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We study the kinetics of domain growth in the Ising model with nonconserved dynamics under the action of
a stochastic driving field that mimics the action of a shear flow. At late times, we found multistriped configu-
rations with constant transversal size and linear growth in the direction of the flow. In cases with weak shear,
a regime characterized by the decreasing of the transversal size is found that could correspond to previous
theoretical investigations. This behavior is confirmed by the analysis of the structure factor patterns.
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I. INTRODUCTION

When a system in its homogeneous disordered state is
suddenly quenched into a multiphase coexistence region, the
domains of the ordered phases start to form and grow in
reciprocal competition. This process, known as coarsening or
phase ordering, is generally characterized by dynamical scal-
ing �1�. The equal-time two-point correlation function C�r , t�
behaves like C�r , t�� f(r /R�t�), where R�t� can be identified
as the typical size of domains during coarsening. R�t� gener-
ally follows a power-law behavior R� t�; the existence of
several regimes, characterized by different exponents � de-
pending on the particular mechanism operating during phase
separation, is well established �1,2�.

In cases of practical interest, phase separation often oc-
curs under the action of an external field or, if the system is
a liquid mixture, making the liquid flow. In the case of ap-
plied shear, which is particularly relevant for applications,
the ordering process is known to be profoundly affected by
the flow �3�. The most noticeable effect is the alignment of
the domains of the different phases along the flow direction.
However, given its importance, the comprehension of many
features of the kinetics of this process is still poor. The an-
isotropic growth of domains suggests that the dynamical
evolution is described by different exponents �� and �� for
the growth along the directions parallel and orthogonal to the
flow, respectively, �4�. While theoretical arguments, simula-
tions, and experiments suggest that the relation �� −��=1
generally holds �5–8�, the determination of the exponents,
with the possible existence of dynamical scaling, is still an
open problem. Moreover, it is not clear whether the shear, at
late times, causes an interruption of coarsening with a sta-
tionary state consisting of striped domains of fixed width or
whether indefinite growth can be observed at asymptotic
times �9�.

Previous studies of phase separation in binary fluids also
showed the occurrence of less-expected phenomena due to
the action of the shear flow. The evolution of structure factor
and other related quantities �domain size, stress, etc.…� was

observed to be characterized by oscillatory patterns with cy-
clical storage and dissipation of elastic energy �10�. In a
self-consistent approximation of a Landau-Ginzburg model,
the oscillations were found to persist indefinitely with time
�11�, even if they were not found in the analytical solution of
the model in the limit of infinite time �12�. Simulations of the
Landau-Ginzburg model showed that the oscillations can be
related with the existence of two typical domain lengths for
each space direction �5�. A similar scenario has been found in
experiments on binary fluids �13�.

In the present work, we study the coarsening dynamics of
the d=2 Ising model with a driving stochastic field imple-
mented to mimic the effects of a uniform shear flow. The
discrete nature of the model avoids the problems that could
arise in the numerical implementation of continuum
convection-diffusion equations �14�. The model evolves with
a dynamics with nonconserved order parameter, correspond-
ing to model A in the classification of Hohenberg and Halp-
erin �15�. Models with nonconserved dynamics are used to
describe the kinetics of twisted nematic liquid crystals
�1,16�. Our results can therefore be relevant to understanding
the effects of shear in these systems. Model A with shear was
studied by Cavagna et al. in the context of the Ohta-Jasnow-
Kawasaki approximation �17�. In two dimensions it was
found that the typical size of domains in the direction of the
flow grows as R� � t�ln t�1/4, while the transverse length R�

experiences an unlimited narrowing, behaving as R�

��ln t�−1/4. The aim of this work is to test numerically these
results and to compare also with the previously described
phenomenology of coarsening in systems with conserved dy-
namics. Simulations of Ising models with shear were also
performed in �17�, but there a lattice of limited size was used
and only one value of shear rate was considered.

We performed simulations in a large interval of shear rate
values and different temperatures. We confirm results of pre-
vious simulations with domains characterized by a finite
transversal size at late times. We also obtained evidence of
an intermediate regime with transversal size decreasing with
time, as suggested by theoretical predictions �17�.
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The structure of this paper is as follows: In Sec. II, we
introduce the model and the algorithm for the realization of
the external flow. Short time evolution will be discussed in
Sec. III. Section IV contains our simulation results for dif-
ferent shear rates �̇, temperatures, and lattice sizes. Our con-
clusions are presented in Sec. V.

II. THE MODEL

We will consider the nearest-neighbor two-dimensional
stochastic Ising model with a single-spin-flip thermalization
dynamics, e.g., the Metropolis dynamics. The driving field
will be defined in order to mimic the convective velocity
shear profile

vx�y� = �̇y vy = 0, �1�

where the real parameter �̇ is called the shear rate. If the
system is represented as a sequence of layers labeled by y,
then �̇y is the displacement of the layer y in a unit of time. If
L is the vertical size and vmax is the speed of the fastest layer,
then �̇L=vmax.

The model is defined on a square lattice � of side length
L with periodic boundary conditions in the horizontal direc-
tion and free in the vertical one. More precisely, let �
= �−1, +1�� be the space of configurations, and for ���, let
�x,y be the value of the spin associated to the site �x ,y���.
Then, the Hamiltonian of the model is

H���� = J	
y=1

L

	
x=1

L

�x,y�x+1,y + J	
x=1

L

	
y=1

L−1

�x,y�x,y+1, �2�

where �L+1,y =�1,y for all y=1, . . . ,L, and J is a positive real.
We try to combine the thermalization dynamics with an

algorithm introducing the shear in the system. The shear is
superimposed to the thermalization dynamics with typical
rates not depending on the thermalization phenomenon, but
fixed a priori. This problem has been faced in �17–19�, and
different solutions have been proposed therein. In this paper,
we use a very ductile generalization of those dynamics aim-
ing to introduce the shear effects in a way that is competitive
with respect to the thermalization process.

Let the time unit be the time needed for a full thermal
update of the entire lattice, e.g., a full sweep of the Metropo-
lis algorithm. The shear algorithm is parametrized with a
submultiple � of L2 �the period of the shear procedure�, a
positive integer �	L /2 �the space a row is shifted when the
shear is performed�, and a non-negative real 
	1/L. The
dynamics of the model that we study in this paper is defined
in a precise way via the following algorithm:

�i� Set t=0, choose �0��, and set n=0.
�ii� Set n=n+1, and choose at random with uniform prob-

ability 1 /L2 a site of the lattice and perform the elementary
single-site step of the thermalization dynamics.

�iii� If n is multiple of �, a layer is randomly chosen with
uniform probability 1 /L. Then, if ȳ is the chosen layer, all
the layers with y� ȳ are shifted � lattice spacings to the right
with probability 
L.

�iv� If n�L2, go to �ii�; otherwise, denote by �t+1 the
configuration of the system.

�v� Set t= t+1, set n=0, and go to �ii�.
We note that if 
=1/L, the shift at step �iii� is certainly
performed—this case will be called full shear. The smooth-
ness of the shear profile is ensured by the stochastic character
of step �iii� in the algorithm.

We want to express, now, the shear rate �̇, introduced in
Eq. �1�, in terms of the parameters of our dynamics. We have
to estimate the typical displacement per unit of time of the
row labeled y. Such a row is involved in a shear event, step
�iii� of the preceding algorithm, if and only if the extracted
row ȳ is such that ȳ	y, and this happens with probability
y /L. Since the shear event results in a shift with probability

L, the probability that during a shear event the row y does
shift is given by

y

L

L = 
y .

By noting that the number of shift events per unit of time is
equal to L2 /� and recalling that the shift amplitude is �, we
have that the typical shift of the row y per unit of time is
given by

L2

�
�
y .

By using definition �1�, we finally get �̇=L2
� /�, which be-
comes �̇=L� /� in the case of full shear.

For completeness, we now show how the dynamics de-
fined by the preceding algorithm can be thought of as a Mar-
kov chain �t��, with t=0,1 , . . . the time variable and �t the
configuration of the model at time t. To write the associated
transition matrix, one has to take into account both the ther-
mal and the shear effects. Let � ,��, and denote by
q�� ,� and p�� ,� the probability that the system jumps
from � to , respectively, in a single spin flip of the thermal-
ization dynamics �step �ii� of the algorithm� and in a shear
event �step �iii� of the algorithm�. Normalize both q and p so
that for each configuration �,

	
��

q��,� = 1 and 	
��

p��,� = 1.

Now notice that the transition �t to �t+1 is realized by per-
forming the steps �ii� and �iii�, respectively, L2 and L2 /�
times. One can expect that for each n=1, . . . ,L2, the transi-
tion � to �� happens with probability

fn��,��� = 
 	
����

q��,���p���,��� n multiple of � ,

q��,��� otherwise.
�

Finally, can write the transition matrix r of the dynamics
resulting from the preceding algorithm. For each � ,��,
one has

r��,� = 	
�1��

¯ 	
�L2−1��

�
n=1

L2

fn��n−1,�n� ,

where �0=� and �L2 =.
As usual for a Markov chain, one can consider a continu-

ous time process and write the master equation. Indeed, if we
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let W�� , t�, the probability that at time t the process visits the
configuration �, we have that

dW

dt
��,t� = 	

��

�W�,t�r�,�� − W��,t�r��,�� . �3�

III. SHORT TIME EVOLUTION

In the absence of driving fields, the growth properties of
ordered phases in the Ising model with nonconserved dy-
namics are the same as those of the Landau-Ginzburg model
A �1�. When a shear flow is imposed on the system, model A
can be generalized to the convection-diffusion equation

��

�t
+ �� · ��v�� = − �

�F
��

+  , �4�

where � is the order parameter,

F��� = ddx�a

2
�2 +

b

4
�4 +

�

2
����2� �5�

is the usual double-well Ginzburg-Landau free energy, and
the Gaussian stochastic field , with zero average and vari-
ance proportional to the temperature T of the system, de-
scribes the thermal fluctuations �17�.

The linearized theory developed by Cahn and Hilliard for
describing the early stages of spinodal decomposition can be
extended to the present case. The approximation consists in
neglecting the quartic term in the local part of the free en-
ergy, since at the beginning of phase separation, the order
parameter is small. It is known that the early regime with
domains not yet in local equilibrium is correctly described in
this approximation. Therefore, it could be instructive to com-
pare at initial times the evolution of the linearized system �4�
with our Monte Carlo results.

The solution of Eqs. �4� and �5� with b=0 gives for the
structure factor

C�k�,t� � ���k��t��2� �6�

the expression

C�k�,t� = �e−�0
t �K2�z�−1�dz + T

0

t

e−�0
z �K2�s�−1�dsdz , �7�

where K� = �kx ,ky + �̇kxz�, and �k��t� is the Fourier transform of
��x� , t�. The symmetry properties of Eq. �4� have been used to
rescale parameters to �=1, a=−1, �=1 �5�. � is the initial
value of the structure factor, here set to a constant.

In Fig. 1, C�k� , t� is plotted at two different times for the
case �̇=0.1, �=1, T=0. At the beginning ��̇t=0.45�, when
the shear has not yet produced sensible effects, the structure
factor has the typical isotropic Gaussian shape observed in
nonconserved coarsening. With time, while the extension of
C�k� , t� decreases and the height increases as usual in phase
separation, the function becomes anisotropic and squeezed
along the 45° direction, as can be observed at �̇t=1.25 in
Fig. 1. Later, the structure factor continues to become nar-

rower in the transversal direction with an orientation that
tends to align with the axis kx=0. The profile of the structure
factor will not change with time, and this feature, as we will
see, differs from the results of the simulations.

IV. RESULTS

We run simulations with different quenching temperatures
�measured in units of J /kB, where J is the coupling constant
and kB is the Boltzmann constant�, shear rates, and lattice
size up to L=8192. The initial condition consisted of filling
randomly one half of the lattice volume with up spins, and
then filling the other half with down spins. For each case, we
averaged macroscopic quantities over several histories �typi-
cally from 3 to 5�; results from different histories and initial
configurations have been seen to not differ in an observable
significant way, showing that the system is self-averaging for
the sizes considered.

We start to describe our results from the case with the
lowest temperature we considered �T=0.1J /kB�. The effects
of shear on the morphology of coarsening can be seen in the
sequence of configurations shown in Fig. 2 for the case �̇
=1/8, L=4096. After the initial stage, when domains are
formed from the mixed initial state, a bicontinuous pattern is
observed. As in many experiments and other simulations
with shear �4–6,8�, an incipient distortion produced by the
flow starts to appear from �̇t�1 �see the snapshot at �̇t
=1.25�. At �̇t=12.5, the anisotropy is very pronounced, and
the tilt angle between the main direction of domains and the
flow is observed to decrease as time passes by, as can be seen
at �̇t=31.25 and �̇t=312.5. At this last time, the interfaces
are almost completely aligned with the flow. The increase of
anisotropy goes with the development of nonuniformities in
the system. Domains with different thickness can be ob-
served in the last times shown. This is different from what
occurs in phase separation without shear, where the tendency
of domains to order on the same space length is more pro-
nounced. A quantitative description of the morphological
properties can be obtained from the structure factor. It is
defined as

FIG. 1. Time evolution of the structure factor defined in Eq. �7�
at T=0. The left plot corresponds to �̇t=0.45, and the right plot
corresponds to �̇t=1.25.
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C�k�,t� =
1

L2�	
x,y

�x,y�t�eik�·r��2
, �8�

where �x,y�t� is the value of the spin in the position r�
��x ,y� at time t.

Figure 3 shows the structure factors corresponding to the
configurations of Fig. 2. At �̇t=1.25, C�k� , t� is only slightly
anisotropic and closely resembles the shape observed in
coarsening with nonconserved dynamics without the driving
field. The pattern is also similar to the first pattern shown in

Fig. 1. Later, C�k� , t� becomes squeezed along the diagonal
kx=−ky, in agreement with the predictions of the linear
theory shown in Fig. 1. With time, the results of the simula-
tion become different, also qualitatively, from the expecta-
tions of linear theory. The structure factor, which becomes
more and more aligned with the direction kx=0, is not
peaked at the origin of the plane kx−ky but develops two
broad peaks related by k�→−k�. This symmetry, existing in the
model defined in Eq. �4�, is verified in all the results of our
simulations. The shape of the two peaks suggests a broad
distribution for the transversal size of domains. The fact that
the peaks do not tend to collapse one on the other means that
the average transversal length becomes stationary with time.

A standard measure of the average size of domains in the
two directions Rx and Ry can be obtained from the first mo-
menta of the structure factor

R� = dk�C�k�,t�� dk��k��C�k�,t� � = x,y . �9�

We also considered two other measures for the size of do-
mains in terms of correlation function and interface length.
The two-point correlation functions are defined as

Gx�r,t� =
1

L2 	
x,y��

�x,y�t��x+r,y�t� , �10�

and similarly for the transversal direction. Typical lengths
can be calculated in the usual way, that is, fixing a cutoff and
measuring R� at the intersection point of G� and this cutoff.
In terms of the interface length, R� can be defined as �1�

R� = L2/I�, � = x,y , �11�

where I� represents the total amount of interface in the �
direction, which can be calculated by the sum of the product
of the appropiate neighboring spins.

We see in Fig. 4 that all these quantities show the same
behavior and can be equivalently used to describe the growth
properties of the system. The evolution of R� is shown in the
lower part of Fig. 4 for the case so far discussed with �̇
=1/8. After the initial isotropic growth with Rx�Ry ,Ry
tends to a constant value, while Rx grows almost linearly.
The snapshots of Fig. 2 confirm that the late-time state of the
evolution is a multistriped configuration with average trans-
verse length Ry �10.

In the upper part of Fig. 4, we show the results of simu-
lations with weaker shear rate ��̇=1/1024� at the same tem-
perature. We see that also, in this case, the system remains
isotropic until times corresponding to �̇t�1 with Rx�Ry
� t1/2, as expected for systems with nonconserved dynamics
�this feature is indicated by the dashed line drawn at the early
stages of evolution in this plot�. After the maximum, Ry de-
creases for more than one decade until a regime is reached,
where it remains constant. Finite size effects can be observed
at the end of evolution. The decrease of Ry occurs in corre-
spondence with the formation of the two peaks of the struc-
ture factors at finite ky. The evolution and shape of the struc-
ture factor is similar to the case with stronger shear. The
instantaneous slope of Rx�t� is that of Ry augmented by 1, as
predicted by a simple scaling analysis �5�.

FIG. 2. Configurations of the system corresponding to different
times. From left to right, the upper configurations were taken at
�̇t=1.25 and �̇t=12.5, while the lower ones were taken at �̇t
=31.25 and �̇t=312.5, respectively. The square system is of size
L=4096, but only a portion of size L�=512 is displayed. The pa-
rameters of the system are �̇=1/8, T=0.1J /kB.

FIG. 3. Structure factors corresponding to the configurations of
Fig. 2.
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We also performed simulations at the temperature T
=0.83J /kB �20�. The behavior of Rx and Ry is shown in Fig.
5 for various �̇ and L=4096. Comparing with the results of
Fig. 4, one observes that fluctuations accelerate the aniso-

tropic evolution of the system. For example, when �̇
=1/1024, one can see that the system becomes anisotropic
�Rx�Ry� before it does in the case of T=0.1J /kB. Also, the
regime with Rx growing linearly is reached earlier and is
more clearly visible. We recall that, in nondriven binary mix-
tures, temperature fluctuations favor segregation, increasing
the factor A in the expression R�A�T�tz �1�.

Simulations of Fig. 5 confirm that the system evolves to-
wards a multistriped configuration, as suggested by the con-
stance of Ry at late times. An example of such configuration
is given in Fig. 6 for the case �̇=1/512. The existence of a
wide distribution of lengths in the transverse direction can be
observed also in this case.

Finally, to check that late-time properties are independent
of the lattice size, we also run simulations with the same
parameters and larger size �L=8192�, obtaining results con-
firming those with L=4096. The behavior of Rx and Ry is
shown in Fig. 7. The decreasing regime for Ry is better seen
in the case with the weakest shear rate �̇=1/8192. Ry in all
cases tends to a constant value.

The structure factor, corresponding to a late-time configu-
ration with �̇=1/512, T=0.83J /kB, and lattice size L=8192
is shown in Fig. 8. Also in this case, C�k� , t� exhibits two
broad peaks with the same shape of those at the latest times
in Fig. 3.

V. DISCUSSION AND CONCLUSIONS

We studied the kinetics of phase ordering in a driven Ising
model. Our results, with different shear rates and tempera-
tures, show that the evolution of domains is characterized at
late times by a constant value of Ry and a linear growth of
Rx. The asymptotic value of Ry decreases when �̇ is in-
creased; our data cannot allow us to extract a quantitative
behavior �8,23�.

To check that our results do not depend on finite size
effects, we performed simulations with lattice sizes up to L

FIG. 4. Evolution of domain sizes in a lattice of size L=4096 at
T=0.1J /KB, with different shear rates �̇. The upper plot displays the
evolution with �̇=1/1024; the lower plot shows the evolution with
�̇=1/8. The open �solid� triangles, circles, and squares indicate the
average domain size Rx�Ry� measured using the structure factor �Eq.
�9��, the correlation function �Eq. �10��, and the inverse of the in-
terface length �Eq. �11��, respectively. In the upper plot ��̇
=1/1024�, the early stages of evolution show a power-law behavior
with exponent 1 /2, as indicated by the dashed line. The dashed
lines drawn at the final evolution times in both plots indicate the
linear growth of the domains.

FIG. 5. Evolution of domain sizes in a lattice of size L=4096 at
T=0.83J /kB, using the correlation function �Eq. �9��. The values of
shear rates are showed in the legend. The dotted-dashed and the
dashed lines indicate that the domains grow with exponents 1 /2 and
1, respectively.

FIG. 6. Typical snapshot configuration of the whole system at
late times of evolution �t�3�104� for �̇=1/512. The system size
is L=8192.
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=8192. Before becoming constant, Ry reaches a maximum
that is more evident at weak shear rates. The maximum gen-
erally occurs at the end ��̇t�1� of the isotropic part of the
evolution of the system �Rx�Ry � t1/2�. During the decrease
of Ry, the structure factor develops two peaks at finite ky. The
large width of these peaks corresponds to a broad distribu-
tion for the domain transversal sizes, as can be seen looking
at the configurations.

This scenario is different from that suggested by the cal-
culations of �17�, based on Ohta-Jasnow-Kawasaki approxi-
mation �21�, predicting an unlimited decrease of Ry. Differ-
ent from previous simulations on smaller lattices, our results
show the existence of a decreasing regime for Ry, but also
show that this does not correspond to the asymptotic evolu-
tion of the system that is characterized by a constant Ry.

We can also compare our results with those coming from
studies of systems with conserved dynamics �1�. In that case,
without shear, for a two-dimensional system, due to the sup-
pression of the k� =0 mode imposed by the conservation law,

the structure factor has the shape of a volcano with radius
decreasing with time. When shear is applied, four peaks de-
velop on the edge of the volcano with the relative heights
oscillating with time �11�. The four peaks define two typical
lengths for each direction, which is a phenomenon not com-
mon in phase-separating systems. These features are not
present in our simulations.

To conclude, we have shown that multistriped configura-
tions characterize the asymptotic evolution of the system
considered in this work. This is analogous to what happens
in other driven statistical models �22�. It would be interesting
to see whether similar asymptotic states are obtained also in
the three-dimensional version of these models. Previous ana-
lytical results correctly describe only an intermediate time
regime.
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