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Efficient target strategies for contagion in scale-free networks
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Organizations or individuals often have an incentive to target a certain number of agents to launch a
contagion process effectively and efficiently, for example, sampling consumers in the diffusion of new prod-
ucts. We present an effective strategy for contagion in scale-free networks. The proposed strategy, hub strategy,
calls for targeting mostly the highly connected nodes. The biased level implemented in this strategy charac-
terizes its ability to identify hub nodes. We demonstrate that hub strategy can improve the contagion effects
evidently. We find that biased level increases first with heterogeneity level of contagion network but decreases
with that after a certain value, and decreases with initial adopter rate all the time. Moreover, degree correlations

in contagion networks may reduce biased level.
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The spread of innovations (or decisions, new ideas, influ-
ences, diseases, opinions, etc.) through social networks can
be viewed as dynamic processes in networks [ 1-6], in which
nodes represent agents (individuals or organizations) and
edges represent interactions among agents. One important
aim of these models is to show how observable collective
dynamics might arise from simple behavior of individual
agents and their interactions [2,5]. These studies deepen our
understanding of social and economic systems, and may be
helpful to develop strategy and design policy to control and
intervene these systems effectively. Interaction networks are
often modeled as regular lattices except for Ref. [6]. But real
social networks often exhibit small world effect and power-
law degree distributions [7,8], examples including sexual
contact network [9], corporate board network [10], etc. The
topological structure of interaction networks is an essential
factor to emerge out of collective dynamics. For instance,
systems are very robust to randomly deleting nodes, even
though the proportion is high, but fragile to intentionally
removing the highest degree nodes in scale-free networks
[11]. Another example is infectious diseases spreading more
easily and quickly in scale-free networks than in regular lat-
tices [12]. Therefore, exploiting the connectivity feature of
interaction networks to optimize system behaviors is attract-
ing the interests of researchers in many fields. Targeted vac-
cination strategy has been developed to prevent virus propa-
gation [13,14]. Cascade-based networks dynamics, examples
like cascade failure in power transmission grids, is very vul-
nerable to load and distribute heterogeneity and network het-
erogeneity. Considering the importance of network topology,
researchers have developed strategies incorporating the net-
work structure factor to optimize the robustness of systems
to both random and targeted attacks [15,16].

Following the philosophy of the above literatures, this
paper has proposed and investigated a strategy to promote
decision spread in scale-free social networks. Considering a
social system composed of many agents, each of them must
decide between two alternative actions, and their decisions
depend explicitly on the actions of other members of the
population [17]. Decision makers have many reasons to pay
attention to each other [18]: lacking of either related infor-
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mation or the ability to process available information; one
agent’s payoff being an explicit function of the actions of
others in collective actions. Regardless of the details, indi-
vidual decision makers have an incentive to pay attention to
the decisions of others. Once certain number of agents has
taken one action, their decisions would be observed by other
agents and would influence them to take the same action.
More and more agents would take that action because of
their neighbors already having done that. In economic terms,
a contagion process has happened to the system [17]. In
many social and economic issues, the more agents adopt the
expected action, the more effective and efficient the conta-
gion process is. For example, the more consumers adopt the
new product, the more incomes and profits firms can get
from the new product diffusion.

Our research interests have mostly been focused on how
to pick out a given number of agents as initial adopters in
order to launch a contagion process effectively and effi-
ciently. This issue is practical in many applications, such as
how to increase new product market share by sending free
products to a certain number of consumers [19], in order to
persuade them to make the innovations spread widely, etc.
[20]. Considering there exist some nodes with a prominent
number of neighbors and these nodes may have more influ-
ences than others in scale-free contagion networks, we
present an approach of targeting agents with most connec-
tions (hub nodes) as initial adopters, and this approach is
called hub strategy. It is difficult to identify the hub nodes
accurately because of incomplete information and uncer-
tainty in social networks. In order to overcome this short-
coming, our hub strategy only requires targeting the higher
degree nodes with higher probability, which is different from
similar ideas of targeted immunization regime in Ref. [13].
Hub strategy is also different from the traditionally random
approach or targeting agents based on their personality char-
acteristics [19].

In order to investigate the hub strategy, we model the
contagion process as a dynamic process that takes place in a
scale-free network. We first construct a scale-free contagion
network with N agents, in which each agent is connected to k
neighbors with probability P(k). For scale-free network, we
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have degree distributions P(k) ~k~7, 7 is a constant between
2 and 3. Next, we ignore the specific mechanisms involved
in the contagion process and consider the decision to be a
function of the relative number of other agents who are ob-
served to choose one alternative over the other. Considering
the threshold nature in decision process, the decision rules
can be described as follows: each agent has two choices of
state 0 and state 1, and observes the current states (either 0 or
1) of its k neighbors, and adopts state 1 if at least a threshold
fraction ¢ of its k neighbors are in state 1, otherwise it
adopts state 0. The decision threshold ¢ of each agent is
drawn from a beta distribution of density functions
f(dla,a)=¢'~4(1- d))l‘“l(o’l)(d))/B(a,a) ,a=1 and distribu-
tion function F(¢,a)=[¢f(x|a,a)dx, where B(a,a) is the
beta function and a is the control parameter. It is evident that
a=1 represents uniform distributions and a>1 can be
viewed as a reasonable approximation of normal distribu-
tions truncated at ¢p=0 and ¢=1. F(0,a)=0 and F(1,a)=1
mean all thresholds falling into the interval (0,1). Further-
more, different from the cascade model described in Ref.
[21], we relax the assumption of once an agent switched to
state 1 it would hold that all the time by permitting the agent
to switch back from state 1 to state 0 with the probability of
a small constant A.

Initially, the population is all off (state 0). In order to
launch the contagion process at time t=0, we pick out N,
nodes as initial adopters and let them switch from state O to
state 1. Therefore, the initial adopter rate is Ry=Ny/N. The
probability of a node with degree k picked out as initial
adopter pi(0) depends on its degree, ie., pi(0)
~k* 2 k*P(k),a € [0,°). Considering the value of initial
adopter rate R, we have

a

— R, O0<a<wx, 1
S k*P(k) " )

pi(0) =

where « characterizes the policy’s ability to identify hub
nodes. In this framework a=0 corresponds to the random
targeting regime, which means each node has the same prob-
ability being targeted; >0 corresponds to a hub targeting
regime which means that those nodes with more connections
have higher probability of being targeted. After a small frac-
tion R, of nodes switches on (state 1), the population then
evolves at successive time steps with all nodes updating their
states in random, asynchronous order according to the
threshold decision rule being stated above.

Our model is very similar with Watts’s cascade model
[21], but differs from that in some important aspects. First,
unlike that model, where the cascade process is perturbed by
small fractional nodes changing their states and therefore the
initial adopter rate is approximated to zero, the contagion
process is intentionally launched, and the initial adopters oc-
cupy a certain rate in order to assure that the contagion rate is
large enough. Contagion rate is defined as the rate of nodes
whose state is 1 in the stationary state. Second, Watts’s
model assumes agents would remain in state 1 for the dura-
tion of the dynamics once they were switched on, but our
model permits agents to switch back to state O if they are
already in state 1. This point makes our model more practical

PHYSICAL REVIEW E 72, 026133 (2005)

in modeling the contagion process. Finally, unlike the paper
exploring the conditions of triggering global cascade, our
paper aims at launching a contagion process effectively and
efficiently by implementing hub strategy.

Let p;(7) be the relative density of nodes being in state 1
with given connectivity k and 6(r) the probability of any
given edge point to a node being in state 1 at time ¢. Con-
sidering a node being in state 0 with degree k£ and having
exactly a neighbors being in state 1, F(a/k), the probability
of that node switching from state O to state 1 influenced by
its sneighbors’ decisions, satisfies with F(a/k)=P(¢p<alk).
The probability of a node with degree k having exactly a
neighbors being in state 1, conforming to binomial distribu-
tions, is (I;)( 6(1))°(1 - 6(1))*=9). Therefore, H,(6(1)), the prob-
ability of a node with degree k switching from state O to state
1 satisfies the following expression:

‘ k
CACGIEDS F(a/k)(a )(00))“(1 -0 (@)

a=0

According to the mean field method, we can write the con-
tagion dynamic equation as

dplt)
dt

=~ o\ + (1 = D) H(6(1)),

a

Ek“—P(k)RO’ (3)
k

Pr(D)]1=0 = pi(0) =

where 0(t)=(1/{k))2kP(k)p,(t). Equation (3) does not con-
sider degree correlations in contagion networks, there must
exist some limitations. However, we have relaxed the homo-
geneity assumption on the node’s connectivity usually imple-
mented in regular networks. Moreover, we have also inves-
tigated correlated scale-free networks by numerical
simulations.

Contagion dynamic equations (3) are infinite-dimensions
nonlinear systems. The attractor structure in these systems is
very interesting and still unclear in the mathematical com-
munity. It is difficult to get analytical results. Therefore, we
further study hub strategy by extensively numerical simula-
tions. Let contagion rate p be the average density of the
adopted nodes in the stationary state in which the ratio of
adopted nodes varies less than a given value (in most simu-
lations, this value is 0.001). By numerical simulations, we
find p is relevant to «. This behavior might arise from
sparsely heterogeneous network and finite simulation time
steps (we end the simulation if the variation is less than
0.001), but we still do not assure that. Furthermore, for \
>0, the only genuine attractor of the dynamics is the
“ground state” where all nodes are inactive. With nonzero
probability AV all active nodes are deactivated at the same
time. So after an INFINITE amount of time, all activity must
die out. However, it turns out that there are metastable states
with an extremely long lifetime in the presence of the ran-
dom deactivation process. Which of these metastable states
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FIG. 1. (Color online) Improvement effects E(a) as a function
of a with network size N=1000 and initial adopter rate Ry=0.015.
The specific value of @ corresponding to the highest improvement
effects is called the biased level, and it is about 2.5. Numerical
simulations have been averaged over 100 random scale-free net-
works with power law index 7=2-3.

is reached is highly dependent on the “contagion strategy,”
i.e., on the parameter «. We report numerical simulation re-
sults in the following.

Improvement effects of hub strategy: Hub strategy re-
quires targeting agents with the most connections, and «
characterizes its ability to identify hub nodes. Let p(a) be the
contagion rate for the given a, we define E(a)=p(a)/p(0) as
improvement effects that characterize how much the conta-
gion effects can be improved by implementing hub strategy,
where p(a) corresponds to the contagion rate for the hub
targeting regime and p(0) corresponds to the contagion rate
of the random targeting regime. As shown in Fig. 1, im-
provement effects E(a) increase proportionally with « first
but keep little variation when « is larger than a certain value
(this specific value is called biased level). This is reasonable
because increasing « can target more hub nodes when « is
small. When most hub nodes are already targeted, there is no
improvement derived from increasing a continually. Because
biased level is the value of @ which corresponds to the high-
est contagion rate p [or improvement effects E(a)], it is nec-
essary to implement hub strategy with this value in reality
applications. In Fig. 1, this value is about 2.5. It should be
pointed out that the value of biased level would be adjusted
by other factors discussed in the following paragraphs.

Network heterogeneity level and hub strategy: Contagion
network structure represents the influence pattern among
agents. A node’s degree represents not only how many nodes
it can influence but also which nodes can influence it. For
scale-free networks with degree of distributions P(k)~®,~"
(d is a normalized factor), parameter 7 characterizes the het-
erogeneity level of the contagion network [21]. Figure 2(a)
shows the relationship between contagion rate p and network
heterogeneity level 7. Given the value of biased level a,p
increases with 7 but decreases with that while 7 is larger than
a certain value. Therefore, there must exist an optimal value
of 7and « so that the combination could maximize contagion
rate p. Figure 2(b) shows the relationship between network
heterogeneity level 7 and corresponding biased level a. In-
tuitively, it is necessary to increase a so as to target hub
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FIG. 2. (Color online) (a) Contagion rate p as a function of
network heterogeneity level 7 with a=2.5. Because of p increasing
first and decreasing later with 7 for given «, there must exist certain
relationships between heterogeneity level 7 and biased level a. (b)
The relationship between biased level « and corresponding hetero-
geneity level 7 with N=1000 and Ry=0.015. Scale-free networks
with 7=2-3 are realized with the extended BA model [22].

nodes more accurately when 7 is small, and small « can also
assure targeting most hub nodes for high heterogeneous net-
works. Results shown in Fig. 2(b) have demonstrated this
intuition. Our research results suggest that we should adjust
the biased level « according to heterogeneity level 7 of the
contagion network at hand so as to obtain the best contagion
effects.

Initial adopter rate and hub strategy; In order to launch a
contagion process, we target a certain rate of agents (namely
initial adopter rate) as initial adopters to influence the deci-
sions of the remaining agents. Our results show improvement
effects E(a) decrease with initial adopter rate R, simply due
to saturation effects. By investigating the relationship be-
tween initial adopter rate and hub strategy, we find that the
biased level a of hub strategy also decreases proportionally
with initial adopter rate R, (as Fig. 3 shows). Considering
that R is about 0.01 in many economic problems [19], the
appropriate biased level is 1.5-2.5.

Degree correlations and hub strategy: Considering that
many social networks are assortatively mixed [23], we have
further investigated the uncorrelated and correlated scale-free
networks by comparing the biased level implemented in hub
strategy. Random scale-free networks with power law index
in the range of 2 to 3 are realized with an extended Barabdsi
and Albert model (BA) [22]. In this model, the end points of
the new edges are chosen according to a mixture of probabil-
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FIG. 3. (Color online) The relationship between initial adopter
rate R and corresponding biased level a.
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FIG. 4. (Color online) Biased level « corresponding to network
heterogeneity level 7 for uncorrelated network (BA) and correlated
network (CNN) with N=1000 and Ry=0.02. Simulations are aver-
aged over 100 realizations.

ity vy for preferential attachment and 1 -y for uniform attach-
ment. And 7 is a function of . Correlated networks with the
same power law index are realized with the connecting
nearest-neighbor model (CNN) [24]. Networks are generated
by iteratively performing the following rules: (1) introduce a
new vertex with probability 1—u and create an edge from
the new vertex to a vertex j selected at random; (2) convert
one potential edge selected at random with probability u into
an edge. We can modulate u to get required 7. As Fig. 4
shows, the characteristics of degree correlations in contagion
networks reduce the biased level for each 7. This result sug-
gests that the biased level should take a smaller value in
correlation networks than in random scale-free networks.

Threshold function and hub strategy: We have not found
distinctly any qualitative difference in different threshold
functions that conform to the beta distributions. We further
investigated the distribution of the contagion cascade. As
shown in Fig. 5, cascade distributions can be roughly fitted
by power law distribution and the scale index (as labeled in
the parentheses) decreases with standard deviation of the
agents’ decision thresholds. Therefore, the heterogeneity of
decision threshold distribution may affect the time scale for
the contagion dynamics.

In summary, we have proposed an efficient strategy to
launch a contagion process—hub strategy, which exploits the
scale-free characteristic of the contagion network. By exten-
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FIG. 5. (Color online) Plot of the probability density of having a
cascade of size s in log-log scale for threshold function F,
=F(¢,1),F,=F($,2),F3=F(¢,3), and F,=F(¢,4) with N=1000.
The standard deviations of decision threshold for each threshold
distribution function are 0.2882, 0.2235, 0.1837, and 0.1676, re-
spectively. We fit the curves roughly and find that P(s) ~ s~”, where
b (labeled in the parentheses) decreases with the standard deviations
of the threshold function. The peaks at the end of the each curve are
due to finite size effects. Numerical simulations have been averaged
over 100 realizations.

sive numerical simulations, we find that the biased level
implemented in the hub strategy should be adjusted accord-
ing to network heterogeneity level and initial adopter rate.
Moreover, degree correlations in the contagion network also
reduce the biased level. Threshold function impacts on the
time scale of the contagion dynamics, but not on the station-
arity results. Implications of our results for launching the
contagion process are that (1) we should target hub nodes
with certain accuracy, (2) implementing the hub strategy
must take into account specific contexts, especially conta-
gion network and initial adopter rate, etc. Our research dem-
onstrates that statistical mechanics may be a good approach
to study social and economic problems.
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