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Activator-inhibitor systems of reaction-diffusion equations have been used to describe pattern formation in
numerous applications in biology, chemistry, and physics. The rate of diffusion in these applications is manifest
in the single parameter of the diffusion constant, and stationary Turing patterns occur above a critical value of
d representing the ratio of the diffusion constants of the inhibitor to the activator. Here we consider activator-
inhibitor systems in which the diffusion is anomalous subdiffusion; the diffusion rates are manifest in both a
diffusion constant and a diffusion exponent. A consideration of this problem in terms of continuous-time
random walks with sources and sinks leads to a reaction-diffusion system with fractional order temporal
derivatives operating on the spatial Laplacian. We have carried out an algebraic stability analysis of the
homogeneous steady-state solution in fractional activator-inhibitor systems, with Gierer-Meinhardt reaction
kinetics and with Brusselator reaction kinetics. For each class of reaction kinetics we identify a Turing insta-
bility bifurcation curve in the two-dimensional diffusion parameter space. The critical value of d, for Turing
instabilities, decreases monotonically with the anomalous diffusion exponent between unity �standard diffu-
sion� and zero �extreme subdiffusion�. We have also carried out numerical simulations of the governing
fractional activator-inhibitor equations and we show that the Turing instability precipitates the formation of
complex spatiotemporal patterns. If the diffusion of the activator and inhibitor have the same anomalous
scaling properties, then the surface profiles of these patterns for values of d slightly above the critical value
varies from smooth stationary patterns to increasingly rough and nonstationary patterns as the anomalous
diffusion exponent varies from unity towards zero. If the diffusion of the activator is anomalous subdiffusion
but the diffusion of the inhibitor is standard diffusion, we find stable stationary Turing patterns for values of d
well below the threshold values for pattern formation in standard activator-inhibitor systems.
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I. INTRODUCTION

One of the best understood theoretical mechanisms for
pattern formation is the Turing instability �1� of a homoge-
neous steady state in a two-species reaction-diffusion system.
On its own, diffusion tends to smooth out irregularites; how-
ever, the differential diffusion of two distinct species coupled
by nonlinear reaction terms may result in certain wave-
lengths becoming unstable so that patterns are produced.
This model for pattern formation has recently found support
in numerous applications in biology �2,3�, chemistry �3,4�,
neuroscience �5�, physics �6�, and optics �7,8�. As an ex-
ample, Turing pattern formation in activator-inhibitor sys-
tems provides a credible theoretical explanation of animal
coat patterns �9� that can also explain the occurrence of dif-
ferent coat patterns on clones �10�.

The general form of the two-species reaction-diffusion
model is �9�

�n1�x,t�
�t

= �f1�n1,n2� + �2n1�x,t� , �1�

�n2�x,t�
�t

= �f2�n1,n2� + d�2n2�x,t� . �2�

In these equations, n1�x , t� and n2�x , t� are the number den-
sities for the two species, f1 and f2 are �generally nonlinear�
functions describing the reaction kinetics, d is the ratio of the
diffusion coefficients of species 2 to species 1, and ��0 is a
scaling variable which can be interpreted as the characteristic
size of the spatial domain or as the relative strength of the
reaction terms.

The standard reaction-diffusion model is a diffusion-
limited process in which the time for reactions to occur
within a given reaction zone is considered to be much less
than the time for reactants to diffuse between reaction zones.
The reaction-diffusion model is also a mean-field model in
which it is assumed that the reactions do not themselves
introduce correlations between the diffusing species but are
dependent only on local average concentrations; thus micro-
scopic fluctuations in n�x , t� at the atomic level are ignored
�11�. If the concentration of species is spatially homoge-
neous, then the reaction-diffusion model reduces to the clas-
sical macroscopic rate equations from the law of mass action
�see, e.g., �12��.

The canonical model for Turing instability induced pat-
tern formation is a reaction-diffusion equation with activator-
inhibitor reaction kinetics—i.e., Eqs. �1� and �2� with
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�f2 /�n1�0 and �f1 /�n2�0. In this case species 1 is an ac-
tivator for production of species 2, and species 2 is an inhibi-
tor for production of species 1. A simple linear stability
analysis about the homogeneous steady-state solution, n1

� ,n2
�,

reveals that necessary conditions for Turing instability in-
duced pattern formation are �9�

a11 + a22 � 0, �3�

a11a22 − a12a21 � 0, �4�

d � � 1

a11
��a11a22 − a12a21 + �− a12a21��2

, �5�

where aij =�f i /�nj is evaluated at the homogeneous steady-
state solution. If the above conditions are met, then it can be
shown that there is a range of wave numbers q defined by �9�

1

2d
��da11 + a22� − ��da11 + a22�2 − 4d�a11a22 − a12a21�� � q2

�
1

2d
��da11 + a22� + ��da11 + a22�2 − 4d�a11a22 − a12a21�� ,

�6�

which will become excited and thus produce patterns. A nec-
essary requirement for pattern formation consistent with the
conditions, Eqs. �3�–�5�, is that the inhibitor diffuse faster
than the activator �d�1� in all activator-inhibitor systems.
Indeed in many modeling applications the required diffusion
ratio from Eq. �5� is more than an order of magnitude
whereas most chemical species in aqueous solutions have
diffusion ratios within a factor of 2. The first experimental
evidence for Turing pattern formation in an activator-
inhibitor system �4� was subsequently revealed to be influ-
enced by spatial inhomogeneities �arising from the colour
indicator in the reactor gel� that effectively lowered the dif-
fusion constant of the activator �13� so that very large diffu-
sion ratios were realized. However, the general theoretical
requirement of large diffusion ratios is still an impediment
for accepting the Turing pattern formation paradigm in many
applications.

In recent years numerous physical and biological systems
have been reported in which the diffusion rates of species
cannot be characterized by the single parameter of the diffu-
sion constant. Instead, the �anomalous� diffusion is charac-
terized by a scaling parameter � as well as a diffusion con-
stant D, and the mean-square displacement of diffusing
species �r2�t�	 scales as a nonlinear power law in time—i.e.,
�r2�t�	
 t�. As examples, single-particle tracking experi-
ments and photobleaching recovery experiments have re-
vealed subdiffusion �0���1� of proteins and lipids in a
variety of cell membranes �14–18�. Moreover, anomalous
subdiffusion �the case with 0���1� is generic in media
with obstacles �19� or binding sites �20�.

In this paper we investigate the effects of subdiffusion on
Turing pattern formation in model activator-inhibitor sys-
tems in the diffusion-limited regime with fast reactions. To
simplify the theoretical analysis we have restricted our atten-
tion to systems in which the concentrations vary in only one

spatial direction. This limits the direct application of our re-
sults to a particular model system with known reaction ki-
netics since in one-dimensional space the diffusion is not an
effective mechanism for mixing and this in turn produces
anomalous kinetics �21�. However, from the point of view of
direct applications we could consider a higher-dimensional
spatial system in which concentration variations are prima-
rily in one spatial direction or a one-dimensional spatial sys-
tem in which the prescribed reaction kinetics incorporates
the anomalous kinetics behavior.

A consideration of the problem of anomalous subdiffusion
with reactions in terms of continuous-time random walks
�CTRWs� with sources and sinks leads to a fractional
activator-inhibitor model with a fractional order temporal de-
rivative operating on the spatial Laplacian �22–28�. A similar
type of system has also been proposed for diffusion with
reactions on a fractal �29�. The problem of anomalous super-
diffusion with reactions has also been considered and in this
case a fractional reaction-diffusion model has been proposed
with the spatial Laplacian replaced by a spatial fractional
differential operator �30�.

If the reaction time is not short compared with the diffu-
sion time in subdiffusive systems with reactions �for ex-
ample, if many encounters between reactants are required
before reactions proceed�, then an alternate model has been
proposed where the fractional order temporal derivative op-
erates on both the spatial Laplacian and the reaction term
�31–33�. An important distinction between the two anoma-
lous reaction-diffusion models becomes apparent when the
concentration of species is spatially homogeneous; this latter
model does not reduce to the classical macroscopic rate
equations except when the diffusion is also nonanomalous.

The dynamics of reaction fronts between initially sepa-
rated species in reaction-diffusion systems with anomalous
diffusion has been studied extensively �25,26,31–33�. In this
paper we investigate Turing pattern formation in reaction-
diffusion models with anomalous subdiffusion incorporated
through the fractional order temporal derivative operating on
the Laplacian. In the initial state for this problem the species
are distributed almost homogeneously in space. We have in-
vestigated the effects of both Gierer-Meinhardt reaction ki-
netics �34� and Brusselator reaction kinetics �35�. Some pre-
liminary results from this study were reported recently in a
conference report �27�. In recent work, Varea and Barrio �36�
have examined Turing pattern formation in reaction-diffusion
models with anomalous diffusion incorporated through frac-
tional order spatial derivatives operating on the Laplacian.
An important finding of their work is that nonstationary Tur-
ing patterns occur with the velocity of the moving patterns
dependent on the exponent of the fractional differential op-
erator.

The summary findings from the present study are as fol-
lows: �i� Turing instabilities occur in fractional activator-
inhibitor systems for all values of the anomalous diffusion
scaling exponent �. The critical value of the ratio of diffu-
sion coefficients �inhibitor to activator� for Turing instabili-
ties decreases monotonically as the diffusion becomes more
subdiffusive. �ii� Turing instabilities precipitate spatiotempo-
ral patterning in fractional activator-inhibitor systems. The
surface profiles for the patterns vary from smooth to rough as
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the diffusion scaling exponent � decreases from unity �stan-
dard diffusion� towards zero �extreme subdiffusion�. �iii� If
there is standard diffusion for the inhibitor but anomalous
subdiffusion for the activator, then stationary Turing patterns
can occur for diffusion constant ratios �inhibitor to activator�
much less than those required by linear stability analysis
with standard diffusion in both the activator and the inhibitor.
This important result has also recently been reported in a
related study by Weiss �37� using Monte Carlo simulations of
subdiffusive random walks with reactions.

The remainder of this paper is organized as follows: In
Sec. II we introduce the fractional activator-inhibitor system
from the continuous-time random walk formalism with
sources and sinks. In Sec. III we carry out linear stability
analysis of the homogeneous steady-state solutions and we
obtain algebraic results for the critical value of the ratio of
diffusion coefficients �inhibitor to activator� for Turing insta-
bilities over a range of � in fractional activator-inhibitor sys-
tems. Turing instability bifurcation curves are derived from
this analysis for both Gierer-Meinhardt reaction kinetics and
Brusselator reaction kinetics. We also identify the dominant
excited modes from the linear stability analysis. In Sec. IV
we describe the results of our numerical simulations of pat-
tern formation in fractional activator-inhibitor equations. We
conclude with a discussion and summary in Sec. V.

II. FRACTIONAL ACTIVATOR-INHIBITOR MODEL

The asymptotic properties that characterize anomalous
subdiffusion can be modeled at the mesoscopic level using
continuous-time random walks �38� with the spatial and tem-
poral probability density functions decoupled and with tem-
poral memory represented through a power-law waiting time
distribution �39�

��t� 
 t−1−�. �7�

The power-law waiting time distribution is an example of a
so-called long-tailed distribution characterizing sporadic be-
havior with short bursts of events occurring frequently but
also with very long pauses between events occurring occa-
sionally. The CTRW model with a power-law waiting time
distribution can be reformulated as a fractional diffusion
equation �40–43�. In a similar fashion, anomalous subdiffu-
sion in an external field has been modeled using a fractional
Fokker-Planck equation �43,44� and anomalous subdiffusion
with sinks and sources has been modeled using fractional
reaction-diffusion equations �22–25,27,28�. The evolution
equation for the number density of walkers, n�x , t�, in the
CTRW formulation of this problem is �22,25�

n�x,t� = 	�t�n�x,0� + �
x�
�

0

t


�x − x�,t − t��n�x�,t��dt�

+ �
0

t

	�t − t��g�x,t��dt�, �8�

where 	�t� is the survival probability that walkers remain at
their starting locations after time t; the second term on the
right-hand side represents the number density of walkers that

arrive at x at time t after a random walk from locations x� at
times t�. The function 
�x , t� denotes the transition proba-
blity distribution for a step of length x in the time interval
t , t+dt. The final term on the right-hand side is the source
�sink� term to account for increases �decreases� in the num-
ber density at x and t due to reactions. The evolution equa-
tion simplifies under the assumption that the waiting time
between random walks and the step lengths of the random
walks are independent. In this case we can write 
�x−x� , t
− t��=��x−x����t− t�� and 	�t�=1−0

t ��t��dt�. If it is also
assumed that the waiting time distribution ��t� is governed
by a power law as in Eq. �7� �for anomalous subdiffusion�
but the step length distribution ��x� has finite moments, then
the evolution equation that describes the long-time behavior
can be written as �22�

un̂�x,u� − n�x,0� = Cu1−��2n̂�x,u� + n̂�x,u� , �9�

where n̂ denotes the temporal Laplace transform of n and u
�1 is the transform variable. A fractional reaction-diffusion
equation then results after inverting the Laplace transform
and noting that �see, e.g., Sec. 2.8 of �45��

u�ŷ�u� = L„0Dt
�y�t�… + ��0Dt

�−1y�t���t=0, �10�

where

0Dt
�y�t� =

d

dt� 1

��1 − ���0

t y�s�
�t − s��ds� �11�

is the Riemann-Liouville fractional derivative with 0��
�1 and L denotes the temporal Laplace transform. Alternate
formulations in terms of the Grünwald-Letnikov fractional
derivative

GLDt
�y�t� = lim

h→0

1

h��
j=0



�− 1� j ��� + 1�
��j + 1���� − j + 1�

y�t − jh�

�12�

or the Caputo fractional derivative

0
CDt

�y�t� =
1

��1 − ���0

t

d

ds
y�s�

�t − s��ds �13�

are also possible using the relations �see, e.g., Sec. 2.8 of
�45��

u�ŷ�u� = L„

GLDt
�y�t�… �14�

and

u�ŷ�u� = L„0
CDt

�y�t�… + u�−1y�0� , �15�

respectively.
A special case of the fractional reaction-diffusion equation

is the fractional activator-inhibitor system �23�

�n1�x,t�
�t

= �f1�n1,n2� + D1−�1n1�x,t� , �16�
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�n2�x,t�
�t

= �f2�n1,n2� + dD1−�2n2�x,t� , �17�

where n1�x , t� and n2�x , t� denote the concentrations of the
activator and inhibitor, respectively; 0��1�1 is the anoma-
lous diffusion exponent of the activator, and 0��2�1 is the
anomalous diffusion exponent of the inhibitor. The reaction
kinetics is defined by the functions f1�n1 ,n2� and f2�n1 ,n2�.
The fractional differential operator is given by

D1−�n�x,t� =
�1−�

�t1−��2n�x,t� + L−1� �−�

�t−� ��2n�x,t��t=0� ,

�18�

where

�−�y�t�
�t−� = � 1

�����0

t y�s�
�t − s�−�ds� �19�

denotes the Riemann-Liouville fractional integral and

�1−�y�t�
�t1−� = 0Dt

1−�y�t� �20�

is the Riemann-Liouville fractional derivative defined in Eq.
�11�. The fractional differential operator D1−� is also related
to the Caputo fractional differential operator via

D1−�y�t� = 0
CDt

1−�y�t� + y�0+���t� . �21�

In the remainder of this paper we consider Turing pattern
formation in the fractional activator-inhibitor model system
described by Eqs. �16� and �17� with zero-flux boundary con-
ditions at both ends of the spatial domain of length L—i.e.,

� �nj

�x
�

x=0
= 0, � �nj

�x
�

x=L
= 0, j = 1,2. �22�

III. LINEAR STABILITY ANALYSIS

In standard activator-inhibitor systems a Turing instability
occurs if the homogeneous steady-state solution is linearly
stable in the absence of diffusion but linearly unstable in the
presence of diffusion. In the fractional activator-inhibitor
system, Eqs. �16� and �17�, the steady-state solution and the
diffusion-free linear stability conditions are the same as in
the standard ��=1� activator-inhibitor system with the same
reaction kinetics. Linear stability analysis in the fractional
activator-inhibitor system can be facilitated by applying a
temporal Laplace transform and a spatial Fourier transform.
The transformed linearized perturbations are then given by
�23�

�n1
˜̂ �q,s�

=
�s + s1−�2dq2 − �a22��n1

˜ �q,t = 0� + �a12�n2
˜ �q,t = 0�

�s + s1−�1q2 − �a11��s + s1−�2dq2 − �a22� − �2a12a21
,

�23�

�n2
˜̂ �q,s�

=
�s + s1−�1q2 − �a11��n2

˜ �q,t = 0� + �a21�n1
˜ �q,t = 0�

�s + s1−�1q2 − �a11��s + s1−�2dq2 − �a22� − �2a12a21
,

�24�

where s is the Laplace transform variable, q is the Fourier
transform variable, a caret denotes a Laplace-transformed
variable, and a tilde denotes a Fourier-transformed variable.
The constants aij are defined by aij = ���f i /�nj���n1

�,n2
�� where

n1
� and n2

� are the homogeneous steady state-concentrations.
In earlier work �23� we established Turing instabilities in

the fractional activator-inhibitor system with Gierer-
Meinhardt reaction kinetics and the special cases: �i� �1= 1

2 ,
�2=1, �ii� �1=�2= 1

2 , and �iii� �1=1, �2= 1
2 . We now consider

the more general case defined by �1=�2=� and

1 − � =
n

m
where n � m � N . �25�

In this general case the canonical form for the Fourier-
Laplace transforms of perturbations about the homogeneous
steady state can be expressed as

�ñ
ˆ �q,s� =

��q�s + ��q�sn/m + ��q�

�i=1

2m
�s1/m − zi�

, �26�

where ��q�, ��q�, and ��q� are real-valued functions of q
and zi are zeros of the polynomial

P2m = �zm + znq2 − �a11��zm + zndq2 − �a22� − �2a12a21.

�27�

The conditions for Turing instabilities can be found by in-
vestigating large-t asymptotic behavior from the inverse
Laplace transform

�ñ�q,t� =
1

2�i
�

c−i

c+i ��q�s + ��q�sn/m + ��q�

�i=1

2m
�s1/m − zi�

estds . �28�

In Eq. �28�, c denotes a real-valued constant to the right of
all singularities in the complex plane.

This integral can be evaluated by considering a modified
Bromwich contour � �see Fig. 1� with a branch cut from the
branch point at s=0 and s=rei�p+2k� with −���p��. It is
straightforward to show that the contributions around the
arcs vanish �23� so that

�ñ�q,t� =
1

2�i
� lim

�→
lim
R→

�
�

�ñ
ˆ �q,s�estds

− lim
�→

lim
R→

�
AB�

�ñ
ˆ �q,s�estds

− lim
�→

lim
R→

�
CD�

�ñ
ˆ �q,s�estds� . �29�

It is clear from the Cauchy residue theorem that exponen-
tially unstable Fourier modes �wave numbers� will arise from
the poles in Eq. �26�—i.e., from the zeros of the polynomial,
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Eq. �27�. In particular if zk�q� is a zero of this polynomial
and Re�zk

m�q���0 for some wave numbers q�0, then these
wave numbers will be linearly unstable. The homogeneous
steady state is linearly stable in the absence of diffusion if
Re�zk�q��=0. It is not possible to obtain algebraic expres-
sions for the zeros of Eq. �27�; however, for prescribed val-
ues of the system parameters m, n, ai,j, d, and �, these zeros
can be found numerically over a range of q and a minimum
value of d can be determined for which there exists a zero
zk�q� such that Re�zk

m�q���0. In the linear theory a spatial
pattern might be expected to emerge from the Turing insta-
bility if only a finite set of wave numbers is unstable or if
one excited mode is dominant. The range of wave numbers
that are unstable and the most unstable wave number in the
linear theory can be found by fixing the parameters m, n, ai,j,
d, and � and finding the zeros, zk�q�, of Eq. �27� numerically
over a range of q. At each q value we can determine the
maximum value of Re�zk

m�q�� from this set of zeros. Then we
plot this maximum value as a function of q. The range is
identified as the set of q values over which the maximum is
greater than zero and the most unstable wave number �maxi-
mally excited mode� is the q value where this curve has a
maximum.

The results of the linear stability analysis of the homoge-
neous steady-state solution for the fractional activator-

inhibitor systems with Gierer-Meinhardt reaction kinetics
and with Brusselator reaction kinetics are presented in the
next two sections.

A. Gierer-Meinhardt reaction kinetics

The Gierer-Meinhardt reaction kinetics is defined by �34�

f1�n1,n2� = 1 − n1 + 3
n1

2

n2
, �30�

f2�n1,n2� = n1
2 − n2. �31�

The fractional activator-inhibitor system defined by Eqs.
�16�, �17�, and �22� and the above reaction kinetics has a
homogeneous steady state of n1

*=4 and n2
*=16. Standard lin-

ear stability analysis �9,23� reveals that in the case of stan-
dard diffusion ��1=�2=1� nonhomogeneous steady states
can occur if the value of d exceeds the critical value

d� = 10 + 4�6 � 19.79. �32�

For d�d� the range of excited Fourier modes q is given by
�see Eq. �6��

d − 2 − �d2 − 20d + 4

4d
� q2 �

d − 2 + �d2 − 20d + 4

4d
.

�33�

For d�d� initial perturbations about the steady state decay
to zero for all wave numbers and no pattern results.

In Table I we have listed the critical value of d� over a
range of � based on the linear stability analysis of the frac-
tional activator-inhibitor system with Gierer-Meinhardt reac-
tion kinetics. We have also identified the maximally excited
mode and the range of excited modes based on the linear
stability analysis over a range of � values for a given value
of d�d* for each �.

The following pattern of behavior is consistent with the
results in this table: �i� The critical value of d* decreases
monotonically with increasing 1−�—i.e., as the diffusion

TABLE I. The critical values of d� for different � values as predicted from linear stability analysis for the
fractional Gierer-Meinhardt model. The maximally excited Fourier mode and the range of excited Fourier
modes are also listed for different � values with d�d�. In the case �=0.8 there were two dominant modes
resulting from the linear stability analysis.

� d� d Max mode Mode range

0.1 3.102 4.0 1.6556 q�1.0937

0.2 4.672 7.0 1.1470 q�0.7277

0.3 6.701 9.0 1.0949 q�0.7378

0.4 9.088 12.0 0.9655 q�0.6681

0.5 11.657 14.0 0.9272 q�0.6866

0.6 14.190 17.0 0.8117 q�0.6149

0.7 16.459 19.0 0.7334 q�0.5799

0.8 18.253 21.0 0.6384 �0.7184� q�0.5161

0.9 19.402 22.0 0.5578 q�0.4587

1.0 19.798 22.0 0.4632 0.3854�q�0.5532

FIG. 1. Modified Bromwich contour for the inverse Laplace
transform.
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becomes more subdiffusive. �ii� The maximally excited-
mode wave number increases as the fractional derivative ex-
ponent 1−� increases; i.e., the wavelength of the maximally
excited mode decreases as the subdiffusion becomes more
anomalous. �iii� The minimum wave number cutoff for the
range of excited modes also increases as the fractional de-
rivative exponent 1−� increases. �iv� There is no upper wave
number cutoff for excited modes for 0�1−��1.

B. Brusselator reaction kinetics

The Brusselator reaction kinetics considered in this paper
is defined by �35�

f1�n1,n2� = 2 − 3n1 + n1
2n2, �34�

f2�n1,n2� = 2n1 − n1
2n2. �35�

The homogeneous steady-state solution is given by n1
*=2 and

n2
*=1. The critical value of d for a Turing instability, which

follows from Eq. �5�, is thus given by

d� = 12 + 8�2 � 23.31 �36�

and the range of excited Fourier modes from Eq. �6� is

d − 4 − �d2 − 24d + 16

2d
� q2 �

d − 4 + �d2 − 24d + 16

2d
.

�37�

In Table II we have listed the critical value of d* over a
range of � based on the linear stability analysis of the frac-
tional activator-inhibitor system with Brusselator reaction ki-
netics. We have also identified the maximally excited mode
and the range of excited modes based on the linear stability
analysis over a range of � values with d�d* for each �. The
overall pattern of behavior is similar to that found for the
fractional Gierer-Meinhardt model.

The results of the linear stability analysis in this section
for fractional activator-inhibitor systems with the same sub-
diffusion exponent � can be summarized as follows: The
critical value of the diffusion coefficient ratio d* for the onset

of a Turing instability decreases monotonically as the subdif-
fusion becomes more anomalous �the scaling exponent � is
further from unity�. Modes of arbitrarily small wavelength
become excited for d�d*. The wavelength of the maximally
excited mode becomes shorter as the subdiffusion becomes
more anomalous and the upper threshold wavelength of ex-
cited modes decreases as the subdiffusion becomes more
anomalous.

IV. NUMERICAL SIMULATIONS

We have carried out extensive numerical simulations of
the fractional activator-inhibitor system for both Gierer-
Meinhardt and Brusselator reaction kinetics and for a range
of system parameters. The purpose of these numerical simu-
lations is to test the linear stability analysis as a predictor of
Turing pattern formation in nonlinear fractional activator-
inhibitor systems as well as to investigate the nature of pat-
terns formed in these systems. The numerical scheme that we
have employed is an implicit finite-difference scheme, and
we have reported on the accuracy and stability of this
method elsewhere �46�. Further details of the implementation
of our scheme are provided in the Appendix.

We have carried out numerical simulations of the frac-
tional activator-inhibitor model with both Gierer-Meinhardt
reaction kinetics and with Brusselator reaction kinetics over
a range of system parameters and with initial conditions per-
turbed about the homogeneous steady-state solution—i.e.,
nj�x ,0�=nj

*+�nj�x ,0�. Three different types of perturbation
have been considered: �i� random, �nj�x ,0�=�rj�x� where
rj�x� is a uniform random function on the interval �−1,1�;
�ii� long-wavelength sinusoidal, �nj�x ,0�=� sin�qx�, with q
=0.4 �Gierer-Meinhardt� or q=0.5 �Brusselator�; �iii� short-
wavelength sinusoidal, �nj�x ,0�=� sin�qx�, with q=5 �both
Gierer-Meinhardt and Brusselator�. In each case we have set
�=10−2.

A. Turing instabilities

In the first instance we have used our simulations to test
whether or not the Turing instability bifurcation curves from

TABLE II. The critical values of d� for different � values as predicted from linear stability analysis for the
fractional Brusselator model. The maximally excited Fourier mode and the range of excited Fourier modes
are also listed for different � values with d�d�.

� d� d Max mode Mode range

0.1 5.462 7.0 2.0396 q�1.4035

0.2 7.351 9.0 1.8527 q�1.3187

0.3 9.638 11.0 1.7849 q�1.3287

0.4 12.218 14.0 1.4648 q�1.1116

0.5 14.928 17.0 1.2530 q�0.9712

0.6 17.561 20.0 1.0800 q�0.8505

0.7 19.898 22.0 0.9764 q�0.7959

0.8 21.736 23.0 0.8946 q�0.7686

0.9 22.910 24.0 0.7974 q�0.6810

1.0 23.314 25.0 0.6360 0.5403�q�0.7403
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linear stability analysis delimit stable and unstable regions in
the anomalous diffusion parameter space in the nonlinear
fractional activator-inhibitor systems.

To determine the temporal growth of the initial perturba-
tion we ran the simulation for 1000 units of time with a time
step �t=0.1. The length of the region was taken to be L
=100 with N=128 grid points in the simulation. Thus the
spatial grid size is �x=L /N=0.78. The numerical simula-
tions are used to find the concentrations nj�x , t� at each spa-
tial grid point x= i�x and at each discrete time step t= �k
−1��t. In the following we use the notation

nj,i
k = nj„i�x,�k − 1��t… . �38�

At each time step k� �1,1000�, the maximum absolute de-
viation from the homogeneous steady state was calculated
for both n1 and n2;

A1
*�tk� = max

1�i�N
�n1,i

k − n1
�� , �39�

A2
*�tk� = max

1�i�N
�n2,i

k − n2
�� . �40�

The resultant spatial patterns appeared to be stationary or
quasistationary after a typical transient time of about 500
model time units. A crude numerical estimate of the critical
value of d separating stable and unstable behavior was found
by using randomly perturbed initial conditions and measur-
ing

gj =
�tk��500,1000� Aj

*�tk�

�tk��0,500� Aj
*�tk�

, j = 1,2, �41�

over a range of d, and then identifying the minimum value d
for which

min
j=1,2

gj � 1.

For d values below this threshold we have a stable homoge-
neous steady state and for d values above this threshold we
have growth of perturbations about the steady state for both
n1 and n2.

Comparisons between �i� our numerical estimates of the
threshold value of d separating stable and unstable regions,
and �ii� the critical values of d* for a Turing instability from
the linear stability analysis for the fractional Gierer-
Meinhardt system and the fractional Brusselator system are
shown in Figs. 2 and 3, respectively. It is clear from these
comparisons, shown over a range of �, that the Turing insta-
bility conditions determined in Sec. III do delimit stable and
unstable regions in the anomalous diffusion parameter space
for nonlinear fractional activator-inhibitor systems. It is also
worthwhile reemphasizing the overall trends shown in these
figures: namely, that Turing patterns can occur for lower val-
ues of the diffusion constant d as the �sub�diffusion becomes
more anomalous �decreasing ��.

B. Spatiotemporal Turing patterns �1=�2=�

In this subsection we describe our numerical results on
the maximally excited wave numbers in fractional activator-

inhibitor systems �with Gierer-Meinhardt reaction kinetics
and with Brusselator reaction kinetics� for a range of � and
d�d�. The anomalous diffusion exponent is taken to be the
same for both the activator and inhibitor in these
simulations—i.e., �1=�2=�. The results are based on simu-
lations over 1500 units of time with a step size of �t=0.1
and a spatial grid of 256 points with L=100. We have carried
out simulations for a range of �=0.1,0.2,0.3, . . . ,0.9,1.0
and for the random perturbations, short-wavelength perturba-
tions, and long-wavelength perturbations of the steady state.

The dominant excited Fourier modes q= �2� /L�k were
determined from the positions k of the peaks in the spatial
power spectrum for n1 and n2 at the end of the simulation,
t=1500. Explicitly the power spectrum is defined by

Pj�k� =
1

N
zj�k�zj

*�k� ,

where

FIG. 2. Estimates of the critical value of d� from the linear
stability analysis ��� compared with estimates from the growth of
modes in numerical simulations ��� for the fractional activator-
inhibitor system with Gierer-Meinhardt reaction kinetics and the
same value � for the activator and inhibitor diffusion exponents.
The quantities plotted are dimensionless.

FIG. 3. Estimates of the critical value of d� from the linear
stability analysis ��� compared with estimates from the growth of
modes in numerical simulations ��� for the fractional activator-
inhibitor system with Brusselator reaction kinetics and the same
value � for the activator and inhibitor diffusion exponents. The
quantities plotted are dimensionless.

TURING PATTERN FORMATION IN FRACTIONAL… PHYSICAL REVIEW E 72, 026101 �2005�

026101-7



zj�k� = �
n=1

N

nj�n�x,1500�xne−2�i�k−1��n−1�/N, k = 1,2, . . . ,N ,

was computed using a fast Fourier transform. The spatial
grid size limits the resolution of Fourier modes to
±2� /100� ±0.062.

Partial results from our simulations are summarized in
Tables III and IV for Gierer-Meinhardt reaction kinetics and
Brusselator reaction kinetics, respectively, using random per-
turbations about the homogeneous steady state as initial con-
ditions. In these tables we have listed �i� the d�d� values
used in the numerical simulations, �ii� the values of the near-
est maximally excited wave numbers k corresponding to the
maximally excited Fourier modes q in the linear stability
analysis �see Tables I and II�, and �iii� the values of the wave
numbers k corresponding to peaks in the power spectra �for
both n1 and n2�, the largest of these peaks is highlighted
using an asterisk.

The position of the largest peak in the power spectrum
does not always match the maximally excited mode as deter-
mined by the linear stability analysis but there is generally a
peak in the power spectra at a k value close to that of the
maximally excited mode. This provides evidence that linear
stability analysis is not only a reliable predictor of the onset
of Turing instabilities �critical d values� but it also provides a
useful description �dominant modes� of the nature of the Tur-
ing patterns in nonlinear fractional activator-inhibitor sys-
tems. The linear stability analysis is a better indicator of the
dominant excited mode when � is closer to unity �standard
diffusion� but this may be because the numerical simulations
take longer to reach the quasistationary regime for smaller �
values. The results with sinusoidally perturbed initial condi-
tions show the same overall pattern of behavior as those with
randomly perturbed initial conditions and so the details have
not been tabulated in this paper �47�.

Further results from our numerical simulations are shown
in Figs. 4 and 5. These figures show full surface profiles and
surface density plots for the concentrations of the activator
with randomly perturbed initial conditions. The behavior of
the inhibitor �not shown here �47�� is similar to that of the
activator. In the surface density plots n1�x , t��n1

� is shown as
black and n1�x , t��n1

� as white. Figure 4 shows results for
the fractional Gierer-Meinhardt model, and Fig. 5 shows re-
sults for the fractional Brusselator model.

The following observations summarize the principal fea-
tures in our simulations of perturbed fractional activator-
inhibitor systems with equal anomalous diffusion in both the
activator and the inhibitor: �i� The concentrations of the ac-
tivator and inhibitor both fluctuate �more or less to the same
degree� about the homogeneous steady-state values. �ii� A
spatiotemporal pattern develops on or before about 500
model time units. �iii� The surface profiles become more spa-
tially rough as � decreases. �iv� The surface profiles become
less stationary in time as � decreases. �The alternating bands
of black and white along the time axis in Fig. 4�b� are char-
acteristic of standing wave patterns.�

In order to further explore the robustness of the above
results we have carried out additional simulations using dif-
ferent �sinusoidally perturbed� initial conditions. Surface

TABLE III. The dominant �maximum k� Fourier wave numbers
determined by linear stability analysis and the positions of peaks in
the power spectra from numerical simulations. Results here are
shown with Gierer-Meinhardt reaction kinetics. The asterisk is used
to identify the k value corresponding to the largest peak in the
power spectrum.

� d Maximum k

Power spectra peaks

n1 n2

0.2 7.0 18.5 16, 17, 34, 37� 16, 18, 19, 34�

0.4 12.0 15.5 15�, 29, 31 14, 15�, 29, 30, 31

0.5 14.0 15.0 13�, 28, 29 13�, 29

0.6 17.0 13.0 14�, 28 14�, 28

0.7 19.0 11.5 12�, 24 11�, 13, 24

0.8 21.0 10.0, 11.5 11� 11�

0.9 22.0 9.0 9� 9�

1.0 22.0 7.5 7, 8� 7, 8�

TABLE IV. The dominant �maximum k� Fourier wave numbers determined by linear stability analysis and
the positions of peaks in the power spectra from numerical simulations. Results here are shown with Brus-
selator reaction kinetics. The asterisk is used to identify the k value corresponding to the largest peak in the
power spectrum.

� d Maximum k

Power spectra peaks

n1 n2

0.2 9.0 29.5 30, 32�, 62 30�, 32, 62

0.4 14.0 23.5 24, 25�, 27, 55 25�, 27

0.5 17.0 20.0 20�, 38, 39 20�, 38, 39

0.6 20.0 17.0 18, 19�, 37 18, 19�, 37

0.7 22.0 15.5 15, 16�, 31 15, 16�, 31

0.8 23.0 14.0, 14.5 14, 15�, 29 14, 15�, 29

0.9 24.0 12.5 13� 13�

1.0 25.0 10.0 10, 11� 10, 11�
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density plots are shown in Fig. 6 for the fractional Brussela-
tor model using long-wavelength sinusoidal perturbations
�left� and short-wavelength sinusoidal perturbations �right�.
The persistence of the memory effect is greater for lower
values of � but in all cases there appears to be no memory of
the initial conditions after 500 model time units. The patterns
after this time are essentially the same for long-wavelength,
short-wavelength, and random initial pertubations.

An interesting question is whether the surfaces that we
have described here as rough possess self-affine scaling
properties characteristic of fractional Brownian functions
�48–51�. Preliminary measurements of surface roughness
that we have carried out �27� are consistent with self-affine
scaling with a Hurst exponent H that decreases essentially
monotonically in the range between H=1 �smooth curve�
and H=1/2 �ordinary Brownian function � as � varies from
unity �normal diffusion� to zero. However, these results,
which typically are based on log-log plots spanning less than
an order of magnitude in the spatial grid size �x, will require
confirmation from simulations with greater spatial resolution.

C. Stationary Turing patterns �1=0.5,�2=1.0

In a previous paper �23� we carried out linear stability
analysis of the homogeneous steady state for fractional
activator-inhibitor systems with standard diffusion in the in-
hibitor ��2=1.0� but anomalous subdiffusion in the activator
��1=0.5�. On the basis of this analysis we speculated that
Turing-instability-induced pattern formation might occur in

such systems for any nonzero d. In order to test this specu-
lation we have carried out numerical simulations of the frac-
tional activator-inhibitor model with standard diffusion in the
inhibitor and anomalous subdiffusion in the activator over a
range of parameters with both Gierer-Meinhardt and with
Brusselator reaction kinetics. Sample results are shown in the
plots in Figs. 7–9. Figures 7 and 8 show surface profiles and
density plots for the activator in the fractional Gierer-
Meinhardt system and the fractional Brusselator system, re-
spectively. Figure 9 shows example surface profiles for the
inhibitor in fractional activator-inhibitor systems with frac-
tional diffusion in the activator but standard diffusion in the
inhibitor. Standard density plots corresponding to these pro-
files are either all white or all black. In Fig. 10 we have
plotted the characteristic wavelength of the stationary pattern
�defined as the length of the domain divided by the number
of peaks in the stationary pattern� as a function of the diffu-
sion ratio d.

The following features are common to the simulations
that we carried out with anomalous subdiffusion in the acti-
vator but standard diffusion in the inhibitor: �i� The activator
and inhibitor do not exhibit similar fluctuations about the
homogeneous steady-state solution. �ii� Pattern formation oc-
curs for values of d below the critical d� for pattern forma-
tion in the same model systems but with standard diffusion
��=1� or fractional diffusion ��=1/2� in both the activator
and the inhibitor. �iii� The patterns are stationary. �iv� The
patterns are not rough. �v� The wavelength of the patterns
increases as d increases.

FIG. 4. Surface profiles and surface density
plots for n1�x , t� in the fractional Gierer-
Meinhardt model with randomly perturbed initial
conditions: �a� �=0.8, d=21; �b� �=0.5, d=14;
�c� �=0.2, d=7. The quantities plotted are
dimensionless.
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FIG. 5. Surface profiles and surface density
plots for n1�x , t� in the fractional Brusselator
model with randomly perturbed initial conditions:
�a� �=0.8, d=23; �b� �=0.5, d=17; �c� �=0.2,
d=9. The quantities plotted are dimensionless.

FIG. 6. Surface density plots for the activator,
n1�x , t�, in the fractional Brusselator model with
long-wavelength �left column� and short-
wavelength �right column� sinusoidally perturbed
initial conditions: �a� �=0.2, d=9; �b� �=0.5, d
=17; �c� �=0.8, d=23. The quantities plotted are
dimensionless.
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V. DISCUSSION

In this paper we have carried out algebraic and numerical
analysis of fractional activator-inhibitor systems with Gierer-
Meinhardt and with Brusselator reaction kinetics. We have
considered cases with equal anomalous �sub�diffusion in
both activator and inhibitor variables as well as cases with
anomalous �sub�diffusion in the activator but standard diffu-
sion in the inhibitor. The anomalous subdiffusion is charac-
terized by the two variables d �a diffusion constant� and � �a
diffusion scaling exponent� through the relation �52�

�r2�t�	 =
2d

��1 + ��
t�, �42�

where �r2�t�	 is the mean-square distance traveled by a dif-
fusing particle in time t. In the case of standard diffusion,
�=1, and as � is reduced from 1 to 0, the �sub�diffusion
becomes more anomalous.

Our results provide clear evidence for the following: �i�
Linear stability analysis of homogeneous steady-state solu-
tions provides a reliable predictor of the onset and nature of
pattern formation in fractional activator-inhibitor systems.
�ii� Turing instabilities occur for successively lower values of
the critical diffusion constant d� as the �sub�diffusion be-
comes more anomalous. �iii� Spatiotemporal patterning oc-
curs in fractional activator-inhibitor systems when the diffu-
sion is equally anomalous in both the activator and inhibitor.
The patterning is similar in both the activator and inhibitor in
these systems. The surface profiles are increasingly rough as
the �sub�diffusion becomes more anomalous. �iv� Stationary
Turing patterns occur in fractional activator-inhibitor sys-
tems when the diffusion is anomalous subdiffusion in the
activator but standard diffusion in the inhibitor. The pattern-
ing is different in the activator and inhibitor in these systems
and it is not rough.

In standard activator-inhibitor systems it is well known
that a necessary condition for pattern formation is that the
inhibitor concentration diffuses faster than the activator con-
centration �see, e.g., �9��. Thus in time t we would expect the
mean-square displacement of the inhibitor �r2

2�t�	 to be
greater than that of the activator �r1

2�t�	. Allowing for anoma-
lous diffusion as in Eq. �42� this yields the result that

d =
d2

d1
�

t�1��1 + �2�
t�2��1 + �1�

. �43�

so that if �1��2, then after a sufficiently long time this
condition will always be satisfied. The results of our studies
are consistent with this general principle.

The results of this paper provide theoretical support for
fractional activator-inhibitor systems as viable models for
Turing pattern formation in activator-inhibitor systems with
anomalous subdiffusion in one or both of the chemically re-
acting species. In experimental studies of Turing pattern for-
mation in activator-inhibitor systems it has been argued that
the diffusion rate of the activator is effectively reduced by
the reaction medium �a gel containing a colour indicator�. It
would be useful to have experiments that directly test for
anomalous subdiffusion of the activator in the reaction me-
dium in the absence of the inhibitor. Some practical consid-
erations on how this might be done are described in �52�.
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FIG. 7. Surface profile and surface density
plot for the activator, n1�x , t�, in the fractional
Gierer Meinhardt model with randomly perturbed
initial conditions and diffusion parameters �1

=0.5, �2=1.0, and d=8. The quantities plotted
are dimensionless.

FIG. 8. Surface profile and surface density
plot for the activator, n1�x , t�, in the fractional
Brusselator model with randomly perturbed ini-
tial conditions and diffusion parameters �1=0.5,
�2=1.0, and d=10. The quantities plotted are
dimensionless.
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APPENDIX: IMPLICIT NUMERICAL SCHEME FOR
FRACTIONAL ACTIVATOR-INHIBITOR SYSTEMS

The model equations �16� and �17� were discretized using
finite differences with a backward Euler time step for the
time derivative and a centered difference approximation for
the spatial derivative. The fractional derivative of order 1
−� with respect to time at t= tk+1 was approximated using the
L1 scheme �53�

d1−�y

dt1−� �
�t�−1

��1 + ��

���y�0�
k1−� + �

l=1

k

�y�tl+1� − y�tl����k − l + 1�� − �k − l���� ,

where �t is the step length in time and ��x� is the gamma
function. We retain the full evaluation of the sum in the L1
scheme for the computation of the fractional derivative. Our
implicit method reduces to the solution of a set of 2N non-
linear equations in 2N unknowns to be solved at each step.
The equations are

n1,i
k+1 − n1,i

k − �tf1�n1,i
k+1,n2,i

k+1� − �1
�1

k1−�1
� n1,i

1 − �1�
l=1

k

��n1,i
l+1

− � n1,i
l ���k − l + 1��1 − �k − l��1� = 0, �A1�

n2,i
k+1 − n2,i

k − �tf2�n1,i
k+1,n2,i

k+1� − �2
�2

k1−�2
� n2,i

1 − �2�
l=1

k

��n2,i
l+1

− � n2,i
l ���k − l + 1��2 − �k − l��2� = 0, �A2�

where nj,i
k =nj(i�x , �k−1��t),

�1 =
�t�1

�x2��1 + �1�
, �2 = d

�t�2

�x2��1 + �2�

and

�nj,i
k = nj,i+1

k − 2nj,i
k + nj,i−1

k .

The above nonlinear equations are solved at each iteration
using the Newton-Raphson numerical solution technique.

The sum in the finite difference equations, Eqs. �A1� and
�A2�, can be evaluated once at each time step rather than at
each iteration per time step since only the kth term �nj,i

k of
the sum involves the unknown variables; the rest of the sum
remains constant per iteration for a given time step. To real-
ize these savings we have rewritten the finite-difference
equations as

nj,i
k+1 − �tf j�n1,i

k+1,n2,i
k+1� − � j � nj,i

k+1

=nj,i
k + ��nj,i

1 � j
k + �

l=2

k

�k−l+2 � nj,i
l � ,

where i=1,2 , . . . ,N and j=1,2. The weights of the fractional
derivative are given by

� j
k =

� j

k1−�j
− �k�j − �k − 1��j�

and

�s = s�j − 2�s − 1��j + �s − 2��js = 2,3, . . . ,k .

The “constant” terms of the sum are now given on the right
of these equations. The above system of 2N nonlinear equa-
tions was solved using the Newton-Raphson method �54�

FIG. 9. Surface profiles for the inhibitor, n2�x , t�, in the fractional Gierer-Meinhardt model �left� and the fractional Brusselator model
�right� with randomly perturbed initial conditions and with diffusion parameters �1=0.5, �2=1.0, and d=8.0 �Gierer-Meinhardt� or d
=10.0 �Brusselator�. The quantities plotted are dimensionless.

FIG. 10. Characteristic wavelength versus diffusion ratio for
stationary patterns in the fractional Gierer-Meinhardt system with
random initial conditions and with �1=0.5 and �2=1.0. The quan-
tities plotted are dimensionless.

HENRY, LANGLANDS, AND WEARNE PHYSICAL REVIEW E 72, 026101 �2005�

026101-12



and at each iteration the system of linear equations

J�x> i��x> = − f
>
�x> i�

was solved to find the correction. A modified Crout algo-
rithm was used to solve this system of equations. The Crout
algorithm was made more efficient by taking into account the
block structure of the Jacobi matrix

J = �T1 D1

D2 T2
� ,

where T j and D j are N�N tridiagonal and diagonal matrices,
respectively. The decomposed Jacobi matrix can be shown to
take the form

J* = �T L

U S
� ,

where L, U, and S are N�N lower triangular, upper trian-
gular, and square matrices, respectively. A significant amount
of computation can be saved by only computing elements we
know to be nonzero. Some idea of the savings achieved can
be obtained by noting that 4N2 elements are evaluated in the
full method whereas only 2N2+2N−1 elements need to be
evaluated in the modified method �the elements on the upper
diagonal of T1 and on the diagonal of D1 remain unchanged
and hence do not need to be evaluated�. In terms of compu-
tation, the full Crout method requires N�8N2+30N−11� /3
operations while the modified method requires only �4N3

+21N2+17N−6� /3 operations, a saving of about 50% for
N=128.
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