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We unify two approaches that have been taken to explain the non-Gaussian probability distribution functions
�PDFs� obtained in measurements of longitudinal velocity differences in turbulence, and we apply our ap-
proach to Couette-Taylor turbulence data. The first approach we consider was developed by Castaing and
co-workers, who obtained the non-Gaussian velocity difference PDF from a superposition of Gaussian distri-
butions for subsystems that have a particular energy dissipation rate at a fixed length scale �Castaing et al.,
Physica D 46, 177 �1990��. Another approach was proposed by Beck and Cohen, who showed that the
observed PDFs can be obtained from a superposition of Gaussian velocity difference PDFs in subsystems
conditioned on the value of an intensive variable �inverse “effective temperature”� in each subsystem �Beck
and Cohen, Physica A 322, 267 �2003��. The intensive variable was defined for subsystems assuming local
thermodynamic equilibrium, but no method was proposed for determining the size of a subsystem. We show
that the Castaing and Beck-Cohen methods are related, and we present a way to determine subsystem size in
the Beck-Cohen method. The application of our approach to Couette-Taylor turbulence �Reynolds number
540 000� yields a log-normal distribution of the intensive parameter, and the resultant velocity difference PDF
agrees well the observed non-Gaussian velocity difference PDFs.
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I. INTRODUCTION

In Kolmogorov’s 1941 theory �K41�, the energy in fully
developed three-dimensional turbulence cascades from large
scales to small scales where it is dissipated �1�. Turbulence in
the cascade �the inertial range� is characterized by the prob-
ability distribution function �PDF� P��vr� for longitudinal
velocity differences over a distance r, �vr�x�= êr · �v��x+r�
−v��x��, where êr is the direction of separation �2�. For r
approaching the integral scale where energy is injected, the
PDF is Gaussian, while in the inertial range extending down
to the dissipation scale �, intermittent large fluctuations lead
to a non-Gaussian PDF with approximately exponential tails
�3�.

Kolmogorov assumed a constant energy dissipation rate
per unit volume, � �1�. In 1944 Landau �4� suggested that
fluctuations of � averaged at scale r, �r�x� , t�
��=�x�

x�+r���x�� , t�dx��� play a key role in turbulence. Such fluc-
tuations were subsequently observed in many experiments
�5–7�. In 1962 Kolmogorov �8� and Obukhov �9� proposed a
log-normal distribution of �r in the inertial range. The log-
normal distribution was obtained in subsequent experiments
and numerical simulations �r �10–13�. The non-Gaussian
PDF of �vr and the log-normal PDF of �r characterize tur-
bulent flows.

Different approaches have been taken by Castaing et al.
�14� and by Beck and Cohen �15� to understand the non-
Gaussian P��vr�. Castaing et al. assumed at subsystems have
different values of �r, but the subsystems have Gaussian
PDFs of �vr; this assumption is supported by experiments.

Beck and Cohen took a statistical mechanics approach,
assuming that subsystems have a well-defined “effective

temperature,” which for turbulent flow is identified with the
variance of �vr. The resultant P��vr� depends on the statis-
tics of the distribution for the inverse effective temperatures
in the subsystems. This dependence of the statistical distri-
bution P��vr� on the statistical distribution of subsystems led
Beck and Cohen to call their approach superstatistics �15�.

In this paper we note that the approaches of Castaing et
al. and Beck and Cohen are both based on Bayes’ theorem,

P�x� =� P�x�y�P�y�dy , �1�

which is used to obtain the non-Gaussian P��vr� from a con-
ditional mixing of Gaussian PDFs in subsystems. However,
the subsystems are chosen differently in the two approaches.

We propose a method that does not require a determina-
tion of �r from experimental data, nor does it require a fitting
parameter to obtain the effective temperature PDF. We show
that subsystems with Gaussian statistics can be chosen by
examining moments of velocity difference distributions in
the subsystems. Our method, which involves no fitting pa-
rameters, leads to predictions for the non-Gaussian P��vr�
that are in accord with data for turbulent Couette-Taylor flow
�16�.

In Sec. II we present the Castaing et al. and Beck and
Cohen methods, and in Sec. III we describe the Couette-
Taylor experiments and present results for P��vr�. Section IV
shows how subsystems can be systematically chosen to ob-
tain a prediction for P��vr�. The conclusions are presented in
Sec. V.

II. THEORY

A. Method of Castaing et al.

Castaing et al. �14� started with the observation from their
experiments that velocity difference distributions for a given*Electronic address: sunnyjsh@chaos.utexas.edu
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�r are Gaussian, and that �r is described by a log-normal
distribution �14,17–21�. The log-normal distribution for �r
has also been obtained for �r in other experiments on fully
developed turbulence �18,22–24�, and in analyses of images
of cloud patterns �25�, effective temperature fields in turbu-
lence �26�, and magnetic fields in solar winds �27�.

To describe the evolution of P��vr� from Gaussian at
large scales to non-Gaussian at small scales �28–30�, Casta-
ing et al. proposed �14,17�

P��vr� =� P��r�P��vr��r�d�r. �2�

The conditional PDF P��vr ��r� in Eq. �2� is assumed to be a

Gaussian distribution, P��vr ��r�=e−��vr�
2/�r�r�

2/3
, in accord

with experimental observations �31–33�. Kolmogorov �8�,
Obukhov �9�, and Castaing �14� assumed a log-normal dis-
tribution of �r,

P��r� =
1

���2��1/2�r
exp�−

�ln �r − m��2

2��
2 	 , �3�

where m� and �� are, respectively, the mean and the standard
deviation of ln �r.

A difficulty in applying the approach of Castaing et al. is
that energy dissipation rate at length scale r, �r, is not di-
rectly measured in experiments. By assuming homogeneous
and isotropic conditions, �r�x� is defined as
15��x

x+r��v /�x�2dx. In practice, �r is determined from time
series data,

�r =
15�

�	x�2 

i=1

N−1

�v�xi+1� − v�xi��2, �4�

where 	x��x2−x1� is the sampling separation the summa-
tion i is over subsystems and xN−x1=r �33–35�. Even with
this assumption, determination of �r�x� is difficult because of
errors in evaluating the derivative from velocity data. Further
error arises from the application of the Taylor frozen hypoth-
esis at high frequencies �24,36–44�.

B. Superstatistics of Beck and Cohen

Beck and Cohen’s statistical approach considers a system
far from thermodynamic equilibrium to consist of sub-
systems in local thermodynamic equilibrium �15�. Each sub-
system has a well-defined “effective temperature,” but the
subsystem effective temperatures need not be the same since
the whole system is not in equilibrium. Beck and Cohen
identify ��vr�2 with the kinetic energy of eddies of size r,
E��vr�= 1

2 ��vr�2, and the variance of �vr is identified with an
inverse effective temperature 
 �45�, given for a subsystem
of size d by


d =
1

���vr�2
d − ���vr
d�2 , �5�

where �·
d is an average over the size d. Then we have

P��vr� = �
0

�

P�
d�P��vr�
d�d
d. �6�

where P�
d� is the distribution of inverse effective tempera-
ture in subsystems of size d.

A particular choice of P�
d�, the �2 distribution, leads to
the distribution associated with the nonextensive statistical
mechanics of Tsallis, P�E�= �1+
�q−1�E�−1/�q−1�, where q is
a parameter characterizing the nonextensivity �S�1+2�
=S�1�+S�2�+ �1−q�S�1�S�2�, where S is entropy function�
�15,46�. A phenomenology similar to Beck and Cohen’s was
used in earlier oceanographic analysis that described the glo-
bal non-Gaussian distribution of ocean surface velocity as a
mixture of local Gaussians with �2-distributed variance
�47,48�. The method of Beck and Cohen has been applied to
fully developed turbulence �49,50� by introducing a fitting
parameter to determine the PDF of inverse effective tempera-
ture, rather than by directly measuring the PDF of inverse
effective temperature.

The Beck-Cohen method requires that the size d should
be large compared to the distance r separating two points,
and d should also be large enough so the subsystems contain
enough data points to yield good statistics, but d must also be
small enough so that subsystems are each described by a
Gaussian distribution. Beck determined the size of d using a
fitting parameter involving the kurtosis of P��vr� �50�.

C. Unified view of PDFs

The Castaing and Beck-Cohen methods are similar except
in the way they divide a system into subsystems. Castaing et
al. sample velocity differences conditioned by the averaged
energy dissipation rate �r, while Beck and Cohen use veloc-
ity differences conditioned by the inverse effective tempera-
ture 
d. Castaing et al. need one fixed length scale, the sepa-
ration distance r between two points; �vr and �r are defined
at this scale and are related through Bayes’ theorem. The

FIG. 1. An example of the Couette-Taylor velocity difference
data, obtained by subtracting velocities at two points with a sepa-
ration r=46�=0.134 cm, where � is the Kolmogorov length scale.
The inset shows the velocity differences on a finer length scale.
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Beck-Cohen method involves two length scales, the distance
r separating two points and the size d of the subsystems in
the statistical analysis.

The Castaing and Beck-Cohen methods can be connected
if the two conditioning variables ��r and 
d� are correlated.
Using Eq. �2� and Bayes’ theorem, we convert Castaing’s
method into Beck-Cohen’s method,

P��vr� = �
0

�

P��vr��r�P��r�d�r

= �
0

� �
0

�

P��vr�
d�P�
d��r�d
dP��r�d�r

= �
0

�

P��vr�
d���
0

�

P�
d��r�P��r�d�r�d
d �7�

=�
0

�

P��vr�
d�P�
d�d
d. �8�

Now, let us assume a log-normal distribution of 
d at the
fixed �r,

P�
d��r� 

1


d
exp�−

�ln 
d − a ln �r�2

2�t
2 � , �9�

where �t is the standard deviation of ln 
d conditioned to �r,
and a is a parameter. Using Eqs. �3�, �7�, and �9�, we have

P��vr� 
 �
0

�

P��vr�
d��
0

�

exp�−
�ln 
d − a ln �r�2

2�t
2 	

�exp�−
�ln �r − m��2

2��
2 	d�ln �r�d�ln 
d�


 �
0

�

P��vr�
d�exp�−
�ln 
d − m�2

��
2�t

2 	d�ln 
d� .

�10�

Thus with the assumption of a log-normal distribution of 
d
conditioned on �r, we have that Castaing’s method is equiva-
lent to Beck-Cohen’s method. In Sec. IV D, the log-normal
PDF of P�
d ��r� is verified in experiments.

FIG. 2. Comparison of �2 and log-normal distributions to the experimental distribution for inverse effective temperature in subsystems
of size �a� d=0.9 cm and �c� d=3 cm. The dashed-dotted lines represent the �2 distribution, and the solid line represents the log-normal
distribution; both have the same mean and variance as the 20 independent experiments �error bars correspond to one standard deviation�. The
panels on the right, �b� and �d�, show the difference between the experimental PDF for 
d and the �2 �plus signs� and log-normal �bullets�
distributions for �a� d=0.9 cm and �c� d=3 cm. The shaded area represents the experimental uncertainty �standard deviation of 20
experiments�.
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III. EXPERIMENT

We describe here an experiment on turbulent Couette-
Taylor flow by Lewis and Swinney �16,51�, and in the next
section we will analyze data from this experiment to deduce
P�
� and a prediction for P��vr�. The fluid was contained in
the annular region between two concentric cylinders with an
inner radius of b=22.085 cm and an outer radius of a
=15.999 cm; thus the ratio of inner to outer radius was
0.724. The height of the annulus was 69.5 cm, which yields
a value of 11.4 for the ratio of height to the gap. The inner
cylinder angular rotation rate � was 8�2� rad/s; the outer
cylinder was at rest. The ends of the annulus rotated at the
same rate as the inner cylinder. The fluid was water with a
viscosity � of 0.00968 cm2/s at the working effective tem-
perature. Defining the Reynolds number as Re=�a�b
−a� /� yields for the Reynolds number 540 000 �16�.

A hot film probe was used to measure the time depen-
dence of the azimuthal component of the velocity in the cen-
ter of the gap at a distance 4.35 cm above midheight of the
annulus. The Taylor frozen turbulence hypothesis was used
to convert the velocity time series data to velocity field data.
The turbulent intensity �the ratio of the root mean squared
velocity to the mean velocity� was �6%.

The uncertainties shown on our graphs correspond to the
standard deviation of 20 independent experiments. The ve-
locity measurements were made with a sampling rate 2500
times the inner cylinder rotation frequency; this corresponds
to a spatial separation of 0.017 cm between successive ve-
locity values. The longitudinal velocity differences �vr that
we analyze are for points separated by a small distance, r
=0.134 cm, where the probability distribution function has
approximately exponential tails �16�. An example of the
measurements of �vr�t� is shown in Fig. 1. The separation
r=0.134 cm corresponds to 46�, where � is the Kolmogorov

scale �16�. �The Kolmogorov dissipation scale was obtained
by calculating the dissipation from energy spectra: �
��� /��1/4, where the dissipation rate is given by �
=15��k2E�k�dk �16�.� The window size d we use for deter-
mining the local inverse effective temperature 
 is typically
0.9 cm, nearly an order of magnitude larger than the value of
r.

IV. RESULTS

A. Probability density function of inverse effective
temperature

Several distributions for inverse effective temperature 
d
have been discussed by Beck and Cohen �15�. Here we con-
sider the log normal and �2 distributions, which are most
applicable to turbulent flow. Due to multiplicative processes
in turbulence, the log-normal distribution is often observed
for positive-definite quantities �such as �r� �14,17–21�. A log-
normally distributed 
d is given by

P�
d� =
1

s�2��1/2
d
exp�−

�log 
d − m�2

2s2 	 �11�

where s=�ln�1+�
d

2 / 
̄d
2� and m=log�
̄d

2 /�
̄d
2+�
d

2 � are

parameters, and 
̄d and �
d
are respectively the mean and

standard deviation of 
d.
The �2 distribution of 
d is given by

P�
d� =
1


d��c�
�
d

b
	c

exp�−

d

b
	 �12�

where c= 
̄d
2 /�
d

2 and b=�
d

2 / 
̄d and � is the gamma func-
tion. The �2 distribution has been observed in recent mea-
surement of wind turbulence �52�. The statistical properties

FIG. 3. The parameters s2 /2 �circles� and m �triangles�, obtained
from fits of the inverse effective temperature 
d �deduced from
Couette-Taylor turbulence data� to a log-normal distribution, as a
function of subsystem size d �see Eq. �11��. �s and m are the vari-
ance and mean of logarithmic inverse effective temperature.� The
parameters s2 /2 and m are approximately equal �see text� and are
described by a power law, m
d−3/4 �solid line�.

FIG. 4. The dependence of the third and fourth moments of
P��vr� on the size d of the subsystems. For sufficiently small d,
P��vr� should be Gaussian, which means the values of the third and
fourth moments should have the values zero and three, respectively.
We find that at d�0.9 cm, the conditional distribution Eq. �11� is
close to Gaussian �see text�.
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of different distributions are discussed in �15�.
The experimental PDF for 
d is compared in Fig. 2 with a

log-normal distribution and with a �2 distribution for two

subsystem sizes d, 0.9 cm and 3 cm. The mean 
̄d and vari-
ance �
d

2 of the inverse effective temperature determine the
parameters s, m, b, and c. For small d, the log-normal and �2

differ significantly, but for large d they become closer to-
gether �Figs. 2�c� and 2�d��. The decrease in variance of 
d
with increasing d is similar to decrease observed in the vari-
ance of �r with increasing r �53�.

The difference between the PDF of 
d from experiment
and the �2 and log-normal distributions is shown in Figs.
2�b� and 2�d�. For d=0.9 cm, the log-normal distribution fits
the data within the experimental uncertainty except small 
d
regions, while the �2 distribution deviates from the observa-
tions by an amount that is large compared to the uncertainty.
For d=3 cm, the log-normal distribution fits the distribution
of 
d, whereas the �2 distribution does not.

The log normal distribution �11� involves two parameters,
s and m, which depend on subsystem size, as shown in Fig.
3. This figure suggests a relationship between s and m, m
=s2 /2, which is supported by a calculation in Castaing et al.
�see Sec. 4.3.1 in �14��.

B. Conditional probability and the proper subsystem size

In the statistical approach of Beck and Cohen, the sub-
system size d should be sufficiently small so that P�
d� is
Gaussian, corresponding to local thermodynamic equilibrium
in the subsystems. However, in practice the d→0 limit is
inaccessible because as d becomes very small, the number of
data points becomes too small to allow accurate determina-
tion of the variance of 
d. So what is optimal choice of d?
We address this question by examining the third moment
�skewness� and fourth moment �kurtosis� of �vr, which
should be equal respectively to zero and three for a Gaussian
distribution. In principle we could also examine fifth and
higher moments, but because of the sensitivity of the higher
moments to noise, we limit our considerations to the third
and fourth moments. Plotting the third and fourth moments
as a function of d, as shown in Fig. 4, we find that the
optimal value of d for our data is 1.0–1.2 cm, which is the
only range in which the kurtosis is approximately given by
the value for a Gaussian. The skewness is small and negative
for d�0.5 cm, but becomes strongly positive for d
�0.5 cm, reflecting a cascade of energy to smaller length
scales. We conclude that d=0.9 cm is the optimal subsystem
size for our data.

C. Probability distribution of �vr

We found a log-normal distribution of 
d fits the turbu-
lence data over a wide range in d �Sec. IV A�. With the log
normal distribution of 
d for the optimal value of d �0.9 cm,
Fig. 4� and the conditional Gaussian distribution of �vr for
that 
d, we obtain the probability distribution of �vr by the
method of Beck and Cohen,

P��vr� =
1

2�s
�

0

�

d
d
d
−1/2 exp�−

�log 
d − m�2

2s2 	
�exp�−

1

2

d��vr�2	 , �13�

where s and m are determined from experiment for the opti-
mal subsystem size d. There is no explicit form for the im-
proper integral in Eq. �13� so we evaluate the integral nu-
merically, using the limits ��min 
d ,max 
d�� measured in
experiments instead of the theoretical integral domain,
�0,��.

The results for P��vr� obtained by numerical integration
of �13� are shown in Fig. 5. The data are described much
better by the predicted probability distribution than by a
Gaussian. The observed approximate power law tails are
similar to the predicted distribution function.

FIG. 5. Comparison experimental results �dots� for P��vr� with
the prediction of the Beck-Cohen method for a subsystem with the
optimal size of 0.9 cm �bold line� on a semilog scale in �a� and
relative error between theoretical and experimental values in �b�.
For comparison, we also show in �a� and �b� the predictions for
subsystems of size 0.3 cm �thin dashed line� and 3 cm �thin dashed-
dotted line�, and a Gaussian distribution �dashed line�.
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D. Castaing and Beck-Cohen methods

If the two conditioning quantities in the Castaing and
Beck-Cohen methods ��r and 
d, respectively� are correlated
as a power-law, through Bayes’ theorem the two methods can
be seen to be the same �see Eq. �8��. With the surrogate
definition of �r as in Eq. �4� and a proper subsystem size
�Sec. IV B�, we find that 
d and �r exhibit a power-law re-
lation, as Fig. 6 illustrates. In this sense, the Castaing and
Beck-Cohen methods describe the same PDF of �vr through
the different conditional values which are correlated. Our
experimental observation of a relation 
d
 ��r�−2/3 in Fig. 6
follows also from a dimensional analysis,

�
d� = �T2

L2� = �L�−2/3 � �L2

T3�−2/3

⇒ 
d 
 r−2/3�r
−2/3,

�14�

where square brackets �·� denote the dimension of a physical
quantity, T is the dimension of time and L is the dimension
of length.

The probability of 
d conditioned to �r, P�
d ��r�, is log-
normally distributed, as Fig. 7 illustrates. Our assumption in
Eq. �9� holds with the surrogate �r and 
d, where d is prop-
erly chosen �Sec. IV B�. Thus the integral of two log-normal
distributions, �P�
d ��r�P��r�d�r, is another log-normal dis-
tribution, P�
d�. That is, if P�
d ��r� is a log-normal distri-
bution with the mean of ln �r, a log-normal distribution of �r
in Castaing’s method is equivalent with a log-normal distri-
bution of 
d in Beck-Cohen’s method.

V. CONCLUSIONS

Both Castaing and Beck-Cohen methods have been very
successful in describing the non-Gaussian distribution of ve-
locity differences in turbulence �14,50�. Although the rela-
tion of Beck-Cohen’s method and Tsallis statistics �61� to
turbulence has been questioned �50,54–56�, the fit to data is

quite good �57–60�. We have presented a method for deter-
mining subsystem size in the Beck-Cohen method, thus
eliminating the need for a fitting parameter.

We have also shown that Castaing’s method can be
converted to Beck-Cohen method—the log-normal distribu-
tion of �r in Castaing’s method gives rise to a log-normal
distribution of 
d in Beck-Cohen’s method. In that sense, the
two methods describe the non-Gaussian distribution of �vr
in the same way, P��vr�=��Gaussian distribution�� �log
-normal distribution�.
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FIG. 6. The relation between 
d and �r. The solid vertical lines
represent standard deviations at a fixed 
d and the dots represent the
mean values. The dashed line is 
d
 ��r�−2/3.

FIG. 7. The Gaussian distribution of ln 
d conditioned by �r,
plotted on �a� log and �b� linear scales. The solid lines represent a
Gaussian distribution of ln 
d, that is, the log-normal distribution of

d. The dots represent the mean values of ln 
d from experiments.
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