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Although the inference of global community structure in networks has recently become a topic of great
interest in the physics community, all such algorithms require that the graph be completely known. Here, we
define both a measure of local community structure and an algorithm that infers the hierarchy of communities
that enclose a given vertex by exploring the graph one vertex at a time. This algorithm runs in time O�k2d� for
general graphs when d is the mean degree and k is the number of vertices to be explored. For graphs where
exploring a new vertex is time consuming, the running time is linear, O�k�. We show that on computer-
generated graphs the average behavior of this technique approximates that of algorithms that require global
knowledge. As an application, we use this algorithm to extract meaningful local clustering information in the
large recommender network of an online retailer.
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I. INTRODUCTION

Recently, physicists have become increasingly interested
in representing the patterns of interactions in complex sys-
tems as networks �1–4�. Canonical examples include the In-
ternet �5�, the World Wide Web �6�, social networks �7�, ci-
tation networks �8,9�, and biological networks �10�. In each
case, the system is modeled as a graph with n vertices and m
edges, e.g., physical connections between computers, friend-
ships between people, and citations among academic papers.

Within these networks, the global organization of vertices
into communities has garnered broad interest both inside and
beyond the physics community. Conventionally, a commu-
nity is taken to be a group of vertices in which there are more
edges between vertices within the group than to vertices out-
side of it. Although the partitioning of a network into such
groups is a well-studied problem, older algorithms tend to
only work well in special cases �11–15�. Several algorithms
have recently been proposed within the physics community,
and have been shown to reliably extract the known commu-
nity structure in real world networks �16–21�. Similarly, the
computer science community has proposed algorithms based
on the concept of flow �22�.

However, each of these algorithms require knowledge of
the entire structure of the graph. This constraint is problem-
atic for networks like the World Wide Web, which for all
practical purposes is too large and too dynamic to ever be
known fully, or networks that are larger than can be accom-
modated by the fastest algorithms �21�. In spite of these limi-
tations, we would still like to make quantitative statements
about community structure, albeit confined to some acces-
sible and known region of the graph in question. For in-
stance, we might like to quantify the local communities of
either a person given their social network or a particular
website given its local topology in the World Wide Web.

Here, we propose a general measure of local community
structure, which we call local modularity, for graphs in

which we lack global knowledge and that must be explored
one vertex at a time. We then define a fast agglomerative
algorithm that maximizes the local modularity in a greedy
fashion, and test the algorithm’s performance on a series of
computer-generated networks with known community struc-
ture. Finally, we use this algorithm to analyze the local com-
munity structure of the online retailer Amazon.com’s recom-
mender network, which is composed of more than 400 000
vertices and 2 million edges. Through this analysis, we dem-
onstrate the existence of a mesoscopic network structure that
is distinct from both the microstructure of vertex statistics
and the global community structure previously given in �21�.
Interestingly, we find a wide variety of local community
structures, and that generally, the local modularity of the net-
work surrounding a vertex is negatively correlated with its
degree.

II. LOCAL MODULARITY

The inference of community structure can generally be
reduced to identifying a partitioning of the graph that maxi-
mizes some quantitative notion of community structure.
However, when we lack global knowledge of the graph’s
topology, a measure of community structure must necessarily
be independent of those global properties. For instance, this
requirement precludes the use of the modularity metric Q,
due to Newman and Girvan �17�, as it depends on m, the
total number of edges.

Suppose that in the graph G, we have perfect knowledge
of the connectivity of some set of vertices, i.e., the known
portion of the graph, which we denote C. This necessarily
implies the existence of a set of vertices U about which we
know only their adjacencies to C. Further, let us assume that
the only way we may gain additional knowledge about G is
by visiting some neighboring vertex vi�U, which yields a
list of its adjacencies. As a result, vi becomes a member of C,
and additional unknown vertices may be added to U. This
vertex-at-a-time discovery process is directly analogous to
the manner in which “spider” or “crawler” programs harvest
the hyperlink structure of the World Wide Web.*Electronic address: aaron@cs.unm.edu
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The adjacency matrix of such a partially explored graph is
given by

Aij = �1, if vertices i and j are connected,

and either vertex is in C;

0, otherwise.
� �1�

If we consider C to constitute a local community, the most
simple measure of the quality of such a partitioning of G is
simply the fraction of known adjacencies that are completely
internal to C. This quantity is given by

�
ij

Aij��i, j�

�
ij

Aij

=
1

2m*�
ij

Aij��i, j� , �2�

where m*= 1
2�ij Aij, the number of edges in the partial adja-

cency matrix, and ��i , j� is 1 if both vi and v j are in C, and 0
otherwise. This quantity will be large when C has many in-
ternal connections and few connections to the unknown por-
tion of the graph. This measure also has the property that
when �C�� �U�, the partition will almost always appear to be
good.

If we restrict our consideration to those vertices in the
subset of C that have at least one neighbor in U, i.e., the
vertices that make up the boundary of C �Fig. 1�, we obtain a
direct measure of the sharpness of that boundary. Addition-
ally, this measure is independent of the size of the enclosed
community. Intuitively, we expect that a community with a
sharp boundary will have few connections from its boundary
to the unknown portion of the graph, while having a greater
proportion of connections from the boundary back into the
local community. In the interest of keeping the notation con-
cise, let us denote those vertices that comprise the boundary
as B, and the boundary-adjacency matrix as

Bij = �1, if vertices i and j are connected,

and either vertex is in B;

0, otherwise.
� �3�

Thus, we define the local modularity R to be

R =

�
ij

Bij��i, j�

�
ij

Bij

=
I

T
, �4�

where ��i , j� is 1 when either vi�B and v j �C, or vice versa,
and is 0 otherwise. Here, T is the number of edges with one
or more end points in B, while I is the number of those edges
with neither end point in U. This measure assumes an un-
weighted graph, although the weighted generalization is
straightforward �23�.

A few comments regarding this formulation are worth-
while before proceeding. By considering the fraction of
boundary edges that are internal to C, we ensure that our
measure of local modularity lies on the interval 0�R�1,
where its value is directly proportional to sharpness of the
boundary given by B. This is true except when the entire
component has been discovered, at which point R is unde-
fined. If we like, we may set R=1 in that case in order to
match the intuitive notion that an entire component consti-
tutes the strongest kind of community. Finally, there are cer-
tainly alternative measures that can be defined on B, how-
ever, in this paper we consider only the one given.

III. THE ALGORITHM

For graphs like the World Wide Web, in which one must
literally crawl the network in order to discover the adjacency
matrix, any analysis of local community structure must nec-
essarily begin at some source vertex v0. In general, if the
explored portion of the graph has k vertices, the number of
ways to partition it into two sets, those vertices considered a
part of the same local community as the source vertex and
those considered outside of it, is given by 2k−2−1, which is
exponential in the size of the explored portion of the net-
work. In this section, we describe an algorithm that only
takes time polynomial in k, and that infers local community
structure by using the vertex-at-a-time discovery process
subject to maximizing our measure of local modularity.

Initially, we place the source vertex in the community,
v0=C, and place its neighbors in U. At each step, the algo-
rithm adds to C �and to B, if necessary� the neighboring
vertex that results in the largest increase �or smallest de-
crease� in R, breaking ties randomly. That is, for each vertex
v j �U, we calculate the �Rj that corresponds to the change
in local modularity as a result of joining v j to C. The vertex
that results in the largest positive change is then joined. Fi-
nally, we add to U any newly discovered vertices, and update
our estimate of R. This process continues until it has agglom-
erated either a given number of vertices k, or it has discov-
ered the entire enclosing component, whichever happens
first. Generally, these operations can be done quite quickly
by an appropriate use of arrays and linked lists. The
pseudocode for this process is given in Table I. As we will
see in the two subsequent sections, this algorithm performs
well on both computer-generated graphs with some known
community structure and on real world graphs in which we
can manually verify the sensibility of the inferred communi-
ties.

FIG. 1. An illustration of the division of an abstract graph into
the local community C, its boundary B, and the edges that connect
B to the largely unknown neighbors U.
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The computation of the �Rj associated with each v j �U
can be done quickly using an expression derived from Eq.
�4�:

�Rj =
x − Ry − z�1 − R�

T − z + y
, �5�

where x is the number of edges in T that terminated at v j ,y is
the number of edges that will be added to T by the agglom-
eration of v j �i.e., the degree of v j is x+y�, and z is the
number of edges that will be removed from T by the agglom-
eration. Because �Rj depends on the current value of R, and
on the y and z that correspond to v j, each step of the algo-
rithm takes time proportional to the number of vertices in U.
This is roughly kd, where d is the mean degree of the graph;
we note that this will be a significant overestimate for graphs
with nontrivial clustering coefficients, significant community
structure, or when C is a large portion of the graph. Thus, in
general, the running time for the algorithm is O�k2d�, or
simply O�k2� for a sparse graph, i.e., when m	n. As it ag-
glomerates vertices, the algorithm outputs a function R�t�,
the local modularity of the community centered on v0 after t
steps, and a list of vertices paired with the time of their
agglomeration.

The above calculation of the running time is somewhat
misleading, as it assumes that the algorithm is dominated by
the time required to calculate the �Rj for each vertex in U;
however, for graphs like the World Wide Web, where adding
a new vertex to U requires the algorithm to fetch a web page
from a remote server, the running time will instead be domi-
nated by the time-consuming retrieval. When this is true, the
running time is linear in the size of the explored subgraph,
O�k�.

A few comments regarding this algorithm are due. Be-
cause we greedily maximize the local modularity, a neigh-
boring high degree vertex will only be agglomerated if a
sufficient number of its neighbors have been explored. It is
this behavior that prevents the algorithm from crossing a
community boundary until absolutely necessary. Addition-
ally, the algorithm is somewhat sensitive to the degree dis-
tribution of the source vertex’s neighbors: when the source

degree is high, the algorithm will first explore its low degree
neighbors. This implicitly assumes that high degree vertices
are likely to sit at the boundary of several local communities.
While certainly not the case in general, this may be true for
some real world networks. We shall return to this idea in a
later section.

Finally, although one could certainly stop the algorithm
once the first enclosing community has been found, in prin-
ciple, there is no reason that it cannot continue until some
arbitrary number of vertices have been agglomerated. Doing
so yields the hierarchy of communities that enclose the
source vertex. In a sense, this process is akin to the follow-
ing: given the dendrogram of the global community hierar-
chy, walk upward toward the root from some leaf v0 and
observe the successive hierarchical relationships, as repre-
sented by junctions in the dendrogram. Thus, the enclosing
communities inferred by our algorithm for some source ver-
tex is the community hierarchy from the perspective of that
vertex.

IV. COMPUTER-GENERATED GRAPHS

As has become standard with testing community infer-
ence techniques, we apply our algorithm to a set of
computer-generated random graphs that have known com-
munity structure �17�. In these graphs, n=128 vertices are
divided into four equal-sized communities of 32 vertices.
Each vertex has a total expected degree z that is divided
between intra- and intercommunity edges such that
z=zin+zout. These edges are placed independently and at ran-
dom so that, in expectation, the values of zin and zout are
respected. By holding the expected degree constant z=16,
we may tune the sharpness of the community boundaries by
varying zout. Note that for these graphs, when zout=12, edges
between vertices in the same group are just as likely as edges
between vertices that are not.

Figure 2 shows the average local modularity R as a func-
tion of the number of steps t, over 500 realizations of the
graphs described above, with a randomly selected source

TABLE I. The general algorithm for the greedy maximization of
local modularity, as given in the text.

add v0 to C
add all neighbors of v0 to U
set B=v0

while �C��k do

for each v j �U do

compute �Rj from Eq. �5�
end for

find v j such that its �Rj is maximum

add that v j to C
add all new neighbors of that v j to U
update R and B
end while

FIG. 2. �Color online� Average local modularity R as a function
of the number of agglomerations t �details described in the text;
error bars are omitted for clarity�. By varying the expected number
of intercommunity edges per node zout, the strength of the commu-
nity boundaries are varied.
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vertex. For the sake of clarity, only data series for zout�6.0
are shown and error bars are omitted. Sharp community
boundaries correspond to peaks in the curve. As zout grows,
the sharpness of the boundaries and the height of the peaks
decrease proportionally. When the first derivative is positive
everywhere, e.g., for zout�5, the inferred locations of the
community boundaries may be extracted by finding local
minima in the second derivative, possibly after some
smoothing.

From this information we may grade the performance of
the algorithm on the computer-generated graphs in the fol-
lowing manner: we label each vertex with its true community
membership, run the local inference algorithm with a ran-
domly selected source vertex, detect the community bound-
aries as described above, and compute the fraction of cor-
rectly classified vertices for each community. Averaging over
500 instantiations provides an estimate, as a function of zout,
of the mean fraction of correctly classified vertices for each
community �Fig. 3�; error bars depict one standard deviation.
As a method for inferring the first enclosing community, our
algorithm correctly classifies, on average, more than 50% of
the vertices even when the boundaries are weak, i.e., when
zout=8. We note that for such computer-generated graphs,
our algorithm’s average performance approximates that of
more global methods �17–19�, although the variance in the
quality of classification is substantially larger for weak
boundaries. Indeed, such an increase is to be expected as the
algorithm we describe here may be misled by large fluctua-
tions in local structure, while global algorithms may not.

Recently, another approach to inferring community struc-
ture using only local information appeared �24�. This alter-
native technique relies upon growing a breadth-first tree out-
ward from the source vertex v0, until the rate of expansion
falls below an arbitrary threshold. The uniform exploration
has the property that some level in the tree will correspond to
a good partitioning only when v0 is equidistant from all parts
of its enclosing community’s boundary. On the other hand,
by exploring the surrounding graph one vertex at a time, our
algorithm will avoid crossing boundaries until it has ex-
plored the remainder of the enclosing community.

V. LOCAL COPURCHASING HABITS

In this section, we apply our local inference algorithm to
the recommender network of Amazon.com, collected in Au-
gust 2003, which has n=409 687 vertices, m=2 464 630
edges, and thus a mean degree of 12.03. We note that the
degree distribution is fairly right-skewed, having a standard
deviation of 14.64. Here, vertices are items such as books
and digital media sold on Amazon’s website, while edges
connect pairs of items that are frequently purchased together
by customers. It is this copurchasing data that yields recom-
mendations for customers as they browse the online store.
Although, in general, the algorithm we have described is
intended for graphs like the World Wide Web, the Amazon
recommender network has the advantage that, by virtue of
being both very large and fully known, we may explore glo-
bal regularities in local community structure without concern
for sampling bias in the choice of source vertices. Addition-
ally, we may check the inferred the community structures
against our, admittedly heuristic, notions of correctness.

As illustrative examples, we choose three qualitatively
different items as source vertices: the compact disk Alegria
by Cirque du Soleil, the book Small Worlds and the book
Harry Potter and the Order of the Phoenix by J. K Rowling.
These items have degree 15, 19, and 3117, respectively. At
the time the network data was collected, the Harry Potter
book was the highest degree vertex in the network, its release
date having been June 2003. For each of these items, we
explore k=25 000 associated vertices. Figure 4 illustrates the
local modularity as a function of the number of steps t for
each item; an analogous data series for a random graph with
the same degree distribution �25� has been plotted for com-
parison. We mark the locations of the five principle enclosing
communities with large open symbols, where their location
was determined by the same second derivative test described
above.

These time series have several distinguishing features.
First, Alegria has the smallest enclosing communities, com-
posed of t= 
10,30,39,58,78� vertices, and these communi-

FIG. 3. �Color online� Fraction of correctly classified nodes, by
community, as a function of the number of inter-community edges
zout. Although there the variance increases as the community bound-
aries become less sharp, the average behavior degrades gracefully.

FIG. 4. �Color online� Local modularity R for three items in the
Amazon.com recommender network, shown on log-linear axes. For
comparison, the time series for a random graph with the same de-
gree distribution is shown. The large open symbols indicate the
locations of the five strongest enclosing communities.

AARON CLAUSET PHYSICAL REVIEW E 72, 026132 �2005�

026132-4



ties are associated with high values of local modularity. The
first five enclosing communities all have R�0.62, while the
third community corresponds to R=0.81, indicating that only
about 20% of the boundary edges reach out to the rest of the
network. In contrast, the communities of Small Worlds con-
tain t= 
36,48,69,82,94� vertices, while the Harry Potter
book’s communities are extremely large, containing t
= 
607,883,1270,1374,1438� vertices. Both sets have only
moderate values of local modularity, R�0.43. It is notable
that the local modularity functions for all three items follow
relatively distinct trajectories until the algorithm has agglom-
erated roughly 10 000 items. Beyond that point, the curves
begin to converge, indicating that, from the perspectives of
the source vertices, the local community structure has be-
come relatively similar.

To illustrate the inferred local structure, we show the par-
tial subgraph that corresponds to the first three enclosing
local communities for the compact disc Alegria in Fig. 5.
Here, communities are distinguished by shape according to
the order of discovery �circle, diamond, and square, respec-
tively�, and vertices beyond these communities are denoted
by triangles. Items in the first enclosing community are uni-
formly compact disks produced by Cirque du Soleil. Items in
the second are slightly more diverse, including movies and
books about the troupe, the Cirque du Soleil compact disk
entitled Varekai, and one compact disk by a band called Era;
the third group contains both new and old Cirque du Soleil
movies. Varekai appears to have been placed outside the first
community because it has fewer connections to those items
than to items in the subsequent enclosing communities.
Briefly, we find that the enclosing local communities of
Small Worlds are populated by texts in sociology and social
network analysis, while the Harry Potter book’s communities
have little topical similarity.

In Fig. 5, the labels 1 and 4 denote the items Alegria and
Order of the Phoenix, respectively. It is notable that these
items are only three steps away in the graph, yet have ex-

tremely different local community structures �Fig. 4�. If an
item’s popularity is reflected by its degree, then it is reason-
able to believe that the strength of the source vertex’s local
community structure may be inversely related to its degree.
That is, popular items like Order of the Phoenix may connect
to many well-defined communities by virtue of being pur-
chased by a large number of customers with diverse interests,
while niche items like Cirque du Soleil’s Alegria exhibit
stronger local community structure from more specific
copurchasing habits. Such a structure appears to be distinct
from both the macroscopic structure discovered using global
community inference methods �21� and the microscopic
structure of simple vertex statistics such as the clustering
coefficient or assortative mixing, i.e., topological correla-
tions based on degree or vertex-type similarity �26�. We call
this intermediate level of topological structure “mesoscopic.”

With the exception of social networks, the degree of ad-
jacent vertices in most complex networks appears to be nega-
tively correlated in most networks. This property is often
called “disassortative” mixing �26�, and can be caused by a
high clustering coefficient, global community structure, or a
specific social mechanism �27�. However, for the Amazon
recommender network, we find that the assortativity
coefficient is statistically no different from zero,
r=−3.01	10−19±1.49	10−4, yet the network exhibits a
nontrivial clustering coefficient, c=0.17 and strong global
community structure with a peak modularity of Q=0.745
�21�. Returning to the suggested inverse relationship between
the degree of the source vertex and the strength of its sur-
rounding community structure, we sample for 100 000 ran-
dom vertices the average local modularity over the first
k=250 steps. We find the average local modularity to be
relatively high, �Ramzn
=0.49±0.08, while a random graph
with the same degree distribution yields �Rrand
=0.16±0.01.
The variance for the Amazon graph is due to the contribu-
tions of high degree vertices. In Fig. 6, we plot from our
random sample the average local modularity for all source
vertices with degree of at least d. Notably, the average is

FIG. 5. The first three enclosing communities for Cirque du
Soleil’s Alegria in Amazon.com’s recommender network; commu-
nities are distinguished by shape �circles, diamonds, squares, re-
spectively�. Connections to triangles represent connections to items
in the remaining unknown portion of the graph. Alegria and Order
of the Phoenix are denoted by 1 and 4, respectively.

FIG. 6. �Color online� The average local modularity over the
first 250 steps for source vertices with degree at least d. The “knee”
in the upper data series is located at d=13; the mean degree for the
network is 12.03. The logarithmic falloff illustrates the negative
correlation between the source vertex degree and the strength of the
surrounding local community.
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relatively constant until d=13, after which it falls off loga-
rithmically. This supports the hypothesis that, in the recom-
mender network, there is a weak inverse relationship be-
tween the degree of the source vertex and the strength of its
surrounding local community.

Naturally, there are many ways to use the concept of local
community structure to understand the properties of real
world networks. Further characterizations of the Amazon
graph are beyond the scope of this paper, but we propose a
rigorous exploration of the relationship between the source
vertex degree and its surrounding local community structure
as a topic for future work.

VI. CONCLUSIONS

Although many recent algorithms have appeared in the
physics literature for the inference of community structure
when the entire graph structure is known, there has been
little consideration of graphs that are either too large for even
the fastest known techniques, or that are, like the World
Wide Web, too large or too dynamic to ever be fully known.
Here, we define a measure of community structure that de-
pends only on the topology of some known portion of a
graph. We then give a simple fast, agglomerative algorithm
that greedily maximizes our measure as it explores the graph
one vertex at a time. When the time it takes to retrieve the
adjacencies of a vertex is small, this algorithm runs in time
O�k2d� for general graphs when it explores k vertices, and
the graph has mean degree d. For sparse graphs, i.e., when
m	n, this is simply O�k2�. On the other hand, when visiting
a new vertex to retrieve its adjacencies dominates the run-
ning time, e.g., downloading a web page on the World Wide
Web, the algorithm takes time linear in the size of the ex-
plored subgraph, O�k�. Generally, if we are interested in

making quantitative statements about local structure, that is,
when k
n, it is much more reasonable to use an algorithm
which is linear or even quadratic in k, than an algorithm that
is linear in the size of the graph n. Finally, we note that our
algorithm’s simplicity will make it especially easy to inco-
porate into web spider or crawler programs for the discovery
of local community structures on the World Wide Web graph.

Using computer-generated graphs with known community
structure, we show that our algorithm extracts this structure
and that its average performance approximates that of more
global inference algorithms �17–19� that rely on global infor-
mation. We then apply our algorithm to the large recom-
mender network of the online retailer Amazon.com, and ex-
tract the local hierarchy of communities for several
qualitatively distinct items. Additionally, we show that a ver-
tex’s degree is inversely related to the strength of its sur-
rounding local structure. This discovery points to the exis-
tence of topological structure in real world networks that is
above the single-vertex structure such as the clustering coef-
ficient, but below that of the global community structure.
Finally, this algorithm should allow researchers to character-
ize the structure of a wide variety of other graphs, such as the
World Wide Web, and we look forward to seeing such appli-
cations.
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