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The dynamics of a fiber ring laser mode locked by nonlinear polarization rotation is reduced to a quintic
complex Ginzburg-Landau �CGLQ� equation. The coefficients of the equation are explicitly given as functions
of the physical parameters of the laser, especially the orientation of the phase plates. Then known results about
analytic solutions, stability of pulselike solutions, and bound states of the CGLQ equation are examined from
the point of view of their dependence with regard to the physical parameters.
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The nonlinear Schrödinger �NLS� equation is known as a
universal model accounting for the propagation of pulses, in
nonlinear, dispersive, and conservative media, within the
slowly varying envelope approximation. When the medium
presents linear and nonlinear gains or losses, the NLS equa-
tion becomes the so-called cubic complex Ginzburg-Landau
�CGLC� one, which is thus a universal model describing the
evolution of the envelope of a pulse in a nonconservative
medium �1�. The CGLC equation has been studied for many
years. The early studies concerned the modulational instabil-
ity �2�, leading to chaos �3�, and to prove that the CGLC
equation is not integrable in the sense of the soliton theory
�4�. Despite its failure to pass the Painlevé test, Painlevé
analysis has been used to study mathematical properties of
the equation �5�. An analytical solution has been found: lo-
calized pulses or solitons, shock profiles, holes, or dark soli-
tons �6,7�. A remarkable property is that, in contrast to the
NLS equation, bright and dark solitons exist for both normal
and anomalous dispersion. Still in contrast with the conser-
vative NLS case, the formation of the soliton involves two
equilibriums: between the Kerr effect and dispersion, but
also between gains and losses. Therefore, the soliton has a
fixed amplitude. A soliton with arbitrary amplitude has been
found in the case where the linear excess of the gain is zero
�8�. Other properties of the solitons, especially their stability,
have been studied by treating the CGLC equation as a NLS
one with nonconservative perturbations �9�, and numerically
�10,11�.

The CGLC equation is an essential model for the study of
laser dynamics, especially for fiber lasers, which are true
one-dimensional media. A model very frequently used in this
domain is the “master equation” derived by Haus et al.
�12,13�, which is nothing but the stationary version of the
CGLC equation. The coefficients that appear in the model
were related to the physical parameters in a rather phenom-
enological way �14�. A more rigorous derivation of the
CGLC, in the case of a fiber laser mode locked by means of
the nonlinear polarization rotation technique, has been given
�15–17�. There the dependency of the coefficients of the

CGLC with regard to the experimental parameters, espe-
cially the orientation of the phase plates, which allows us to
control the polarization, has been explicitly determined. This
allowed us to determine domains of relative stability of the
solitons, which were in good agreement with the domain of
mode locking observed experimentally �15�. It is only a rela-
tive stability: depending on the sign of the excess of the
linear gain, the instability behaves in a very different manner.
This gives a criterion that has been successfully compared
with experimental results. However, the soliton solution of
the CGLC is never stable, neither for anomalous dispersion
�10�, nor in the case of normal dispersion �11�.

To achieve the stabilization of the solitons in the model,
higher-order nonlinear �quintic� terms have been introduced.
The obtained equation is referred to as the quintic �or cubic-
quintic� complex Ginzburg-Landau �CGLQ� equation. It still
possesses analytical solutions, which are generalizations of
the fixed- and arbitrary-amplitude solitons of the CGLC �8�,
but also analytic solutions, flat top, algebraic, and chirp-free
�10�. The stability of the solitons has been proved in the case
of anomalous �18,19� and normal dispersion �11�. A lot of
numerical studies also exist, among which we can cite the
composite solitons �20�. An essential issue of the CGLQ
model is the study of bound states of two solitons or more.
Indeed, as soon as a bound state is not considered as a mere
two-hump solution, but has the result of the interaction of
two solitons behaving as quasiparticles, the stability of soli-
tons is required. If not infinite, the lifetime of the quasipar-
ticles must be large with regard to the duration of the inter-
action, which is very slow in this case. Bound states have
been studied through a perturbative approach around the
NLS equation �21�, and by means of the energy-momentum
balance approximation, for anomalous �22,23�, and normal
dispersion �24�.

In any case, the coefficients of the quintic terms are given
up to now in a purely phenomenological way. We published
recently a model of the fiber ring laser mode locked through
nonlinear polarization rotation, which allows us to account
for multiple pulse operation, including the hysteresis and
multistability �25�. This model gives an explicit dependency
of the coefficients of the equations with regard to the physi-
cal parameters, especially the wave plates orientations. Using
a weak amplitude approximation, this model can be reduced
to the CGLQ equation.

Let us first recall its derivation as given in �25�. We con-
sider an ytterbium-doped fiber ring laser passively mode
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locked through a nonlinear polarization rotation. The setup is
schematically shown in Fig. 1. After the polarizing isolator,
the electric field has a linear polarization, which is trans-
formed into an elliptical one by the quarter-wave plate 3. At
the output of the fiber, the direction of the elliptical polariza-
tion of the central part of the pulse can be rotated towards the
passing axis of the polarizer by the half-wave plate 2, then
the ellipticity of the polarization is modified by the quarter-
wave plate 1. We denote by �1, �2, and �3 the angles be-
tween one eigenaxis of the plates 1, 2, and 3, respectively,
and the passing axis of the polarizer. Assuming that nonlin-
earity dominates, the two components u and v of the electric
field evolve in the fiber according to the equations

�u

�z
= i��u�u�2 + �1 − B�u�v�2 + Bv2u*� , �1�

�v
�z

= i��v�v�2 + �1 − B�v�u�2 + Bu2v*� . �2�

� �W−1 m−1� is the nonlinear coefficient related to the non-
linear index coefficient n2. In silicate fibers, B=1/3. Equa-
tions �1� and �2� can be solved analytically. The effects of the
phase plates are treated by means of the Jones matrix formal-
ism, and the electric field amplitude after the �n+1�th round
trip u= fn+1 is computed as a function of the same amplitude
after the nth round trip fn as

fn+1 = − �ei��fn�2L�cos��L + �� cos��1 − �3�

+ i sin��L + �� sin��1 + �3��fn, �3�

where �=�B�fn�2sin 2�3 , �=2�2−�1−�3. � is the transmis-
sion coefficient of the polarizer, and L the length of the cav-
ity. We assumed that the dispersion and gain have a small
effect on a single round trip in the cavity, which allows us to
approximate them as uniformly distributed along the cavity.
This yields the following equation for the evolution of the
amplitude f along the fiber:

� f

�z
= Lf = � g0

�g
2 − i

�2

2
� �2f

�t2 + g0f , �4�

where �2 �ps2 m−1� is the second-order group velocity dis-
persion �GVD�, g0 �m−1� the linear gain. We neglect gain
saturation. It depends indeed on the averaged power in the
cavity. If the pulse length is short enough with regard to the

cavity length, the averaged power is small, so that the ap-
proximation is justified. For each round trip, the differential
equation �4� was solved numerically, then the algebraic
transformation �3� applied to the result, and so on. The full
detail of the above derivation is given in �25�.

Here we modify the approach as follows: The discrete
sequence fn�t� defined by relation �3� is interpolated by a
continuous function f�z , t�. If relation �4� is omitted, the in-
terpolation yields the differential equation

� f

�z
= Nf = �i��f �2 +

1

L
ln�� cos 2�3cos��L + ���	 f . �5�

Taking into account the dispersion and gain terms of Eq. �4�
as perturbations of the first approximation defined by Eq. �5�,
the linear evolution operator L and the nonlinear one N add
up. We get the partial differential equation �PDE� to be sat-
isfied by f , as

� f

�z
= �L + N�f = � g0

�g
2 − i

�2

2
� �2f

�t2 + �g0 − � +
1

L
ln�cos�p�f �2

+ ��� + i��f �2	 f , �6�

where we have set �=−ln�� cos 2�3� /L, and
p=�BL sin 2�3. Then we consider a weak amplitude ap-
proximation. The nonlinear term in Eq. �6� is expanded in a
power series of �f �2, and we get

� f

�z
= � g0

�g
2 − i

�2

2
� �2f

�t2 + �g0 − � −
ln�cos ��

L
−

p tan �

L
�f �2

−
p2

2L cos2�
�f �4 + i��f �2	 f , �7�

Equation �7� is the CGLQ equation. It can be reduced to
the dimensionless form used in �10,11�, which is

i
��

�	
+

D

2

�2�

�
2 + ����2 = i�� + i�
�2�

�
2 + i�����2 + i����4,

�8�

by means of the following relations:

� = 
�Lf , 	 =
z

L
, 
 =

t

��2�L

, �9�

D = − sgn �2, � =
g0

�g
2��2�

, �10�

� = Lg0 + ln�� cos 2�3cos �� , �11�

� = − B sin 2�2 tan �,  = − B2 sin22�3

2 cos2�
. �12�

An effective quintic absorption-gain term has been de-
rived this way, with the nonvanishing coefficient , without
any quintic nonlinearity of the material. Thus the CGLQ
equation can be valid even if the quintic nonlinearity of the
medium is completely negligible. Notice that the effective

FIG. 1. Schematic representation of a fiber laser passively mode
locked through nonlinear polarization rotation.

KOMAROV, LEBLOND, AND SANCHEZ PHYSICAL REVIEW E 72, 025604�R� �2005�

RAPID COMMUNICATIONS

025604-2



quintic nonlinear index, denoted by � in �10,11�, is zero in
this approximation. The parameter set of the CGLQ is wide,
this condition restricts it considerably, facilitating the analy-
sis of the considered physical problem. The coefficient �
depends on the gain filtering � and on the dispersion �2, it
can be adjusted experimentally to some extent. The coeffi-
cient � can be adjusted to any value by a choice of the
combination �=2�2−�1−�3 of the angles of the phase
plates. The excess of linear gain � can be modified in two
ways: acting on the pumping changes the gain coefficient g0,
while the losses can be modified by rotating one of the phase
plates. If � is fixed, �3 can be adjusted increasing arbitrarily

the losses. The value of the effective dimensionless quintic
absorption-gain coefficient  cannot be adjusted so easily.
Indeed, we have the relation

 + �2 +
B2

2
sin22�3 = 0; �13�

therefore  can take values only between −�2 and
−�2−B2 /2 �i.e., −�2−1/18 in silicate fibers�. However, the
CGLQ equation �8� is invariant under the transformation

�� =
�

a
, 	� = a2	, 
� = a
, �� =

�

a2 , � = a2,

�14�

for any real value of a. Thus the parameter  can be set to an
arbitrary value by means of a change of the amplitude, time,
and propagation distance scales, unless the sign of , the
sign of �, and the product � are fixed. Therefore any nega-
tive value of  can be obtained. The parameters correspond-
ing to a given set of values of � , � and of the product � can
be found as follows: first the expression �12� of � gives � as
an inverse tangent. Then Lg0 is computed from the expres-
sions �11� and �12� of � and , and an expression of L��2� vs
�3 is obtained from that of �, Eq. �10�. The latter expression
can be inverted numerically if L��2� is given.

An analytical solution, known as the fixed-amplitude soli-
ton, is given in �11� �its expression is too complicated to be
reproduced here�. It exists if

� = − 4� + 3�
3 + 16�2, �15�

with �= ±1. This can be achieved by choosing
�=arctan�� / �B sin 2�3��, where � is a function of �, accord-
ing to �15�, and � depends on the linear gain g0 through �10�.
There are four different expressions depending on the sign �
in �15�, and on the choice of d+ or d− �see �11��. They do not
yield a pulselike solution every time, especially, when a con-
dition is required �Eq. �23� in �11��, which reduces here to
����0, where � is the sign such that d=d�. The analytical
solutions are plotted against the orientation angle �3 of the

FIG. 2. �Color online� Time profile of the analytical solution of
CGLQ against the angle �3. Parameters: �=0.95, L=9 m, �g

=10 ps−1 , �2=0.026 ps2 m−1 , g0=4/9 m−1; �� ,��= �1,1� �a�,
�−1,1� �b�.

FIG. 3. Domains of existence of stable pulse solutions of
CGLQ, against the angles. The parameters are �=0.95, g0L
=1.3, L�2=0.026 ps2 , �g=10 ps−1. Black: stable pulses exist;
gray: instability �in the light gray domain it is due to the back-
ground�; white: stability is not determined.

FIG. 4. �Color online� Propagation of a stable bound state of
three pulses. The parameters are �=0.95, g0L=2.5, L�2

=−0.05 ps2 , �g=10 ps−1 , �� ,�3�= �−85.047� ,2.985��.
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phase plate 3 in Fig. 2, in the case of normal dispersion. With
the same values of the parameters, a flat-top solution is ob-
tained for �3�7.1355, and �� ,��= �−1,1�. It should take
place at the front of the Fig. 2�b�, but does not appear since
the precision on �3 required for its observation is very high.

However, the analytical solutions of the CGLQ equation
are unstable. The existence of stable pulselike solutions has
been considered numerically, especially in �11� for normal
dispersion. The stability of pulses as a function of the angles
� , �3, i.e., the orientation of the phase plates, and of the
linear gain g0, can be deduced from such an analysis. Figure
3 presents an example of the conclusions that can be drawn
from the results published in Ref. �11�, without further nu-
merical study of the CGLQ equation. The values of � and 
considered appear to be quite restrictive, and imply a low
dispersion, which can be obtained in the stretched pulse con-
figuration. The white domain on Fig. 3 corresponds to values
of � out of the range considered in �11�, and we cannot
conclude from these data only. The light gray domain corre-
sponds to an unstable background ���0�. The stability re-
sults of �11� can be applied to the central stripe. A domain of
existence of stable pulses appears �in black�.

Bound states have also been described. In �22,23�,
two sets of coefficients of the CGLQ equation are

considered. For the same physical parameters as above,
except a total dispersion L�2=−0.05 ps2, anomalous, these
coefficients can be obtained using Lg0=2.5 and angles
�� ,�3�= �−83.957° ,17.432° � or �−85.047° ,2.985° � respec-
tively. Bound states of two and more pulses have been ob-
tained for the former set, and it was shown that the two pulse
states are unstable for the latter. However, in the latter case,
triple bound states with a different phase symmetry can be
found; a numerical example is shown on Fig. 4. The detail
and the proof of the stability of this state are left for further
publication.

Thus, considering a ring fiber laser mode locked through
nonlinear polarization rotation, we have made the link be-
tween the physical parameters, which are mainly the orien-
tation angles of the phase plates, and the coefficients of the
CGLQ equation. This allows us to precisely understand more
accurately in a concrete frame the meaning of the results of
the mathematical physics about this equation, concerning
analytic and numerical solutions and their stability, or bound
states. The set of coefficients of the CGLQ equation is very
wide, therefore it cannot be investigated systematically by
numerical methods. The coefficients derived in this paper
may give an orientation for further studies.
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