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This paper describes a model for generating time series which exhibit the statistical phenomenon known as
long-range dependence �LRD�. A Markov modulated process based on an infinite Markov chain is described.
The work described is motivated by applications in telecommunications where LRD is a known property of
time series measured on the Internet. The process can generate a time series exhibiting LRD with known
parameters and is particularly suitable for modeling Internet traffic because the time series is in terms of ones
and zeros, which can be interpreted as data packets and interpacket gaps. The method is extremely simple, both
computationally and analytically, and could prove more tractable than other methods described in the literature.
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I. INTRODUCTION

Long-range dependence �LRD� is a statistical phenom-
enon that is used to describe a process that exhibits signifi-
cant correlations even between widely separated points. A
more formal definition is given in Sec. I A. Roughly speak-
ing, a process with a high degree of LRD can be thought of
as correlated at all scales. A good introduction to the topic of
LRD is provided by �1�, and a discussion in the context of
telecommunications traffic is given by �2�. LRD is most of-
ten characterised by the Hurst parameter H, which is in the
range �1/2 ,1� for a time series that exhibits LRD. If H
=1/2 then this indicates the data is independent or has only
short-range correlations. The topic of LRD has attracted a
great deal of interest since LRD has been observed in time
series measured in fields as diverse as finance, Internet traf-
fic, and hydrology.

This paper presents and tests a mechanism for generating
LRD based on an infinite Markov chain. The traffic stream
generated is binary in nature, and the model has only two
parameters, the mean and the Hurst parameter of the gener-
ated traffic. This section provides a brief introduction to the
topic of LRD in the context of telecommunications networks
and discusses currently used generation mechanisms for
modeling LRD and also methods that are currently used to
measure LRD in a time series. Section II describes the infi-
nite Markov model. In Sec. III it is proven that the model
does, in fact, generate a time series with a given mean and
with LRD having a given Hurst parameter. Finally, Sec. IV
tests the model against other standard LRD generation mod-
els and discusses the advantages of the model.

A. Brief introduction to LRD

A number of different �and not necessarily equivalent�
definitions of LRD are in use in the literature. A commonly
used definition is the one given here.

Definition 1. A weakly stationary time series exhibits

LRD if the absolute value of its autocorrelation function
(ACF) ��k� does not have a finite sum. That is,

�
k=−�

�

���k�� = � .

It is often assumed that the ACF has the specific
asymptotic form

��k� � c�k−�, �1�

for some positive constant c� and some real �� �0,1�. Note
that this is equivalent to a functional form for the spectral
density f��� defined by

f��� =
�2

2�
�

k=−�

�

��k�eik�.

Equation �1� is equivalent to

f��� � cf���−�,

as �→0, where �2 is the variance, cf is some positive con-
stant and �� �0,1�. The Hurst parameter is then given by
H= �1+�� /2.

It should be noted that here, and throughout this paper,
f�x��g�x� is used to mean f�x� /g�x�→1 as x→�; some-
times, in the literature, this symbol is used to mean asymp-
totically proportional to or f�x� /g�x�→k for some constant k
as x→�.

The constant � in �1� is sometimes expressed in terms of
the Hurst parameter H=1−� /2. The Hurst parameter as de-
fined by this relation and �1� is the most commonly used
measure of LRD in the telecommuncations literature.

The reason for the interest in the subject within the field
of telecommunications is the fact that LRD has been ob-
served in various time series related to Internet traffic �3–5�.
It is widely recognized that the engineering implications of
LRD on queuing performance can be considerable. If Inter-
net traffic is not modeled well by independent or short-range
dependent models, then much traditional queuing theory
work based on the assumption of Poisson processes is no
longer appropriate. Traffic, which is long-range dependent in
nature can have a queuing performance that is significantly
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worse than Poisson traffic. Modeling has shown how phase
transitions can arise in computer networks �6�, and how this
phase transition can be related to LRD �7,8�.

In general, it has been found that a higher Hurst parameter
often increases delays in a network, increases the probability
of packet loss, and affects a number of measures of engineer-
ing importance. In fact, Erramilli et al. �9� claims that the
Hurst parameter is “…a dominant characteristic for a number
of packet traffic engineering problems… .” Some of the ef-
fects on queuing performance are given by �10,11�. How-
ever, �12� shows that although the Hurst parameter is impor-
tant to queuing, the relationship is not a simple one; in some
cases a high Hurst parameter may improve performance or
have no effect. The issue of the scale and nature of the effect
of LRD on queuing remains contentious.

B. Current generation mechanisms for LRD

A number of modeling techniques are currently used for
generating traffic streams exhibiting LRD. Of these, the most
commonly encountered in the telecommunications literature
are fractional Gaussian noise processes �FGN�, fractional au-
toregressive integrated moving average models �FARIMA,
also refered to as ARFIMA�, iterated chaotic maps, and
wavelet modeling.

The FGN process is usually defined as increments of the
fractional Brownian motion �FBM� process. An FBM pro-
cess BH�t� is defined by

P�BH�t + k� − BH�t� 	 x� = �2��− 1
2k−H�

−�

x

exp	 − u2

2k2H
du ,

where P�X� is a probability of an event X and H� �1/2 ,1� is
the Hurst parameter. This can be seen as a generalization of
the more common Gaussian white-noise process. A number
of authors have described methods for generating FGN and
FBM �13–15�.

The FARIMA model is an obvious modification of the
traditional ARIMA�p ,d ,q� model from time series analysis,
allowing d� �−1/2 ,1 /2� instead of d�Z+. FARIMA pro-
cesses were proposed by �16�, and a description in the con-
text of LRD can be found in pp. 59–66 of Ref. �1�. As might
be expected the d parameter relates to the Hurst parameter.
The relation is simply H=d+1/2. Note that this only pro-
duces legitimate values for H when d� �0,1 /2�.

Iterated chaotic maps, which exhibit intermittency, are
also commonly used to generate time series exhibiting LRD.
Given a starting value x0� �0,1�, then a time series �xn :n
�N� can be generated by the following map:

xn+1 = 
xn +
1 − d

dm1
xn

m1, 0 
 xn 
 d ,

xn −
d

�1 − d�m2
�1 − xn�m2, d 
 xn 
 1,�

where d� �0,1� and m1 ,m2� �3/2 ,2�. If x0� �0,1� then xn

� �0,1� for all n�N. If this time series is used to generate a
binary time series �yn :n�N� by the rule yi=0 if xi
d and
yi=1 otherwise, then the series can be shown to exhibit LRD

with a Hurst parameter given by H= �3m−4� / �2m−2�. This
map is illustrated in Fig. 1. An explanation for the presence
of LRD in this map is provided by examining the behavior of
the orbits at xi near zero or one. The escape from points near
zero or one is extremely slow, and this causes long sequences
of zeros or ones in the generated yi series. Pioneering work
in this area is �17� with early applications to telecommuni-
cations being given by �18�. This mechanism is particularly
suited for generating data for modeling of packet networks,
since the ON �yi=1� state can be considered to be a packet
and the OFF �yi=0� state as an interpacket gap.

In fact, the work described in �17� relates to the Markov
chain-based work described in this paper as it approximates
the chaotic map approach as a piecewise linear map, which
can, in turn, be modeled as a Markov chain with the topology
described later. A number of other papers have used Markov
chains to model linear approximations to intermittent maps
�19–22�. The papers �17,18,23� relate the piecewise linear
approximations of intermittency maps to LRD and show how
certain parameters for Markov chains give rise to LRD in a
process arising from the chain. However, we could find no
reference to papers that relate intermittency, in general, to
LRD.

A technique gaining favor in modeling �and also in mea-
suring� LRD is wavelet analysis. This allows the LRD hy-
pothesis to be generalized to multifractals. LRD defines a
single scaling behavior for the system �which applies in the
tail of the ACF�. If this scaling behavior was the same at any
scale, then the process defined would be a monofractal.
However, if the scaling behavior differs across scales, then
the process is multifractal. There is some evidence that In-
ternet traffic exhibits different scaling behavior at different
time scales. A general description of multifractal processes
and wavelets is found in �24�, and a description of how
wavelets can be used to create models with the same multi-
fractal spectrum as a given data set can be found in �25�.

C. Measurement techniques for LRD

A number of techniques are known for estimating the
Hurst parameter from real data. There is no single technique

FIG. 1. Graph of a map that can be used to generate LRD.
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that can be considered perfect. Computer code and analysis
of various techniques can be found at �26�. Comparisons of
measurement techniques can be found in �27–29�. In this
paper, five techniques are used: the R/S statistic �in two vari-
ants�, the aggregated variance, the periodogram, Whittle’s
local estimator, and a wavelet-based technique.

The R/S statistic �also known as rescaled adjusted range�
is one of the oldest and best known techniques for estimating
H. It is a time-domain method that relies on considering the
way that R /S�n� varies with n where R is the range, S is the
sample variance, and n is a scale �sample size� within the
time series. It is discussed, in detail, in �30� and also on pp.
83–87 of �1�. There are several problems with this technique
that are cited in the literature. The estimate produced is
highly sensitive to the range of scales examined. In this pa-
per two versions of the estimator are used that choose the
scales to investigate in different ways. The estimator is
known to be biased and also slow to converge. It is included
in this paper mainly for its historic importance since it has
become a standard measure despite its known weaknesses.

The aggregated variance estimator produces an estimate
for the Hurst parameter by considering how the variance of
the time series scales as the series itself is aggregated into
blocks. Again this is a time-domain technique with known
weaknesses—jumps in the mean and slowly decaying trends,
in particular, can be issues. A fuller description can be found
in p. 92 of �1�.

The periodogram is one of the oldest frequency-domain-
based estimators and is described in �31�. It involves produc-
ing an estimate for the spectral density I��� of the time series
and considering the slope of this as ���→0. Theoretically, for
LRD, a log-log plot of the periodogram should have a slope
of 1−2H close to the origin.

Whittle’s estimator �32� is a frequency-domain technique
that uses an approximate maximum likelihood estimator and
an estimated functional form for the spectral density I���
based on an assumed underlying model. Here, the local
Whittle variant is used �33�, which is a semiparametric ver-
sion assuming a functional form for I��� only as ���→0.

Wavelet analysis has already been mentioned as a model-
ing technique and has been used for the estimation of the
Hurst parameter. In addition this has the benefit of providing
an estimate of the multifractal spectrum of the data �24,25�.
This method is based on considering the behavior of the
frequency spectrum although wavelets themselves are a tech-
nique to allow insight into both frequency and time-domain
behavior, simultaneously.

D. Need for a parsimonious and tractable LRD generation
method

Given the large �and not exhaustive� list of modeling tech-
niques already mentioned, it might be asked whether there is
a need for another model. However, the model here is spe-
cifically designed to be the simplest possible computational
model that produces LRD.

Fractional Gaussian noise and FARIMA are relatively
simple to analyze from a statistical point of view �though the
model described here is arguably simpler�. However, these

processes cannot easily be calculated in an ongoing manner;
that is, the entire time series is usually generated “at once”
and, having generated n points, the user must effectively start
again to generate the �n+1�th point.

Iterated chaotic maps are computationally parsimonious
but are analytically problematic because no closed form for
the invariant density of the map described in Sec. I C is
known. Therefore, it is difficult to generate traffic with a
given mean using the iterated map method, and progress
theoretically is difficult. An intermittent map with a known
invariant density is given by �34�; however, it is not known if
this map would generate LRD and other barriers exist to
computational implementation.

The generation mechanism given here is extremely
simple, theoretically sound, and has only two parameters, the
mean and the Hurst parameter. The data produced are pro-
duced in a stream of ones and zeros and can be simply used
with simulation models of networks—the one representing a
data packet and the zero representing an interpacket gap.

II. THE MARKOV MODEL FOR LRD

Figure 2 shows an infinite Markov chain that can be used
to generate a time series exhibiting LRD. This particular
chain with different transition probabilities has been studied
by a number of authors, notably, in this context Wang �17�
and Barenco and Arrowsmith �23� �the latter also investi-
gates the double-sided version�. The parameters f i are the
transition probabilities for reaching a given state i from state
0. Also �i is defined as the equilibrium probability of state i.
It is clear that �i=0

� f i=1 and also that �i=0
� �i=1. More details

and expanded versions of the proofs included here can be
found in Chap. 2 of �2�.

The chain shown in Fig. 2, given a starting state X0�Z+,
produces a Markov time series �Xi : i�N� where all the Xi

�Z+. In turn, this chain can generate a time series �Yi : i
�N�, where Yi=0 if Xi=0 and Yi=1 otherwise.

It can be easily shown that the chain above is ergodic �and
hence the equilibrium distribution exists� if �i=0

� if i
� and
also ∀i�N , ∃ j� i : f j �0; the first condition ensures that the
mean return time to the zero state is finite and the second
ensures that any state in the chain can be reached from the
zero state �obviously the zero state will be reached from any
state i in exactly i steps�. For the rest of this paper it will be
assumed that any chain discussed meets these conditions for
ergodicity.

FIG. 2. An infinite Markov chain, which generates a time series
exhibiting LRD.
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Theorem 1. The equilibrium distribution of the ith state is
given by

�i = �0�
j=i

�

f j .

Proof. For a state i then at equilibrium, the inputs to a
state will sum to �i. That is,

�i = �i+1 + �0f i. �2�

Substituting the same equation for �i+1 gives,

�i = �0f i + �0f i+1 + �i+2,

and repeating this subsitution recursively gives the proof. �

Note that since � j=0
� f j =1, then for i=0 this equation sim-

ply says �0=�0. Since all the �i must sum to one then, in
addition,

�0 = 1 − �
i=1

�

�i = 1 − �
i=1

�

if i,

which, as has already been discussed, is finite.

Introducing LRD into the model

LRD with Hurst parameter H can be guaranteed if the
ACF ��k� meets the condition given by �1�. The most obvi-
ous way to induce a correlation for a lag k into such a model
is to choose the f i in such a way that unbroken sequences of
k or more ones occur in the Yn series with the required fre-
quency. Therefore, it would be suspected that the condition,

P�Yi = 1,Yi+1 = 1 ¯ Yi+k = 1� � Ck−�,

where �� �0,1� will produce LRD with H=1−� /2. To meet
this requirement, the following strict condition is introduced
for k�0,

�
i=k

�

�i = Ck−�,

where C is a constant. Note that there is no guarantee that
this is a valid Markov chain �conditions for this will be given
later�. By setting k=1 it is immediate that C=1−�0. This
gives,

�
i=k

�

�i = �1 − �0�k−� k � 0.

Subtracting the equation for k+1 gives,

�k = �1 − �0��k−� − �k + 1�−�� k � 0.

From �2� for k then,

�0fk = �k − �k+1 k � 0,

and therefore for k�0,

fk =
1 − �0

�0
�k−� − 2�k + 1�−� + �k + 2�−�� , �3�

and also, since f0=1−�i=1
� f i,

f0 = 1 −
1 − �0

�0
	�

i=1

�

i−� − 2�
i=2

�

i−� + �
i=3

�

i−�
 .

Most of the terms of the sum cancel leaving

f0 = 1 −
1 − �0

�0
�1 − 2−�� . �4�

Equations �3� and �4� form the model for LRD. The model
is defined by two parameters �0 and �. The � parameter is
related to the Hurst parameter as shown. The �0 parameter is
the equilibrium probability of state zero. Hence 1−�0 is the
sum of all other equilibrium probabilities and, therefore, the
probability that any given Yi=1. Therefore, the expectation
value of Yi is given by, E�Yi�=1−�0. It remains to be proven
that the model does generate LRD with the required Hurst
parameter, and this is shown in Sec. III.

It can be easily shown that this model meets the condi-
tions for ergodicity established earlier. However, it should be
noted that it is not valid for every possible combination of �0
and �. In particular, for values of �0 near zero then the term
�1−�0� /�0 becomes large and values of f i from �3� will be
negative, a contradiction since the f i are probabilities. The
fact that the model is invalid for some combinations of �0
and � simply means that for practical experiments the model
must be confined to the valid region. Rearranging Eq. �4�
shows that for � ,�0� �0,1� then f0� �0,1� if

�0 �
2� − 1

2�+1 − 1
,

and this defines a valid region for the model.

III. ACF OF THE MARKOV MODEL

It must now be shown that the model described in Sec. II
does produce traffic with a given mean and Hurst parameter.
To recap, the model relies on a Markov chain of the form
shown in Fig. 2 and with transition probabilities given by �3�
and �4�. The parameters of the model are �0 and �. Given
some starting X0�Z+, the Markov chain produces a time
series �Xi : i�N� where Xi is the state of the chain at the ith
iteration. This is used to produce another time series �Yi : i
�N� where Yi=0 if Xi=0 and Yi=1 otherwise. �The time
series Yi=1 if Xi=0 and Yi=0 otherwise also produces a
series with LRD and mean �0.� This series has LRD with
mean 1−�0 and Hurst parameter H=1−� /2. That E�Yi�=1
−�0 has already been shown. It remains to be shown that the
series has an ACF, which follows the form in �1�, and this
requires a result due to Feller �35� and is based on Wang
�17�.

Proof that the chain generates LRD

The event � occurs whenever Xi=0. It can easily be seen
that the number of samples between successive occurrences
of � is an independent and identically distributed variable
and hence meets the definition in �35�. A “trial” in the terms
of �35� is equivalent to one iteration of the Markov chain in
this model.

R. G. CLEGG AND M. DODSON PHYSICAL REVIEW E 72, 026118 �2005�

026118-4



Definition 2. If � occurs at the zeroth trial, then let the
number of occurrences of � in n trials be Nn. Let F�n� be the
distribution function of the number of trials between one
event � and the next. (Note that these definitions are those
used by [35]).

If the event � has just occurred �at the zeroth trial�, then
the chain is in state 0. If the chain makes the transition to
state i−1, then the event � will occur in i steps. Therefore,
the distribution function is given by

F�n� = �
i=1

n

f i−1. �5�

The results from �35,17� both assume that the distribution
function F�n� obeys

1 − F�n� � An
, �6�

for some positive constant A and some 
. This will now be
shown for the specified infinite chain.

From Eq. �5�,

1 − F�n� = 1 − �
i=1

n

f i−1 = �
i=n+1

�

f i−1 = �
i=n

�

f i.

Substituting f i from �3�

1 − F�n� = 	1 − �0

�0

�

i=n

�

�i−� − 2�i + 1�−� + �i + 2�−��

= 	1 − �0

�0

�n−� − �n + 1�−��

= 	1 − �0

�0

 �n + 1�� − n�

�n + 1��n�

= 	1 − �0

�0

 �1 + 1/n�� − 1

n��1 + 1/n�� .

Expanding �1+1/n�� using the binomial theorem gives

�1 + 1/n�� = 1 + �/n + O�n−2� .

Substituting this expression top and bottom gives

1 − F�n� = 	1 − �0

�0

 1 + �/n + O�n−2� − 1

n�
„1 + �/n + O�n−2�…

= 	1 − �0

�0

 n−�

„�/n + O�n−2�…
„1 + �/n + O�n−2�…

� 	1 − �0

�0

�n−�1+��,

where f�n�=O(g�n�) for functions f�n� and g�n� means that
�f�n��
Ag�n� for some positive constant A and all n�0.
This is the form required by Eq. �6� with 
= �1+�� and A
=��1−�0� /�0.

From Theorem 10 of �35�, given that the probability dis-
tribution satisifies 1−F�x��Ax−
, where A is a positive con-
stant and 1


2, then

var�Nn� �
2A

�2 − 
��3 − 
��3n3−
.

In the case of the chain under investigation, 
=1+� and A
=��1−�0� /�0. Since the chain is ergodic, the mean recur-

rence time of state zero for the infinite chain is 1 /�0. There-
fore,

var�Nn� �
2��0

2�1 − �0�
�1 − ���2 − ��

n2−�. �7�

From �17� �Eqs. 2.26a and 2.26c� if

var�Nn� � Kn2−�,

for some positive constant K and some �� �0,1� then the
autocorrelation function is given by

��n� � Cn−�,

where C is some positive constant. This is the form required
by �1�.

IV. TESTS ON THE MARKOV MODEL

In this section, two standard models for generating LRD
are compared with the Markov model described in this paper.
The computational performance of the algorithm is com-
pared against other algorithms.

A. Practical implementation of the model

The only difficulty in modeling the situation on a com-
puter comes in calculating Xn+1 when Xn=0. In this case, a
random-number generator and the transition probabilities f j
must be used to find the next state. A naive approach to this
would be to generate a random number r uniformly distrib-
uted in �0, 1� and say that Xn+1 is the smallest i such that
� j=0

i f i
r. This is fine for low values of i, but as i increases

TABLE I. Procedure for finding Xn+1 from Xn in the infinite
chain.

Steps Descriptions

1 If Xn�0 then Xn+1=Xn−1. Exit here.

2 Explicitly calculate P�Xn+1� j� for values of j	N
where N is some small

integer. Use the procedure for the finite state
model to find a value for Xn+1 if

Xn+1
N.

3 Generate a new random number R in the range
�0,1�.

4 Calculate P�Xn+1� �N ,2N−1� �Xn+1� �N ,��� from
Eq. �8�. If R is less

than or equal to this probability, then Xn+1 is in
the required range. Otherwise,

go to step six.

5 If Xn+1 is in the required range, then refine down
by generating a new random

number and seeing if Xn+1 is in the range
�N , �3/2�N�. Continue refining by a

binary search �with a new random number each
time� until Xn+1 is found. Exit

here.

6 Increase the value of N to 2N and go to step 3.
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then this procedure becomes inaccurate because of the finite
precision arithmetic used by computers. The problem is that,
as i increases the sum gets nearer to one, but the f i gets
nearer to zero �since adding numbers approaching zero to
numbers approaching one is likely to produce severe round-
ing error problems�. Hence, the errors in each stage of addi-
tion get larger. However, by the very nature of LRD, large
values of i are very likely to come up.

It can simply be shown that if Xn=0 and 0
k	 i	 j,

P�Xn+1 � �i, j��Xn+1 � �k,���

=
i−� − �i + 1�−� − �j + 1�−� + �j + 2�−�

k−� − �k + 1�−� . �8�

Using this equation, Table I shows a procedure for generat-
ing the sequence �Xn :n�N� given some randomly chosen
X0.

B. Hurst parameter estimates

Three generation mechanisms for LRD are compared,
fractional Gaussian noise �FGN�, iterated maps, and the Mar-
kov method developed in this paper. For each method, three
different Hurst parameters are investigated and for each of
these, three data realizations are created. For each realiza-
tion, 106 points were generated �in the case of the iterated
map and Markov method, each of those points was an aggre-
gate of 100 zeros and ones�. The Hurst parameter was esti-
mated using the previously discussed measurement tech-
niques to check the match between theory and experiment.

The three methods were implemented in the C program-
ing language. On a 2 GHz processor PC running Debian
linux, to generate 106 points took 55 s for the Markov
method, 60 s for the iterated maps method, and 6 s for the
fractional Gaussian noise method. However, it is debatable
whether this is a fair comparison since the first two methods
could be considered to be generating 108 points and aggre-

TABLE II. Hurst parameter estimates on simulated data.

Source H R/S
Mod.
R/S

Agg.
var. Periodogram

Local
Whittle Wavelets

FGN

0.625 0.637 0.624 0.623 0.626 0.639 0.635

0.625 0.632 0.624 0.622 0.624 0.638 0.635

0.625 0.645 0.633 0.620 0.622 0.638 0.635

0.75 0.728 0.738 0.741 0.747 0.774 0.767

0.75 0.741 0.736 0.749 0.755 0.776 0.769

0.75 0.694 0.719 0.741 0.754 0.774 0.768

0.875 0.784 0.837 0.858 0.877 0.908 0.897

0.875 0.750 0.823 0.850 0.876 0.908 0.897

0.875 0.747 0.835 0.860 0.876 0.908 0.898

Iterated map

0.625 0.635 0.590 0.604 0.630 0.719 0.706

0.625 0.608 0.595 0.604 0.627 0.716 0.703

0.625 0.637 0.594 0.610 0.637 0.718 0.707

0.75 0.828 0.666 0.717 0.746 0.813 0.800

0.75 0.725 0.650 0.712 0.739 0.813 0.801

0.75 0.678 0.694 0.765 0.768 0.814 0.803

0.875 0.703 0.779 0.851 0.876 0.925 0.910

0.875 0.779 0.802 0.854 0.877 0.924 0.910

0.875 0.846 0.817 0.861 0.874 0.925 0.912

Markov

0.625 0.526 0.597 0.611 0.621 0.703 0.691

0.625 0.593 0.645 0.700 0.684 0.710 0.702

0.625 0.632 0.603 0.646 0.650 0.707 0.698

0.75 0.663 0.684 0.744 0.760 0.793 0.784

0.75 0.670 0.667 0.751 0.759 0.793 0.783

0.75 0.671 0.671 0.724 0.736 0.786 0.776

0.875 0.724 0.732 0.816 0.848 0.884 0.873

0.875 0.757 0.754 0.830 0.859 0.885 0.874

0.875 0.656 0.781 0.852 0.866 0.885 0.875
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gating into groups of 100. No C code to generate FARIMA-
based data was available, and the R code available took
188 s to generate only 105 points. The running time did not
seem to scale linearly, and the test to generate 106 points was
stopped after several hours.

It would naturally be expected that the FGN model is the
easiest to estimate, and this shows in the results in Table II.
All the estimators were relatively close to correct with the
possible exception of the R/S plot on traffic with a Hurst
parameter of 0.875, where the underestimate of H was quite
severe.

Estimates on the iterated chaotic map traffic were not as
successful. The raw R/S plot proved inconsistent and had a
hard time estimating higher Hurst parameters. It should be
noted, for example, that for H=0.75 estimates varied from
0.678 to 0.828. The performance for H=0.875 was similarly
poor. The modified R/S parameter was better in that it was
more stable across runs but tended to overestimate. Local
Whittle and wavelets tended to overestimate the Hurst pa-
rameter. It should also be noted that the true result was regu-
larly outside the 95% confidence intervals for the wavelet
estimator.

Estimates for the Markov-based method were, in many
ways, similar to the iterated-map method. If anything, the
results from the estimators are slightly closer to the theory
and this is particularly notable for the wavelet and local
Whittle case. The evidence provided by the estimators is
hard to interpret. However, it can certainly be said that the
results for the Markov method are as close as the results for
the iterated-map method.

Generally, considering the estimators themselves, the R/S
method seemed unreliable �and this agrees with theory,
which shows it to be a biased estimator with poor conver-
gence�. The local Whittle and wavelets methods �which have

better theoretical backing� seem to have a better agreement
with theory, but it is worrisome that the true Hurst parameter
for the data lay outside 95% confidence for the wavelet es-
timator in many cases.

V. CONCLUSIONS

The method for generating LRD shown here is computa-
tionally efficient, extremely simple, and produces a data
stream with a given mean and Hurst parameter. The data
stream can be generated in an online manner; that is, the
method can be started without knowing how many points
must ultimately be generated unlike, for example, FGN. The
method has been proved theoretically to generate LRD with
the required parameters, and this has been tested against a
variety of known estimators for the Hurst parameter. It is
interesting to see how quite poorly certain estimators per-
form, even against very standard LRD-generation mecha-
nisms.

Compared to existing methods of generating LRD, this
procedure has a number of extremely attractive properties. It
is computationally and mathematically extremely simple. Al-
though other models may have more flexibility for precisely
representing the nature of the time series being simulated, it
is hard to imagine a simpler model for generating LRD. It is
hoped, therefore, that this model will be tractable analyti-
cally for further developments, for example, analysis of
queuing performance of traffic generated by such a model.
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