. 7 one does not
observe in short systems the erratically occurring phase
defects—and even less so the Eckhaus stable final down-
stream TW state. Indeed, that was the situation for most of
our front states.

We finally mention that we could also generate front
states with frequencies larger than those of the laterally ex-
tended saddle node TWs �dotted lines in Figs. 2�b� and 4�a��,
i.e., with frequencies that lie above the respective dotted line
in the respective 3D plot similar to the one of Fig. 5. How-
ever, we suppose that in sufficient long systems and after
long enough times these unstable TW realizations develop a
� front in the downstream bulk possibly induced by roll
annihilating defects �71�.

C. � Fronts

The right half of Fig. 1�b� shows a typical � front. The
mean lateral concentration current in the TW bulk part to the
left of the � interface to conduction shuffles positive �nega-
tive� �C in the upper �lower� part of the layer towards the �
interface. Thus, a large vertical concentration gradient is
maintained slightly ahead of it that strongly stabilizes the
conduction regime to the right of the � interface: there the
mixing number M is even larger than 1. In this way the TW
oscillations are damped and the conduction regime is
shielded against a rapid invasion of convection.

The increase of M�x� upon approaching the interface from
the convection side causes—and is related to—a similar in-
crease of vp�x� and ��x�. The rolls disperse with growing
phase velocity vp�x� over a short lateral distance at the inter-
face. The decreasing convection amplitude lowers the mean
concentration current and causes M�x� to grow further. This
in turn enhances vp�x� and ��x� leading to smaller convec-
tion amplitude and so on. It is therefore the strongly nonlin-
ear lateral concentration current �J� which is responsible for
the rapid self-amplified decay process of convection at the �
interface.

With increasing r the front velocity vF
− changes sign, be-

comes positive and continues to grow �Figs. 2�a� and 3�a��

FIG. 7. Spatiotemporal dynamics of a front-selected TW pattern
that is convectively Eckhaus unstable. Shown are the extrema po-
sitions of the vertical velocity field w. The front selects a bulk TW
with wavelength ��1.72 that is strongly Eckhaus unstable: While
being advected “downstream” phase deformations �that are caused,
e.g., by computer “noise”� grow sufficiently fast to reach a critical
amplitude within the system length. Then two neighboring rolls are
annihilated. That increases the wavelength and decreases the phase
velocity towards Eckhaus stable values. Parameters are r=1.26,�
=−0.25.
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because the quiescent state becomes less stable when in-
creasing r. The slope of vF

−�r�, i.e., the increase of the front
velocity is considerably steeper for negative vF

− than for posi-
tive ones: The strongly stabilizing solutal stratification ahead
of the interface hinders convection to intrude into the quies-
cent fluid region but favors the latter to replace the TW part.

The “upstream” lateral distance over which the � inter-
face to conduction influences the TW to the left of it is defi-
nitely smaller than the “downstream” influence length of the
� interface on the convective bulk. In the former case one
cannot observe a difference to an extended TW state at an
“upstream” distance of, say, 10–15 rolls while in the latter
case the “downstream” convection properties approach the
asymptotic bulk TW behavior only over a significantly
longer distance. So, in particular the phase dilatation at a �
interface does not propagate “upstream” into the TW bulk
against the fast phase flow.

This also explains why in the formation process of a �
front TW properties that were initially present in a developed
form are conserved. In fact, we could produce coherent �
fronts for a fixed r with different wave numbers of the bulk
TW part out of a whole band near the saddle node wave
numbers ks

TW�r�. Only for higher r and initial wave numbers
away from ks

TW we observed long-time transient incoherent
front behavior. Here this transition to incoherence may cor-
respond to a transition from a convectively to an absolutely
unstable regime concerning the propagation of phase dilata-
tions in “upstream” direction.

We should like to stress again that in contrast to � fronts
which depend on the preparation process the asymptotic

“downstream” TW part of a � front is uniquely selected as
discussed in the previous section. Thus, for a particular r we
have found only a single coherent � front.

For definiteness and for the sake of comparison with �
fronts we show in the figures of this paper the properties of
� front states that have a bulk TW part which itself was
selected by a � front. This, however, has a slight numerical
drawback stemming from the convective Eckhaus instability
of this TW part: ever present phase noise �in particular at the
boundary of the “upstream” TW region� is enhanced on the
“downstream” way towards the � interface. We think that
this effect is responsible for fluctuations in our frequency
measurements of � fronts. These data are therefore not
shown in Figs. 2�b� and Fig. 4. However, in our simulations
the “upstream” part of the � fronts were too short to allow
for the full development of phase slip defects.

D. Transient two-front structures

Consider a setup where a � front generates a very long
TW part that develops back into the quiescent fluid via a
coherent � front. If the convective part is laterally suffi-
ciently long then this structure appears as a two-front struc-
ture with the TW part being spatially confined between a �
and � interface to conduction. This structure will in general
either expand or shrink laterally. Only when the two front
velocities vF

+ and vF
− are equal, i.e., at the crossing points req

F

FIG. 8. Evolution of the lateral profiles of the wavelength �top�
and of the vertical flow amplitude wmax/10 �bottom� after starting
with a very long two-front structure at r=1.3586,�=−0.35. The �
front selects in the bulk of the initial two-front structure a saddle-
node TW with wavelength �plateau�1.905. With vF

− �vF
+ �0 the �

front approaches the � front and doing so the velocity of the former
goes monotonously towards vF

+. This transient process ends in a
long LTW �dashed line� of constant length l�47 with a plateau
wavelength of 1.873. Its drift and frequency is effectively the same
as the respective values of the � front which remain unchanged all
the time. For comparison the profiles of a short LTW at the same �
but smaller r=1.3220 are shown with dotted lines.

FIG. 9. Phase diagram in the �-r plane. The vertical bars indi-
cate the range of stable existence of those LTWs that we have
numerically simulated. Full and dashed lines refer to the saddle
node location rs

TW of extended TWs and to their oscillatory Hopf
bifurcation threshold rosc, respectively; both for a wave number k
=�. For ��−0.25 the upper existence boundary of LTWs was de-
termined by the requirement that l remained below about 120 in our
numerical setup. The dotted line guides the eye along the lower
band limit rmin

LTW of LTWs. Parameters are L=0.01,=10.
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of the curves in Figs. 2�a� and 3�a� one can have a stationary
state, namely, a LTW with diverging length l.

We have simulated such structures at �=−0.25 and −0.30
for Rayleigh numbers for which vF

+ �vF
−, i.e., to the right of

the crossing in Figs. 2�a� and 3�a� so that these two-front
structures expand. Their properties are practically identical to
those of the respective single-front states. The two-front
structures have a technical advantage over the simulation of
single fronts: we could use a periodic boundary condition
that was located in the quiescent region of the former. This
avoids the noise that is induced at the upstream TW bound-
ary of a single � front state. With this noise source being
absent in our two-front structures the frequency fluctuations
at the � interfaces of single � front states did not occur.

When we reduced r then the velocities of the two fronts
approached each other along the lines in Figs. 2�a� and 3�a�
that were obtained from velocity measurements of single-
front states. In that way we could reproduce the unique
crossing point at req

F where vF
+ =vF

− and where LTWs with
diverging l exist with a drift velocity vd given by the crossing
velocity.

In addition to expanding two-front structures we
simulated also shrinking ones for a particular parameter
combination ��=−0.35, r=1.3586, for which vF

+

=−0.022�vF
− =−0.067� that is located in Fig. 3�a� at r�req

F .
As an example consider the large two-front structure as in
Fig. 8. The � front selects in the bulk of this initial two-front
structure a saddle node TW with wavelength �plateau�1.905.
In the course of time the velocity vF

− of the � front ap-
proaches that of the � front and a stationary LTW forms
with length l�47 that drifts with the velocity vd=vF

+ =
−0.022 and oscillates with the frequency of the � front.
These values of the � front remain practically unchanged in
the whole process.

III. LOCALIZED TRAVELING WAVE STATES

We produced LTW states with very large length l imme-
diately below the Rayleigh number r�

LTW=req
F . There, l di-

verges thus marking the upper existence boundary of LTW
states. And there, the velocities vF

+ and vF
− of the � and �

front states, respectively, become equal. See Figs. 2 and 3 for
the corresponding results in the range of −0.4���−0.25
that we have investigated in this paper. Upon decreasing r
below the threshold r�

LTW��� one finds uniquely selected
LTW states. Depending on parameters they can coexist sta-
bly with front states, extended TW states, and the quiescent
basic state.

For completeness we include here in Fig. 9 a phase dia-
gram of the �-r plane where all the LTWs that we have
numerically obtained in the range −0.65���−0.08 are
shown by vertical bars together with the saddle-node loca-
tion rs

TW�k=�� of extended TWs �full line� and the oscilla-
tory Hopf bifurcation threshold rosc�k=�� for TWs �dashed
line�. But in this work we focus on the range −0.4��
�−0.25.

We should like to emphasize again that we found LTWs
for −0.4���−0.25 only in the parameter regime below
r�

LTW���, i.e., to the left of the crossing points in Figs. 2�a�

and 3�a� where the velocities of independent single fronts
become equal. Thus, LTWs exist at these � only for param-
eters for which vF

+ �vF
−, i.e., for which independent fronts

would approach each other: eventually any convective region
between them would shrink to zero and the quiescent con-
ductive state would result if this interface motion would con-
tinue without change. However, the stabilization effects that
allow in such a situation a uniquely selected stable and ro-
bust LTW are easily understood with the help of the investi-
gations in the following subsections. On the other hand, for
r�req

F the front velocities are such that a two-front structure
expands.

A. Transient dynamics towards the selected LTW

A typical transient dynamics towards the uniquely se-
lected LTW is shown in Fig. 6 for �=−0.35. Here the initial
condition was a very broad two-front structure that was pre-
pared at r=1.3586 where it shrinks with vF

+ �vF
− �Fig. 3�a��.

In fact, the � front moves to the left with a speed that is
about three times higher than that of the � front.

In the following shrinking process where the � front
closes up to the � front the latter does not change its veloc-
ity at all and the former keeps its velocity as long as the bulk
TW part between the two fronts is effectively asymptotic,
i.e., without lateral variation. This behavior reflects the fact
that in such broad two-front structures there is practically no
interaction between the fronts when their distance is so large
that an asymptotic TW part is realized between the interfaces
to conduction. However, the situation changes when the con-
vective region between the interfaces becomes less extended
since it requires a finite “downstream” growth length behind
a � interface over which the convection properties still vary
with small gradients before the asymptotic TW is reached.
The slow lateral variation is best seen in the mixing number
M�x� in Fig. 1�e� reflecting the slow variation of the concen-
tration distribution and in the related convective contribution
�b� �Fig. 1�g�� to the local buoyancy.

When the front separation comes to the order of this
length one cannot speak any more of a two-front structure
with two independent fronts: For the parameters of Fig. 6 the
velocity of the formerly independent � front changes con-
tinuously from vF

− =−0.067 to −0.022, i.e., to the velocity of
the preceeding � front and a coherent and robust LTW forms
which moves with a drift velocity that is determined by the
� front, vd=vF

+ =−0.022. During this slowing-down process
of the � interface its structure changes to that of the charac-
teristic decay interface to conduction of a LTW. Therein the
two interfaces, i.e., the former � and � fronts, respectively,
are in a robust equilibrium with each other at a uniquely
selected fixed distance l that depends on r ,� as shown in
Fig. 3�b�.

So the � interfaces of LTWs and front states do not in-
fluence significantly the upstream part of these structures.
Hence, the local concentration “barrier” ahead of the � in-
terface does not select the drift velocity of LTWs as specu-
lated previously �26�. It is rather the � interface that is the
more important one.

B. Stabilization via front repulsion

Note that it is the “downstream wake” in the concentra-
tion field of the preceeding � front that effectively slows
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down the � front: When the latter reaches the region where
the mixing number M�x� �Fig. 1�e�� starts to decrease to-
wards the preceeding � front, i.e., when the convective con-
tribution �b� �Fig. 1�g�� to the local buoyancy starts to in-
crease then the speed of the approaching � interface has to
slow down. This distance over which the � front influences
the � front in a two-front structure grows when the Soret
coupling becomes stronger. For example at ��−0.3 a sepa-
ration of about 160 rolls between the two interfaces is not
sufficient to ensure independence.

The sensitive dependence of the velocity of the � inter-
face on the concentration-induced buoyancy variation in the
“wake” behind the � front is the main reason for the robust
localization mechanism of �long� LTWs. The invasion of
conduction into the convective region via the trailing � in-
terface is stopped at just that well defined distance from the
� front where the concentration-induced convective buoy-
ancy �b� has become sufficiently large. The latter increases
monotonously towards the well mixed region under the �
interface since this degree of advective mixing decreases
gradually in the “wake” behind the � interface. See, e.g.,
Ref. �14� for an explanation of the associated interplay of
diffusion and advection which both reduce concentration
gradients and the Soret effect which generates them. Of
course, the effect of stopping the approaching � interface at
a particular distance from the � interface can be interpreted
as an effective repulsive interaction between them.

C. Long LTWs

The structural similarity between long LTWs and fronts is
documented in Fig. 1. Differences between the full lines

�fronts� and the dashed ones �LTW� are visible only in the
case of the � front in Figs. 1�d�, 1�f�, and 1�h�. Here the bulk
asymptotic TW that is realized to the left of the � front
differs slightly from the plateau TW in the LTW.

The abovementioned �C redistribution via �J� enhances
the buoyancy at the � interface and leads there to a self-
consistent stabilization of convection against invasion of
conduction at the � front. This mixing effect makes stable
LTWs possible even for low heating rates r where neither
extended TW convection nor fronts exist.

Long LTWs are characterized by a wide TW part with a
well developed plateau with almost no lateral variation in the
convection properties such as, e.g., vp�x� or M�x� �14�. The
TW plateau separates the growth and the decay part of con-
vection at the � and � interface, respectively, and it pro-
vides a communication mechanism favoring one direction:
The first region is shielded from the second one by the fast
“downstream” phase propagation. As in a single � front
state the � interface of the LTW does not influence the “up-
stream” TW; it only manages the decay transition of the TW
vortices into the quiesent fluid. Thus, the � front character at
the � interface is also present in the LTW. And the properties
of long LTWs are dominated by and similar to those of the
single � front at the same r if the latter exists. For example,
the drift velocities of long LTWs agree with the values of the
corresponding � fronts in Figs. 2–5 and 8. Furthermore, they
continue to show the same linear variation with r as the �
fronts even where the latter cease to exist at smaller r, cf., the
open circles in Fig. 3�a� for the cases of �=−0.35 and �=
−0.4. Similarly, the variation ��r� of long LTWs follows the
corresponding one of � fronts, cf., open circles and filled
triangles in Fig. 10.

A comparison of LTW plateau values with extended TWs
and front TWs is presented in Figs. 2�b� and 2�c� for �
=−0.25, in Fig. 5 for �=−0.4, and in Fig. 4 for all examined
�. At r�

LTW=req
F �arrows� there is no difference between the

fronts, the diverging LTWs, and the extended saddle TWs.
For decreasing r convection is less stable, the disintegra-

tion of the traveling rolls sets in earlier, and the LTW length
l is therefore reduced, cf. the insets of Figs. 2 and 3�b�. The
smallest plateau wave numbers of LTWs are realized for di-
verging lengths at r�

LTW���. With decreasing r one finds a
slight increase of kplateau while the wave number selected by
a single � front remains close to that of the saddle TW.

So this is the LTW bifurcation scenario that we found in
the range −0.4���−0.25 �for a discussion of the scenario
at smaller Soret coupling strength see Sec. IV A�: Approach-
ing r�

LTW from below LTWs become indistinguishable from
front states when l→�. But further below r�

LTW LTWs differ
more and more in particular with respect to the bulk wave
numbers as can be seen in Figs. 4 and 5. However, for long
enough LTWs with a well developed spatial bulk plateau
behavior the frequencies ��r ,�� and drift velocities vd�r ,��
vary similar to the corresponding quantities of � fronts. This
confirms the fact �14� that it is the �-front-like growth inter-
face that selects the properties of a long LTW. Shorter LTWs
behave also with respect to the variation of ��r ,�� and
vd�r ,�� somewhat differently.

FIG. 10. Frequency � of � fronts �dashed lines with triangles�
and of LTWs �full lines with circles� in the respective comoving
frame versus r for different �. Open and shaded circles refer to long
and short LTWs, respectively. The frequencies of the former are the
same as those of the fronts while short LTWs differ. Arrows indicate
the lower limit of existence of the fronts at rmin

F =rs
TW�k���.
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D. Short LTWs

Reducing r one eventually arrives for any � at the regime
of short LTWs that are marked in Figs. 2, 3, and 10 by
shaded circles and that are located close to the dotted line in
Fig. 9. Here, the dominant influence of the � front vanishes
eventually in the regime of short LTW pulses. No convection
plateau can be identified any more in these structures, cf. the
dotted curves in Fig. 8. The prototype of a short LTW
consists of a growth interface which is followed directly by
the decay of convection so that the whole pulse has to be
seen now as one integrated structure that no longer contains
frontlike independent � and � interfaces. Hence, short
LTWs show a strong lateral variation of their properties.
The shape of their amplitudes superficially resemble the
pulse solutions of the complex Ginzburg-Landau equation
�29,30,32,59,73–75�.

As for long LTWs the stable existence of short pulses
below any heating that is necessary to sustain extended TWs
is caused by a lateral �C redistribution over the pulse. Also
its frequency � is constant in the frame that comoves with
the drift velocity vd of the pulse as for a long LTW. However,
compared to long LTWs short LTWs provide a qualitatively
new convection structure. They are independent of and can-
not even be compared with extended TWs because there is
no characteristic wavelength or phase velocity. The special
character of short pulses compared with long LTWs or fronts
is reflected in the change of the r variation of vd, l, wmax, �
that can be seen in Figs. 2, 3, and 10 by comparing the
dashed circles with the open ones and the filled triangles.

We observed the shortest possible LTWs at the lower end
rmin

LTW of the r band of LTWs. There they seem to end via a
saddle node bifurcation for pulses �74�. These minimal
pulses always contained about five convection rolls for all
Soret couplings −0.65���−0.08 that we have investigated.
This surprising universality of lmin�5, i.e., its insensitivity to
the values of the actual heating rate rmin

LTW and the Soret cou-
pling � is still unexplained. Approaching the lower band
limit of LTWs their flow intensity steeply drops �Fig. 3�c��
and consequently their frequency increases �Fig. 10� as the
degree of advective mixing of the fluid decreases.

E. Comparison with LTW models

Several attempts have been made to describe LTWs by
simple model equations. Stable pulse solutions of the com-
plex Ginzburg-Landau equation �CGLE� were proposed as a
model for confined binary mixture convection �73�. The non-
linear interaction between the local amplitude and frequency
seems to be the essential localization mechanism in this ap-
proximation. Indeed, one could find localized solutions of
increasing length up to the limit of an infinitely long two-
front state �59,74,75�. But some basical problems remained:
Within the CGLE all pulses drift with the same velocity. This
is the critical linear group velocity vg if the coefficients are
derived from an asymptotic reduction of the full hydrody-
namic field equations. But vg is too fast by a factor of about
20–40 compared with the LTW drift velocity in experiments
or simulations �7,14,21,26,28,35,76–78�. Brand and Deissler
�79� introduced asymmetry in the pulse properties by adding

nonlinear gradient terms to the CGLE. A similar extension
was given by Bestehorn et al. �41,80� within their framework
of order parameter equations. Both could produce a very
slow drift, even opposite to the phase direction �81�. But this
kind of nonlinear modification of the linear group velocity
involves a balance which seems to be too fragile to explain
the occurrence of small pulse velocities over a whole range
of � and r �82�.

Another problem was mentioned by van Saarloos and Ho-
henberg �59�. According to their model of a quintic CGLE
nonlinear wide pulses are expected by counting arguments to
exist only in a codimension-2 submanifold of the parameter
space. Provided there are no hidden symmetries this seems to
be incompatible with the robust occurrence of LTWs in ex-
periments. Furthermore, stable pulse solutions seem to exist
only in the bistable regime whereas LTWs are known to
persist well above the linear onset of extended convection for
weakly negative � �5,24,26,28,30–33,35�. Furthermore, co-
existing small stable and wide unstable LTWs were never
seen in the CGLE but found in experiments by Kolodner �7�.
Instead, stable broad pulse solutions are found in the model
to arise in a saddle node bifurcation together with an un-
stable branch of smaller “critical droplets” near the basic
state �74�. Finally, numerical solutions of the field equations
show the existence of stable LTWs even below the lowest
TW saddle node �14�. This makes clear that LTWs are influ-
enced by a localization mechanism that is not contained in
the CGLE.

Inspired by simulation results of Barten et al. �35,76�
which showed the important role of the concentration field
for a LTW Riecke �82,83� proposed an extension of the
Ginzburg-Landau equations. Within a weakly nonlinear ex-
pansion he coupled into the standard CGLE as an additional
slow variable the amplitude C of an advected mean large-
scale concentration mode that influences the growth of the
critical modes. A similar idea was advanced already by Gla-
zier et al. �31�. The extension can induce an additional am-
plitude instability of phase winding solutions to modulated
waves. It may be considered as the origin for pulse formation
in this ansatz �84�. Riecke showed that the influence of the
real C mode alone on the local growth rate �without disper-
sion� suffices to generate slowly drifting stable pulse solu-
tions even below a supercritical TW bifurcation �83�. In this
way he modeled a new localization mechanism to explain the
robust occurrence of LTWs in binary mixture convection.
The amplitude C can be interpreted as a measure for the local
mixing state or the mean convection-induced deviation of the
vertical concentration gradient from the conductive one. In
this way his extended complex Ginzburg-Landau equation
�ECGLE� contains in a sketchy way physical effects such as
the mixing influence on the growth rate and the large-scale
concentration redistribution.

Riecke characterized within his model short and long
LTWs as dispersion-dominated pulses �85� and states of two
fronts that are bounded by the C dynamics �86�, respectively.
He proposed an explanation for their coexistence in stable
and unstable form, respectively, by the competition between
dispersion-dominated and C-dominated localization �86,87�.

Note, however, that in contrast to the model used by
Riecke our results show stable long LTWs that drift either in
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or opposite to the direction of phase propagation depending
on paramters. It would be interesting to check whether add-
ing a term of the form v	A	2�xC to the C equation can stabi-
lize forward drifting long pulses within the model since it
models the concentration wake, i.e., the transport of the local
mixing state in phase direction by the traveling rolls of am-
plitude A.

Numerical and analytical investigations of the ECGLE
predict a hysteretic transition from slow to fast drifting
pulses or the existence of oscillatory moving ones �85�. But
both were never seen in experiments or simulations. Thus,
despite their capability in elucidating some essential mecha-
nisms CGLE type models have the drawback so far that they
reproduce only single aspects of LTWs in a qualitative man-
ner. Their range of validity and their predictive power is not
well known. And since a satisfactory relation with the full
field equations has not been established these models remain
somewhat arbitrary.

It appears questionable that weakly nonlinear expansions
with spatially slowly varying mode amplitudes are approriate
at all in view of the very large Péclet numbers O�1000� mea-
suring the strength of the nonlinearity in the concentration
balance. Thus, so far numerical simulations of the full field
equations seem to be the appropriate tool in addition to care-
ful experiments to gather insight into the specific physical
mechanisms for LTW formation in binary mixture convec-
tion.

IV. COMPARISON WITH EXPERIMENTS AND
DISCUSSION

A. Small Soret coupling strength

An inspection of Figs. 2, 3, and 10 shows that the lower
band limit rmin

LTW for the existence of short LTWs and the
crossing value req

F =r�
LTW, where the velocities of free fronts

become equal approach each other when 	�	 decreases. Thus,
one can foresee an interval of moderately negative � where
short and long LTWs can be found close to r�

LTW. In this case
the upper band limit for the existence of stable LTWs should

be defined by a backward saddle-node bifurcation at rs
LTW

where the branches of stable short and unstable long LTWs
annihilate each other.

Hence, we expect that the upper parts of the bifurcation
diagrams of l versus r in the inset of Figs. 2 and 3�b� curve
backwards towards smaller r when 	�	 decreases further be-
low the values of the two figures. In this way the shape of the
curve l�r� would change continuously from the form shown
in Fig. 11�b� to the one in Fig. 11�a�. The former shows
schematically the bifurcation behavior of l�r� that we have
determined numerically for ��−0.25. In fact, at � slightly
larger than −0.25 we expect the appearence of the saddle
node in the curves l�r�. Figure 11�a� is a schematic represen-
tation of experimental results of Kolodner �7� for �
=−0.127 as presented in his Fig. 5. He stabilized by an adap-
tive heating mechanism long unstable LTWs in coexistence
with short stable ones. Thus, the unstable LTW solution
branch �dashed line in Fig. 11�a�� forms for r�

LTW�r�rs
LTW

a separatrix between the domains of attraction of expanding
two-front structures to the right of the dashed line in Fig.
11�a� and the domain to the left of the dashed line leading to
stable narrow pulses or the basic state. Furthermore, small
LTWs that are prepared at r�rs

LTW will evolve into expand-
ing two-front structures when r is increased above rs

LTW.
Note that in Kolodner’s experiment �7� done at

�=−0.127 the upper band limit rs
LTW of LTWs lies above the

Hopf bifurcation threshold rosc for extended TWs where per-
turbations of the quiescent fluid can grow. Therefore, one has
to address there questions related to linear and nonlinear con-
vective versus absolute instability �20,88�, to linearly se-
lected so-called pulled fronts versus nonlinearly selected so-
called pushed fronts �59,60�, and to the robustness and
stability of nonlinear fronts under emission or absorption of
TW perturbations that can grow in the region occupied by
the quiescent fluid.

B. Strong Soret coupling strength

For stronger negative � the measured LTW properties
agree qualitatively well with our results. For example, the
“arbitrary-width confined states” found in experiments �34�
for �=−0.253 at a single Rayleigh number are to be identi-
fied as two-front structures. A quantitative comparison is dif-
ficult due to the difference in the boundary conditions: We
simulated two-dimensional convection assuming transla-
tional symmetry in the y direction while the narrow experi-
mental convection channels impose no-slip conditions at the
walls perpendicular to the roll axes. There are three effects
that account for the difference between experiments and
simulations.

First, the characteristic Rayleigh numbers in the experi-
ments are higher. This is already known from the suppression
of oscillatory or steady convection instabilities in narrow
channels �22,52,89�. The no-slip conditions at the side walls
generate a nontrivial y variation of the velocity field that
introduces additional internal friction and that has to be com-
pensated by a higher heating rate �18,90,91�.

Second, the LTW drift velocities in the experiment have
the global tendency to lie below those of the simulations. For

FIG. 11. Schematic bifurcation diagrams of LTW length l versus
r. �a� Experimental results �7� obtained for �=−0.127 with dashed
line denoting unstable states �see text for further explanation�; �b�
numerically obtained bifurcation behavior for −0.4���−0.25.
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example, for �=−0.253 the experimental LTWs �7,34� move
opposite to the phase velocity whereas according to our cal-
culations vd should be around 0.05. Again, we attribute this
difference to the fact that we neglect gradients in the y di-
rection. They change the concentration redistribution dynam-
ics in particular at the � interface of the LTW which deter-
mines the drift velocity. In this context one has to note that
already weak inhomogeneities in a convection cell can slow
down and even pin the LTW movement �28,32,34�. Finally,
the influence of the different boundaries on the frequencies,
phase velocities, and wave numbers of confined states are
totally unknown.

Also when comparing quantitatively our results for fronts
with experiments one should take into account the above
discussed points. Extrapolating our results for the front ve-
locities to more negative � beyond �=−0.4 we see that al-
ready at the lowest TW saddle location rmin

TW two-front struc-
tures would expand with vF

− �vF
+. In other words, the

velocity crossing point req
F is no longer above rmin

TW but has
virtually moved below the lowest TW saddle location where
in fact no fronts exist. On the other hand, LTWs still exist in
this r range with length increasing with r. However, l�r� does
not seem to diverge anymore as for −0.4�� which is com-
patible with the absence of fronts moving with the same
velocity.

C. Wall-attached confined structures

Laterally confined convection patches of traveling rolls
were found in the early experiments �4,30,40,47� that were
done in narrow rectangular convection channels in the form
of so-called wall-attached confined structures �WACS�. They
were localized near one of the short end walls closing the
channel.

These WACS can be understood with our knowledge of
fronts and free LTWs. For example, for the weakly negative
� used in the early experiments the phase velocity of the
WACS was directed towards the wall to which they were
attached. Indeed, for such parameters mainly short LTWs
occur with drift velocities in phase direction so that they
would end as WACS of the above described type in finite
length channels. Furthermore, the measured WACS profiles
of phase velocity vp�x�, of wavelength ��x�, and their de-
crease of frequency with increasing r �29,40,47� agree quali-
tatively with the typical behavior of free short LTWs.

The connection between WACS and free LTWs was more
explicitly demonstrated by Kolodner �46� for more negative
separation ratios �=−0.24 and −0.408: He prepared a free
LTW pulse with large phase velocity �a “fast confined state”
in his terminology� which drifted slowly opposite to the di-
rection of phase propagation towards an end wall of the con-
vection channel and became there a WACS �a “slow confined
state” in his terminology� with lower phase velocity being
directed away from the wall. In this WACS the phase gener-
ating “trailing front”, i.e., the analog of the � interface is
pinned at the wall and therefore without solutal gradients to
the quiescent fluid as in a free LTW. The absence of these
concentration variations at the � interface implies and al-
lows a lateral concentration redistribution over the whole

state at lower levels of the mixing number M in WACS as
compared to free LTWs. Consequently, the phase velocities
and frequencies of WACS are smaller than those of the re-
spective free LTWs. A less dramatic drop of frequency was
observed also between forward drifting LTWs and short
WACS at �=−0.047 �29�.

Due to their better mixing capability, i.e., smaller M it is
very probable that short WACS can exist for heating rates
below the lower band limit rmin

LTW of stable LTW pulses—at
least in the case where the phase velocity is directed away
from the wall. It would be very interesting to test this con-
jecture experimentally, in particular for strongly negative �.
There rmin

LTW itself lies already well below the range of stable
TWs �14� and so the WACS would lie even lower. An im-
portant hint that this conjecture is right is given by Ning et
al. �49�. They have performed two-dimensional simulations
of a finite-length convection channel with realistic boundary
conditions for �=−0.47, =13.8, and L=0.01. Neglecting
the slight difference in  their results should be comparable
with our work. They found short WACS at r=1.35 which is
according to our results far below the TW saddle nodes for
this separation ratio and also below the lower band limit
rmin

LTW of free LTWs for �=−0.40. However, these authors
claim—we think, incorrectly—that their WACS lie above the
saddle-node location rs

TW of extended TWs.

D. LTW and front stability

In the previous section we have shown that the � inter-
face where the convection rolls grow in “downstream” direc-
tion out of the quiescent fluid plays the dominant role for the
stability of LTWs. While the � interface where the decaying
rolls are advected into the quiescent fluid does not play a
decisive role. This is clearly confirmed in pulse collision
experiments �31�.

Fast TW pulses—linear ones with small amplitude as well
as nonlinear ones with larger amplitude—were completely
absorbed by a LTW when the pulses hit the � interface of
the LTW, i.e., when the pulse velocity is directed opposite to
and towards the phase velocity of the LTW. Then the colli-
sion with the pulse affects only the � interface itself and
perturbations are quickly advected out of the LTW and do
not propagate upstream towards the � interface. For the
same reason double-LTW states of two counterpropagating
waves can persist over a long time �31� or even be stable
�33�. Moreover, a pair of LTWs that have their phase propa-
gation directed towards each other and that interact with each
other via their decay interfaces is seen to be stable over a
substantially wider r range than two LTW pulses which are
connected at their growth interfaces �33�. Obviously the lat-
ter case is more critical for the structural integrity of the
involved LTWs.

A LTW is most likely destroyed when another wave with
the same direction of phase propagation infiltrates its phase
flow at the growth region. Then, while growing the pertur-
bations can be transmitted into the strongly nonlinear bulk
part of the LTW and can destroy its coherence. The different
selection and stability properties of the � and � interfaces
were already observed in transient convection behavior in
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various experiments �see, for example, Refs. �18,27��, how-
ever, without further investigation.

E. Defected confined states

The fact that �i� different � fronts with different bulk TW
parts are possible as stable coexisting states and that �ii� a �
front interface is in general stable against downflow pertur-
bations opens the possibility for another kind of stable long
confined TWs: Therein rolls with low wavelength grow out
of the quiescent fluid in a “normal” growth part. In the bulk
an incoherent phase front connects this fast wave that is com-
ing from the � interface with a slow wave of higher wave-
length and larger amplitude via spatiotemporal dislocations
as, e.g., in Fig. 7. The transition could take place via one or
more intermediate convection states. Eventually this slow
TW convection undergoes a decay transition into the basic
state via a coherent � interface. Such “defected confined
states” are indeed observed in annular containers �5,18� and
were studied by Kolodner �7�. He found such structures only
for ��−0.21. One may speculate that for these separation
ratios the bulk TW that is selected by and behind the �
interface is absolutely unstable against the slow wave in the
further “downstream” part. This could explain the existence
of persistent roll pair annihilations without the need of fluc-
tuations.

We finally mention that the occurrence of phase annihilat-
ing dislocations between a growth part and the downstream
convection was observed for moderately negative � already
in narrow rectangular containers �47�. Furthermore, end-wall
induced Eckhaus instabilities of downstream TW states have
been seen in simulations �92�.

V. CONCLUSION

For parameters where the conductive quiescent fluid is
stable and where spatially extended TW solutions bifurcate
subcritically out of it we have investigated in quantitative
detail relaxed, strongly nonlinear oscillatory convection
structures with one or two interfaces to the quiescent fluid,
i.e., fronts and LTWs, respectively. They are time-periodic
global nonlinear modes: in the frame that is comoving with
the respective front velocity vF or with the LTW drift veloc-
ity vd the oscillations have everywhere the same period.

Fronts come in two varieties. In a � front state the qui-
escent fluid is located “upstream”, i.e., phase propagates out
of it into convection. In a � front the quiescent fluid is
located in “downstream” direction and phase moves out of
convection into conduction.

The lowest Rayleigh number for the existence of fronts is
the lowest saddle-node location of extended TWs, rmin

F =rmin
TW:

below it there are no TWs to which the interface from con-
duction can connect. However, LTWs of finite length l can
coexist bistably together with the conductive state well be-
low the lowest TW saddle when the Soret coupling is suffi-
ciently negative, rmin

LTW�rmin
TW. Furthermore, we have argu-

ments that WACS at end walls of rectangular channels can
exist even at smaller r than LTWs.

Central for understanding fronts and LTWs is a large-
scale concentration redistribution that influences the buoy-

ancy at the interfaces to conduction in different ways than in
the bulk TW parts. For example, at the � interfaces of fronts
and LTWs alike there is a buoyancy overshoot which is suf-
ficiently large to sustain local convection growth there and
that can cause even invasion of convection into the stable
quiescent fluid. At the � interface the lateral buoyancy varia-
tion is such as to induce the decay of the approaching con-
vection rolls into the conductive state.

Front velocities as well as LTW drift velocities are much
smaller than the phase velocities of the carrier waves for
reasons that are related to the concentration redistribution
dynamics. The velocities of � fronts decrease with growing
r while those of � fronts increase. At some req

F they become
equal so that both fronts move with the same velocity. At this
Rayleigh number the length l of the LTWs diverges and
there, and strictly speaking only there, the limiting LTW can
be seen as a state consisting of two fronts. However, � fronts
and long LTWs have almost identical propagation velocities
and frequencies. Furthermore, they select a similar bulk
wave number. The selected frequencies and bulk wave num-
bers are close to those of a saddle-node TW. In fact, it is the
�-front-like growth interface that selects the properties of
long LTWs.

Small amplitude extended TW perturbations of the con-
ductive state oscillate with the large Hopf frequency. But the
global-mode oscillation is restrained by the requirement that
its frequency has to allow stable developed bulk TW convec-
tion. It is interesting to note that the � interface connecting
conduction with convection selects the largest possible fre-
quency eigenvalue that meets this requirement, namely, the
TW saddle-node frequency. All our � fronts select bulk TW
wave numbers close to the large-k branch of the TW saddle-
node curve, i.e., wave numbers that are too large to be Eck-
haus stable. However, these TWs are only convectively un-
stable: perturbations can grow but while doing so they are
advected sufficiently fast downstream in the direction of the
TW phase propagation so that they cannot influence the up-
stream part of the � front state in a persistent way.

While � front states seem to be uniquely selected we
could produce for a fixed r different coherent � fronts that
were characterized in the bulk part by different wave num-
bers and frequencies close to the TW saddles. The decay
interface adjusts itself to the respective bulk TW part but
does not exert an influence in “upstream” direction on the
bulk convection within a coherent � front. In contrast, the
growth under a � interface induces in downstream direction
a long concentration “wake” that is characteristic for �
fronts and long LTWs and of special importance for the lat-
ter.

Here it is interesting to notice that all the interfaces of
fronts and LTWs consist typically only of about 3–4 convec-
tion rolls. We furthermore should like to mention that �
interfaces of fronts and LTWs always locate a minimal wave-
length. Its value, �min�1.4, is remarkably universal for all r
and � that we have simulated. This is unexplained so far.

We have also prepared initial two-front structures by con-
necting a � front and a � front with a common long bulk
TW. When r�req

F they expand. However, at r�req
F they

shrink towards a uniquely selected LTW of fixed length l.
Here the “downstream wake” in the concentration field of the
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preceeding � front exerts an effective repulsion on the ap-
proaching � interface: the invasion of conduction via the
latter is stopped at a well defined distance l that is deter-
mined by the concentration-induced buoyancy levels in the
“wake” of the � front.

LTWs shortly below req
F �where LTW with diverging l are

possible� are very long. Their drift velocities, frequencies,
and many stuctural properties are similar to those of �
fronts. Decreasing r the LTW length decreases and one even-
tually arrives for any � at the regime of short LTWs that lies

for strongly negative � well below the TW saddle nodes.
These short LTWs without a convection plateau are qualita-
tively different structures. This is also reflected by their drift
velocities and frequencies showing a variation with r that
differs from those of long LTWs. The shortest possible
LTWs are realized at the lower end of the r band of LTWs.
These minimal pulses always contained about five convec-
tion rolls for all Soret couplings that we have investigated.
This surprising universality of lmin�5 remains to be ex-
plained.
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