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Piecewise smooth Hamiltonian systems arise in physical and engineering applications. For such a system
typically an infinite number of quasiperiodic “attractors” coexist. �Here we use the term “attractors” to indicate
invariant sets to which typically initial conditions approach, as a result of the piecewise smoothness of the
underlying system. These “attractors” are therefore characteristically different from the attractors in dissipative
dynamical systems.� We find that the basins of attraction of different “attractors” exhibit a riddledlike feature
in that they mix with each other on arbitrarily fine scales. This practically prevents prediction of “attractors”
from specific initial conditions and parameters. The mechanism leading to the complicated basin structure is
found to be characteristically different from those reported previously for similar basin structure in smooth
dynamical systems. We demonstrate the phenomenon using a class of electronic relaxation oscillators with
voltage protection and provide a theoretical explanation.
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A fundamental goal in science is to make predictions. For
systems that evolve in time, a basic question is: for a given
initial condition where does the trajectory go? Often, there
are multiple coexisting destinations, e.g., attractors in dissi-
pative systems, each having its own basin of attraction. For
an initial condition near a basin boundary, uncertainty in the
prediction of the final attractor can arise because of the finite
precision in the specification of the initial condition. In order
to improve the predictability, a possible way is to make the
initial condition more precise. If the basin boundary is
simple, e.g., a one-dimensional curve in a two-dimensional
phase space, increasing the precision will result in an equal
amount of improvement in the predictability of the attractor.
It has been recognized, however, that in nonlinear dynamical
systems significant difficulty can arise in the prediction of
the final destination. In particular, fractal basin boundaries
�1–3� can arise for which improvement in the precision to
specify the initial condition often results in disproportionally
less improvement in the predictability. Dynamical systems,
especially those possessing a simple symmetry, can have
riddled basins �4,5�, for which vast increase in the precision
of the initial condition results in practically no improvement
in the predictability. The predictability is usually character-
ized by examining how the probability of error in the predic-
tion, f���, scales with the precision � in the initial condition.
One typically has f������, where 0���1 is the uncer-
tainty exponent �1�. The value of � determines the degree of
improvement in the predictability �i.e., decrease in f����
upon reduction in �. For fractal basin boundaries, the typical
values of � are between zero and unity, while for riddled
basins, ��0.

Situations where the uncertainty exponent � assumes
near-zero value are of concern because it implies an extreme
type of unpredictability of the system’s destinations. The
mechanism underlying this property seems to be well under-
stood in the case of riddled basins �4–6�. That riddling typi-
cally occurs in dynamical systems with a symmetry does not

mean that systems without symmetry are immune to the ex-
treme type of unpredictability. Because of the fundamental
importance of predictability in science, it is of broad interest
to identify dynamical mechanisms other than riddling that
can cause a similar degree of unpredictability.

In this paper, we present a class of nonsymmetrical physi-
cal systems that exhibit such an extreme degree of unpredict-
ability of attractors. The system is piecewise smooth Hamil-
tonian with a bifurcation parameter p that controls the degree
of nonsmoothness. Say for p= pc=1 the system is smooth
and described by a Hamiltonian map in the entire phase-
space region of interest, which typically contains
Kol’mogorov-Arnol’d-Moser �KAM� islands and chaotic
sea. Imagine that for p� pc a subregion in the phase space
emerges in which the dynamics is governed by a different
smooth Hamiltonian map. The system then becomes piece-
wise smooth for p� pc, with two distinct phase-space re-
gions �denoted by �1 and �2� in which the maps are different
but are still Hamiltonian by themselves. Invariant sets lo-
cated entirely in each region, typically KAM tori, remain to
be invariant. However, the original chaotic sea may now lo-
cate in both �1 and �2 and so it is no longer invariant. As a
result, trajectories initiated in the original chaotic sea will
become transiently chaotic and eventually approach one of
the KAM tori, making them effectively attracting sets. There
can then be an infinite number of such “attractors” in the
phase space for p� pc. Due to the appearence of “attractors,”
the system becomes effectively dissipative �“quasidissipa-
tive” �7�� but the final “attractors” are tori that generate vari-
ous quasiperiodic motions. We find that the basins of attrac-
tion arising in such quasidissipative systems are mixed in
such a way that for every initial condition that approaches
one “attractor,” there are initial conditions arbitrarily nearby
that approach other “attractors,” making ��0. The mecha-
nism for the occurrence of a near-zero uncertainty exponent
is found to be different from riddling. As we will show, it is
due to the mixing of different basins of attraction on a fat-
fractal set. The situation can be expected to occur in physical
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systems, as we shall demonstrate using a class of electronic
oscillators that find applications in physical and engineering
devices.

We consider a class of electronic relaxation oscillators
with voltage protection �8�. The circuit consists of a capaci-
tor connected in parallel with two constant current sources,
each controlled by an electronic switch. The capacitor can
be charged or discharged in different time intervals. In
the absence of voltage protection, the switches provide an
upper voltage threshold that varies sinusoidally with time:
U1�t�=Umax−U0 sin��t�, and a lower threshold U2�t�, where
Umax, U0, and � are parameters, and U2�t� is a function of
time. Between the thresholds, the voltage V�t� across the
capacitor varies linearly with time. Say at time tn, V�t�
reaches the upper threshold: V�tn�=U1�tn�. For t	 tn, V�t�
decreases until it reaches U2�t� at some time t*	 tn, and starts
to arise for t	 t*, and reaches U1�t� at tn+1, and so on. Let xn

denote the phase of U1�t�. An elementary circuit analysis
leads to a one-dimensional discrete-time map relating xn+1 to
xn �9�. Voltage protection is introduced by setting the upper
threshold to a constant E in the time intervals during which
V�t�	E. The region in the phase variable x where voltage
protection is in effect is then F= �xF1

,xF2
�= �1/2

+sin−1 c / �2
� ,1−sin−1 c / �2
��, where c�E /U0. Similarly,
a new phase variable yn can be used to model the dynamics
at the lower threshold and it can be assumed that U2�t� de-
pends linearly on yn �8�. The charging and discharging pro-
cess of the capacitor can then be described by a two-
dimensional map in terms of the phase variables �xn ,yn�.
Because of the voltage-protection mechanism, the map takes
a different form outside and inside the region F. Since the
dynamics is governed by phase variables, both maps are area
preserving. The system is thus described by piecewise
smooth Hamiltonian maps �8�, as follows: for xn�F,

xn+1 = �xn + yn+1 +
a

b
	mod�1� ,

yn+1 = �yn −
sin�2
xn�

b
	mod�1� , �1�

but for xn�F,

xn+1 = �xn + yn +
a + c

b
	mod�1� ,

yn+1 = �yn + 2xn�mod�1� , �2�

where a and b are parameters. Note that for c=1, the
voltage-protection region F vanishes, leaving a smooth
Hamiltonian map given by Eq. �1� only. The phase-space
structure in this case is well understood �10�, which typically
contains KAM tori and chaotic seas, as shown in Fig. 1�a�
for a=2.0 and b=4.0. As c is decreased from unity, the sys-
tem becomes piecewise smooth as modeled by both Eqs. �1�
and �2�. Our interest here is in the slightly nonsmooth region:
c�1.

For c�1, the voltage-protection region F appears. As a
result, a set originally invariant under map Eq. �1� for c=1

will cease to be so, if it overlaps with F. Since the large
chaotic sea around the center of Fig. 1�a� extends to a
substantial region of the phase space, the region F, as soon
as it appears, passes through the sea. As a result, the chaotic
sea is no longer invariant, leading to transient chaos. Trajec-
tories originated from initial conditions in the chaotic
sea will leave it in finite time. In fact, a nonattracting chaotic
set �chaotic saddle� arises as soon as c is decreased
from unity. In the meantime, invariant sets that do not over-
lap with F, typically KAM islands, remain invariant. Be-
cause of the transient nature of chaotic trajectories, they
eventually approach one of the KAM islands. In this sense,
the islands can be regarded effectively as “attractors.” An
example of such “attractors” is shown in Fig. 1�b� for
c=0.999, where the two vertical parallel lines indicate the
voltage-protection region F and the “attractors” are gener-
ated by using a uniform grid of 10�10 initial conditions in
the square box �0.4� �x ,y��0.6� at the center of Fig. 1�a�.
Because of the appearance of “attractors,” piecewise smooth
Hamiltonian systems resemble dissipative systems, hence the
terminology “quasidissipative” dynamical systems �8�. Be-
cause of the hierarchical structure of KAM islands in the
smooth system for c=1, there can in principle be an infinite
number of “attractors” for c�1.

To compute the basins of attraction, we use the fact
that the “attractors” are quasiperiodic and so, it is
convenient to use the winding numbers to numerically
distinguish them. For a trajectory 
xn ,yn�n=1

N , the
winding numbers are Wx=limN→��1/N��n=1

N 
xn+1−xn
 and
Wy =limN→��1/N��n=1

N 
yn+1−yn
. Figures 2�a� and 2�b� show,
for c=0.999, the distributions of winding number Wx and Wy,
respectively, from a uniform grid of 100�100 initial condi-
tions in the central box in Fig. 1�a�, where for each initial
condition, the number of iterations used is N=2�105. There
are several localized regions for the winding numbers. For

convenience, we �arbitrarily� choose W̄y =0.55 as the thresh-
old for distinguishing two clusters of “attractors:” one for

Wy �W̄y �cluster I� and another for Wy 	W̄y �cluster II�, as
shown in Fig. 2�b�. We then use a denser grid of 500�500
initial conditions from the same box and determine for each
initial condition whether the resulting “attractor” belongs to

FIG. 1. �a� Phase-space structure of the smooth Hamiltonian
map Eq. �1� for c=1. Shown are KAM islands and chaotic sea for
a=2.0 and b=4.0 obtained from a uniform grid of 10�10 initial
conditions in the unit square. �b� For c=0.999, the original chaotic
motion becomes transient and KAM islands located either com-
pletely outside F or completely inside F become “attractors.”
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cluster I or II according to its winding number Wy. Figure
3�a� shows, in black dots, the initial conditions that generate
“attractors” in cluster I, i.e., the basin of the cluster-I “attrac-
tors,” while blank regions denote the basin of the cluster-II
“attractors.” The two basins are apparently mixed in a ran-
dom manner and the pattern persists when smaller and
smaller scales are examined, indicating a riddledlike struc-
ture that practically prevents prediction of “attractors” from a
given initial condition. Figure 3�b� shows the fraction f��� of
uncertain initial conditions leading to trajectories that go to
different clusters upon perturbation �, which was obtained by
randomly choosing initial-condition pairs �x0 ,y0� and �x0

+� /�2,y0+� /�2� in the square box 0.4� �x ,y��0.6, vary-
ing the number of pairs, and accumulating 1000 uncertain
initial-condition pairs. We see that over seven orders of mag-
nitude of variation in � do not apparently reduce f���, i.e.,
��0, indicating the extreme type of unpredictability of “at-
tractors” that is characteristic of riddled basins �4�. Numeri-
cally, we find that the riddled features are independent of the
choice of the clusters. For instance, by using a different value
of the winding number for classifying “attractors,” basin
structures similar to those in Fig. 3 were observed.

We now explain the riddledlike structure in general piece-
wise smooth Hamiltonian systems. For concreteness we con-
sider a system with phase space divided into two distinct but

complementary regions �1 and �2, and let the corresponding
area-preservating maps be f1�x� and f2�x�, respectively. The
regions �1 and �2 are thus the domains of the map functions
f1�x� and f2�x�, respectively. In reference to the phase-space
structure of a typical Hamiltonian system, we focus on the
chaotic sea and analyze the consequence of nonsmoothness
on trajectories from the sea. The key observation is the ex-
istence of the forbidden regions in the phase space caused by
the nonsmoothness, which are inaccessible to trajectories un-
der the forward dynamics. In fact, as we will argue, as soon
as a parameter changes so that the system becomes nons-
mooth, a set of hierarchical regions at all scales appears,
trajectories initiated from which must exit it and once exit-
ing, they can no longer return to the set. As a result, a typical
trajectory wanders near a chaotic saddle exhibiting transient
chaos before approaching one of the final quasiperiodic “at-
tractors.”

To see how the forbidden regions arise, consider the in-
verse maps xn= f1

−1�xn+1� and xn= f2
−1�xn+1�. For the exem-

plary system given by Eqs. �1� and �2�, the inverse maps are

xn = xn+1 − yn+1 − a/b

yn = yn+1 + sin�2
xn�/b
for xn � F , �3�

and

xn = − xn+1 + yn+1 + �a + c�/b
yn = yn+1 − 2xn

for xn � F . �4�

Clearly, the dynamics on the set of points that satisfy
f1

�−1��P���1 and f2
�−1��P���2 is Hamiltonian so that these

points live on invariant sets. Note that, however, for a given
point �xn+1 ,yn+1�, whether Eq. �3� or Eq. �4� is chosen de-
pends on the value of xn. Thus, a point �xn+1 ,yn+1� may have
two preimages. That is, two points in the phase space can
map into one point, which is the origin of dissipationlike
properties in the system, despite the Hamiltonian nature of
both f1�x� and f2�x�. These points satisfy f1

�−1��P���1 and
f2

�−1��P���1 or f1
�−1��P���2 and f2

�−1��P���2. That is, such
a point has two preimages and therefore it can go to an
“attractor.” The remaining set of phase-space points, points
that satisfy f1

�−1��P���2 and f2
�−1��P���1, have no preim-

ages and they are forbidden for iterations. Since the forbid-
den regions lie in the domains of f1�x� and f2�x�, they con-
stitute the basins of attraction of “attractors” in the system.

FIG. 4. For c=0.999, image of the voltage-protection
boundary.

FIG. 2. �Color online� For c=0.999, distributions of winding
numbers Wx �a� and Wy �b�.

FIG. 3. For c=0.999, �a� basin of attraction of “attractors” in
cluster I �black dots� as defined in Fig. 2�b� and, �b� fraction f��� of
uncertain initial-condition pairs vs the perturbation strength �. The
estimated uncertainty exponent is ��0.
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The key observations are: �1� points in the forbidden regions
leave but cannot return to the regions, �2� once trajectories
leave they can go to different “attractors,” and �3� the forbid-
den regions are in fact a fat-fractal set �11�. Points in the
forbidden regions can then go to different “attractors,” no
matter how close the points are. This gives rise to the
riddledlike structure observed in numerical experiments.

For the voltage-protection circuit system given by Eqs.
�1� and �2�, the forbidden region J is the intersecting set
between two sets J1 and J2 excluding the set of points that go
to “attractors,” where points in J1 and J2 are defined by
x−a /b+m−xF2

�y�x−a /b+m−xF1
and x+xF2

− �a+c� /b
−m�y�x+1− �a+c� /b−m, respectively, and m is an inte-
ger from the modular operation. For c�1, it can be seen that
J1�J2 and thus, J=J1�J2=J1. A convenient way to detect
the forbidden region numerically is to iterate a boundary of
the voltage-protection region F. Figure 4�a� shows 1000 im-
ages of 100 points on the boundary at x=xF1

for c=0.999,
which resembles the chaotic sea in the original Hamiltonian
system for c=1.0. However, a careful examination of Fig.
4�a� reveals a fractal-like set of blank regions, as shown in
Fig. 4�b�, the blowup of the region inside the rectangular box
in Fig. 4�a�. These blank regions are in fact the forbidden
regions. It was shown by Mira �12� that chaotic motion in
two-dimensional, noninvertible, nonsmooth maps is typically
restricted to the images of the boundary at which nonsmooth-
ness in the system equations occurs. The black images in

Figs. 4�a� and 4�b� thus point to the existence of a chaotic
saddle that gives rise to transient chaos for trajectories ap-
proaching the “attractors” in the system.

It is known that chaotic seas in a Hamiltonian system are
fat-fractal sets �13�. We have seen that as the system be-
comes nonsmooth, the chaotic sea becomes basins of attrac-
tion due to the appearance of a hierarchy of forbidden re-
gions with positive Lebesgue measure. The boundary set of
the forbidden regions consists of the images of phase-space
boundaries at which nonsmoothness occurs, which has Le-
besgue measure zero. This boundary set is, however, not the
basin boundaries. In fact, the forbidden regions contain ba-
sins of attractions of all “attractors” in the system and the
basin boundaries merely divide the fat-fractal sets on all
scales. The numerically obtained near-zero value of the un-
certainty exponent indicates that the dimension of the basin
boundaries is essentially that of the phase space. The resulted
unpredictability of “attractors” is a consequence of the mix-
ing of basins of attraction at all scales on fat fractals. This
mechanism for generating riddledlike basins and the total
unpredictability of “attractors” is thus characteristically dif-
ferent from those reported previously.
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