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Many neurons exhibit interval correlations in the absence of input signals. We study the influence of these
intrinsic interval correlations of model neurons on their signal transmission properties. For this purpose, we
employ two simple firing models, one of which generates a renewal process, while the other leads to a
nonrenewal process with negative interval correlations. Different methods to solve for spectral statistics in the
presence of a weak stimulus �spike train power spectra, cross spectra, and coherence functions� are presented,
and their range of validity is discussed. Using these analytical results, we explore a lower bound on the mutual
information rate between output spike train and input stimulus as a function of the system’s parameters. We
demonstrate that negative correlations in the baseline activity can lead to enhanced information transfer of a
weak signal by means of noise shaping of the background noise spectrum. We also show that an enhancement
is not compulsory—for a stimulus with power exclusively at high frequencies, the renewal model can transfer
more information than the nonrenewal model does. We discuss the application of our analytical results to other
problems in neuroscience. Our results are also relevant to the general problem of how a signal affects the
power spectrum of a nonlinear stochastic system.

DOI: 10.1103/PhysRevE.72.021911 PACS number�s�: 87.19.La, 87.19.Bb, 05.40.�a

I. INTRODUCTION

The study of spiking models has important applications in
neuroscience, laser physics, and other areas of research. In
particular, in neuroscience, studying models of a neuron may
contribute to an understanding of how sensory nerve cells
have evolutionarily adapted to their main task, which is sig-
nal transmission and processing. Specifically, given that
many neurons show in vivo a spontaneous spiking �or base-
line� activity without any external stimulation, one may pose
the following question: What are the properties of the spon-
taneous activity that lead to an enhancement of neural signal
transfer?

We cannot, of course, answer this question fully. In this
paper, we focus on a single aspect of the spontaneous activ-
ity, correlations in the interval sequence of the base-line ac-
tivity. Spike trains with interspike interval �ISI� correlations
are in general referred to as nonrenewal processes, as op-
posed to renewal processes, for which the ISIs are statisti-
cally independent �1�. The class of nonrenewal neurons also
includes bursting cells.

ISI correlations have been observed in spontaneous spike
trains generated by sensory neurons �2–7�. The P unit of the
weakly electric fish, for instance, shows a pronounced nega-
tive correlation between adjacent ISIs �8,9�, implying that a
short ISI is followed by a long one, and vice versa. The
nonrenewal property of these spike trains constitutes ex-
tended memory in the spike train. Memory in the spike train
�but not necessarily in the interval sequence� at short time
scales is well-known for neurons and can also be observed
for renewal neurons—during a short period after firing �a
refractory period�, the probability of another spike is consid-
erably reduced. Since the negative correlations look further
back into the spike history of the neuron, the negative corre-
lations have been sometimes also interpreted as cumulative
refractoriness �10�.

Researchers have speculated about the potential rôle of
negative ISI correlations for the detection and transmission
of external signals. It was shown theoretically that negative
ISI correlations reduce the detection error when static stimuli
are present �8�. Furthermore, encoding the transfer of a time-
varying stimulus �e.g., a band-pass-limited white noise� can
be enhanced by negative correlations in the spontaneous neu-
ral activity. This was demonstrated in Ref. �10� by compar-
ing the mutual information between stimulus and spike train
for two models of the P unit—a renewal and a nonrenewal
model. The model with ISI correlation was a so-called leaky
integrate-and-fire with dynamical threshold �LIFDT� model
that had been proposed in Ref. �9�. Remarkably, the gain in
mutual information seen for the nonrenewal LIFDT model
was maximum for a finite cutoff frequency of the stimulus.
These findings were numerically achieved and were thus
limited in giving insights about the dynamical mechanism by
which negative correlations lead to an enhancement of neural
information transmission.

The analytical treatment of models like the LIFDT model
that generate nonrenewal spike trains is quite difficult. For
the comparably simple case that ISI correlations are induced
by an external stimulus, a number of analytical results for the
serial correlations among intervals have been achieved only
recently �11,12�. A model with strong negative ISI correla-
tions inherent to the spontaneous activity was analytically
treated in our recent paper �13�. There we compared this
model to a renewal model that possesses the same single ISI
statistics but does not exhibit negative ISI correlations. �This
strategy was the same as in the numerical study in Ref. �10�,
although analytically more tractable neuron models were
used.� We showed that the gain in information transfer of a
band-pass-limited white noise is based on a shaping of the
background noise spectrum �i.e., a redistribution of spectral
power vs frequency� through the negative correlations. We
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note that such noise-shaping effects have also been found in
neuron models with feedback, both at the single-neuron level
�14,15� and the network level �16�.

In this paper, we give the details of the calculation in Ref.
�13�, including an approach for the probability density of
integrate-and-fire neurons with threshold noise. Additionally,
we derive refined analytical expressions for quantities like
the power spectrum that are much more accurate than those
of our original approach. We note that the approaches used in
this paper also bear relevance to the general problem of how
a stimulus affects a nonlinear stochastic system, in particular,
how the stimulus shapes spectral measures like the power
spectrum. This justifies why we have devoted much space to
calculational problems that may appear at a first glance as
purely technical.

Using the analytical results, we discuss the gain in mutual
information through negative correlations as a function of
the system’s parameters. We explore furthermore the signal
transmission in the case of a band-pass-limited white noise
that has a finite lower cutoff frequency. For this latter case,
we will demonstrate that a positive gain in information trans-
mission is not always the case—for certain stimuli, a renewal
neuron transfers more information about the stimulus than a
nonrenewal neuron with a negative ISI correlation. We fi-
nally draw some conclusions about the general role of nega-
tive ISI correlations in neural signal processing.

Our paper is organized as follows: In Sec. II, we briefly
explain the spike train and input-output statistics and de-
scribe some important relations that we will use in this paper.
In Sec. III, we introduce our simplified models and discuss
the spontaneous case. We proceed in Sec. IV with the ana-
lytical treatment of the models under stimulation. In Sec. V,
we discuss power and cross spectra as well as the coherence
function, including a comparison to numerical simulation re-
sults for various parameter sets. In Sec. VI the information
transfer through renewal and nonrenewal models is studied
by means of the mutual information as a function of cutoff
frequency for both cases of fixed stimulus intensity and fixed
stimulus variance and as a function of the internal noise
level. Our results are summarized and discussed in the Sec.
VII.

II. SPIKE TRAIN STATISTICS AND INPUT-OUTPUT
RELATIONS

Given the firing times of a real neuron or of a neuronal
model driven by an external random signal s�t�, the spike
train constituting the output of the neuron can be written as
�Ref. �17��

x̃�t� = � ��t − ti� , �1�

where the sum is taken over all spiking times. The number of
spikes in a time window �0, t�, i.e., the spike count, is given
by the integrated spike train

N�t� = �
0

t

dt�x̃�t�� . �2�

The ensemble-averaged spike train gives the instantaneous
firing rate of the neuron

�x̃�t�� = r�t� . �3�

Here, the average runs over different realizations of the spike
train using one and the same stimulus s�t� �“frozen input
noise”�. This average may still depend on the preparation of
the neuron; here, we assume throughout the stationary state
of all internal neuronal variables, i.e., transients are not con-
sidered.

If we take an additional average over the stimulus en-
semble �in the following, denoted by �¯�s�, we obtain the
stationary �time-independent� firing rate ��x̃�t���s. It is conve-
nient to subtract this latter quantity and to use a zero-average
spike train

x�t� = x̃�t� − ��x̃�t���s. �4�

From the set of spiking times 	tj
, we can also obtain the
intervals between subsequent ISIs,

Ij = tj − tj−1, �5�

as well as the nth-order intervals given by

Tn,j = tj+n−1 − tj−1 = �
k=0

n−1

Ij+k. �6�

Obviously, we have T1,j = Ij.
Given the ISI sequence, we may quantify the correlation

among the intervals by the serial correlation coefficient
�SCC�

�k =
��Ij+k − �Ij� j��Ij − �Ij� j�� j

��Ij − �Ij� j�2� j
, �7�

where k is the lag, and the average �¯� j is performed over
index j.

For the analysis of the signal transmission, it is more con-
venient to work in the spectral domain. Denoting the Fourier
transform of an arbitrary stationary stochastic function by

F̂�f� =
1
�T
�

0

T

dte2�iftF�t� , �8�

we can express the power spectrum of the zero average spike
train as

S�f� = lim
T→�

���x̂�2��s �9�

where the average includes again both the average over the
internal noise as well as the stimulus ensemble. We recall
that according to the Wiener-Khinchin theorem, the power
spectrum is also obtained by taking the Fourier transform of
the spike-spike correlation function

S�f� = �
−�

�

dte2�if��x�t�x�t + ��� . �10�

Given a stimulus s�t� with Fourier transform ŝ�f�, the
cross spectrum between stimulus and spike train can be cal-
culated as
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Sx,s�f� = lim
T→�

��x̂�f�ŝ*�f���s, �11�

where the asterisk denotes the complex conjugate. While the
cross spectrum is an absolute measure of how strongly the
spike train and the stimulus are correlated at a certain fre-
quency, one may use the coherence function to quantify how
strong the spectral power corresponding to this correlation is
when compared to the spectral powers of the spike train and
the stimulus. The coherence function is given by

C�f� =
�Sx,s�f��2

S�f�Sst�f�
, �12�

where Sst= �ŝŝ*�s is the stimulus spectrum. The coherence is
zero if the spike train and stimulus are uncorrelated, and one
if they are perfectly correlated.

The knowledge of the spectral quantities and, in particu-
lar, the coherence function also allows for a characterization
of the information transfer through the neuron. If the stimu-
lus possesses Gaussian statistics, a lower bound on the mu-
tual information rate is given by Refs. �18,19�

M = − �
fL

fC

df log2�1 − C�f�� , �13�

where fL and fC indicate the lower and upper cutoff frequen-
cies of the stimulus, respectively. We note that several meth-
ods exist to quantify the amount of information transmitted
by a neuron. Some studies have taken the approach of di-
rectly estimating the information rate from the probability
distribution of neural responses �20,21�. This approach esti-
mates information rates without any assumptions on the na-
ture of the neural code. Other studies have taken the ap-
proach of estimating the information rate from the ratio of
signal and noise power spectral density, on the assumption
that the encoded signal sums with noise to produce a re-
sponse probability distribution that is Gaussian �17,19�. To
specify the signal-to-noise ratio, various linear algorithms
are used to optimally reconstruct the stimulus from the re-
sponse or the response from the stimulus �17,18�. This
“stimulus reconstruction approach” is efficient and can pro-
vide insight about the coding mechanism as well as lending
itself to analytical calculations. It will, however, only provide
a lower bound on the rate of information transmission, due to
the assumptions implicit in the reconstruction algorithm.
However, several studies have reported that the addition of
nonlinear terms gave little if any increase in the information
rate �22,23�. Using Eq. �13�, we therefore chose the recon-
struction approach to quantify the amount of information
available in neural spike trains.

While the spectral functions and the mutual information
rate can be obtained numerically from neuronal data or com-
puter simulations of neuronal models, the analytical calcula-
tion of the described measures is a nontrivial task for any
model beyond the Poisson spike train with signal-modulated
rate. In particular, stochastic spike generators like the LIFDT
model that show negative ISI correlations in their spontane-
ous activity are hard to tackle because these models are often
multidimensional and strongly nonlinear. For such systems,

even the calculation of the mean spontaneous firing rate
poses a considerable problem. In the following, we introduce
simple dynamical spike models that permit the calculation of
the measures introduced earlier in the case of a weak stimu-
lus.

III. THE MODELS AND THEIR SPONTANEOUS
ACTIVITY

A. Nonrenewal and renewal models

As in our previous paper �13�, we consider two simple,
perfect integrate-and-fire �IF� models, henceforth referred to
as models A and B, respectively, that share the same statistics
of the single ISI but differ in their serial interval correlations.
Model A generates a nonrenewal spike train with strong
negative ISI correlations. Model B, in contrast, generates a
renewal process. The fact that the statistics of the single ISI
is the same for both models allows a fair comparison of the
signal transmission features with focus on the effect of nega-
tive ISI correlations.

For both models, the input is integrated without leakage
according to

v̇�t� = � + s�t� , �14�

where � is a constant base current, and s�t� is the input
signal to be transmitted. We do not include an internal noise
of the neuron as a fluctuating input current, but rather choose
the mathematically simpler construction of noisy threshold
and reset points. Such models have been used before in Refs.
�24–27�. Note that there is also some experimental evidence
for a fluctuating threshold �28�.

Model A, illustrated in Fig. 1, is obtained by drawing a
random threshold ��t� from a uniform distribution over the
interval ��0−D ,�0+D�, with �0 being the mean threshold,
and D standing for the noise intensity. For the latter, we

FIG. 1. The spontaneous dynamics of model A, with voltage and
threshold as functions of time. Shown are the voltage v�t� �solid
line�, which rises linearly with slope �, as well as the threshold 	�t�
�dashed line� for s�t�=0. When v�t�=	�t�, a spike is generated, and
the voltage is decremented by 	0 while the threshold is reset to a
uniform random value in the interval �	0−D ,	0+D�. Also shown
are the ISIs Ij and Ij+1; note that Ij can be divided into the subinter-
vals Uj and Vj such that Ij =Uj +Vj.
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assume D
�0 /2. As soon as the voltage v�t� has reached
the threshold ��t�, a spike is fired �not shown�, a new thresh-
old is chosen, and the voltage is decremented by �0, i.e., v
→v−�0. Obviously, this kind of voltage reset will lead to a
uniform density of reset values, i.e., �R� �−D ,D�. With a
uniformly distributed reset point around v=0 and a uni-
formly distributed threshold around v=�0, we obtain a mean
ISI of �I�=�0 /� or, equivalently, a stationary firing rate of
r0=� /�0. What is most important for model A, though, is
the fact that a threshold value and the subsequent reset value
are perfectly correlated by the reset rule—if we know the
threshold value ��t�, we know that the next reset value will
be �R=��t�−�0. In fact, this correlation leads to the strong
anticorrelation in the ISI sequence in the absence of input
�s�t�
0�.

For model B �see Fig. 2�, we also draw the threshold
value for each interval independently. However, after the
voltage reaches the threshold ��t�, the voltage is reset to a
random reset value drawn independently from the distribu-
tion �−D ,D� �we also draw a new value for the threshold at
this instant�. Since the values of the threshold and reset are
completely independent of previous ISIs but determine
uniquely the current ISI, it is clear that the resulting spike
train for model B will be a renewal process, i.e., all ISIs are
mutually independent. On the other hand, note that models A
and B share the same statistics of reset and threshold values,
and their single ISI statistics will for this reason be the same
�including, of course, the mean ISI, which is again given by
�0 /��.

We note that for both models, we can rescale voltage and
time so that the parameters �0 and � are one. This is
achieved by choosing ṽ=v /�0 and t̃= t� /�0, leading to a
rescaled signal s̃�t̃�=s�t̃�0 /�� /�. We do not perform this
rescaling here, in order to keep track of physical dimensions,
but later in our numerical evaluations, we will set �=1 and
�0=1, keeping in mind the redundancy of these parameters.

B. ISI correlations in the spontaneous case

Returning to the spontaneous case �s�t�=0� of model A
illustrated in Fig. 1, we see that an ISI Ij can be split up into
two contributions

Ij = Uj + Vj , �15�

where Uj and Vj are the passage times from the reset point to
half of the mean threshold ��0 /2� and from �0 /2 to the
random threshold ��t�. Due to the correlation between the
random threshold and the subsequent reset value, we have

Vj + Uj+1 =
�0

�
= �Ij� j . �16�

This equals exactly the mean ISI, irrespective of the value of
the noisy threshold we have used. Now, calculating the co-
variance between subsequent intervals, we obtain

�IjIj+1� j − �Ij� j
2

= Š�Uj + Vj���Ij� j − Vj + Vj+1�‹ j − �Ij� j
2

= ��Uj + Vj��− Vj + Vj+1�� j

= �Vj�− Vj + Vj+1�� j

= −
1
2 ��Ij

2� j − �Ij� j
2� . �17�

Here we have used the fact that the intervals Uj, Vj, and Vj+1
are statistically independent and, furthermore, that the vari-
ance of Vj provides one half of the total variance of the ISI Ij
for reasons of symmetry between Uj and Vj. Repeating this
little calculation for a higher lag, one finds vanishing corre-
lations because the intervals Uj, Vj, Uj+k, and Vj+k are all
mutually independent for k�1. As a consequence, we obtain
for the SCC of model A

�k
A = �0,k −

1

2
�1,k, �18�

with �k,l being the Kronecker symbol. It is somehow clear
that model A is not “as random” as model B, since while
simulating the former, we need only half of the random num-
bers that are needed for simulating model B. It is important
to realize that model A is pathologic in one respect. Adding n
subsequent ISIs, we obtain the so-called nth-order interval
Tn, as defined in Eq. �6�. The standard deviation of this ran-
dom variable �see the following section� does not grow with
the index n �number of added intervals� but remains always
the same—there is no low-frequency variability in the spike
train due to the negative correlations. Equivalently, if we
consider the spike count �Eq. �2��, i.e., the number of spikes
in a certain interval T, its variance does not grow unbounded
as for any of the common stochastic spike generators. We
stress that model A is only a cartoon of a neuron exhibiting
negative correlations; in reality, spike trains with negative
correlations that add up exactly to − 1

2 are not observed.

C. Power spectra of the spontaneous activity

As we will see, the difference in the transmission proper-
ties of the simplified models rests strongly upon the differ-
ence in their spontaneous activity. For this reason, we first
give an extended discussion of the case s�t�
0, highlighting
especially the implications of the negative correlations of
model A for the power spectrum of its spike train.

FIG. 2. The dynamics of model B in the absence of an input
signal are identical to those of model A, except that the voltage is
reset to a uniform random value 	r�t� �dotted line� in the interval
�−D ,D� centered on v=0. This eliminates memory and thus ISI
correlations.
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For the analytical calculation of the background spectral
densities, we can use the following formula from the theory
of stochastic point processes �Ref. �24��

S�f� =
1

�I��1 + �
n=1

�

Fn�f� + Fn�− f�� , �19�

where Fn�f� is the Fourier transform of the probability den-
sity of the nth-order interval Tn. For a renewal process, we
have Fn�f�= �F1�f��n, and Eq. �19� reduces to

S�f� =
1

�I�
1 − �F1�f��2

�1 − F1�f��2
. �20�

Using the latter formula, we first calculate the power spec-
trum of the renewal model B. As mentioned, the first-order
interval density, which is just the ISI density, is the same for
both models. This density is obtained by convolving the den-
sities for the intervals Uj and Vj, which are both distributed
according to the uniform probability density

p�t� =
�

2D
H�t,T−,T+�, T± =

�0/2 ± D

�
, �21�

where H�T ,a ,b� is one for a
T
b, and zero elsewhere.
The convolution then yields a triangular density for the
single ISI

P1�I� =
�2

4D2�I − 2T−, 2T− 
 T 
 �I�
2T+ − T , �I� 
 I 
 2T+

0, elsewhere.
� �22�

Correspondingly, the general nth-order interval density of
model B will be a convolution of 2n uniformly distributed
numbers yielding a polynomial of order n. The ISI density
and the first-higher nth-order densities are shown in Fig. 3 as
dashed lines. It is apparent that the variance of the density
grows with increasing index n.

The Fourier transform of the ISI density �Eq. �22�� reads

F1�f� = e2�if�I�sin2��f�
��f�2 , �23�

where �=2�D /�. For the power spectrum of model B, we
thus obtain, using Eq. �20�,

SB0�f� =
r0���f�4 − sin4��f��

��f�4 − 2��f�2sin2��f�cos�2�f/r0� + sin4��f�
.

�24�

In order to calculate the power spectrum for model A, we
have first to calculate the nth-order interval density. Since the
sum of subsequent subintervals Vj and Uj+1 is constant �see
Eq. �16��, the nth-order interval can be written as follows:

Tn = �
j=1

n

�Uj + Vj� = �n − 1��I� + U1 + Vn. �25�

This means that for model A, the nth-order interval density is
obtained by shifting the single ISI density by �n−1��I� �see
also Fig. 3�. In contrast to what can be observed for the
renewal model, the variance of the nth-order density does not
grow with the index. For sufficiently low noise �D
0.25�,
firings can be excluded for specific time spans. Given a spike
at t=0, we know, for instance, that the nonrenewal model
with parameters like in Fig. 3 will not fire at t=0.5, 1.5, 2.5,
… . These pauses and the similar coherent spans of increased
probability of firing introduce an infinite phase coherence in
the firing. In other words, the neuron never “forgets” its ini-
tial spike instant.

In order to get the Fourier transform of the nth-order in-
terval density, one has to replace �I� by n�I� in Eq. �23�,
yielding

Fn
A = e2�ifn�I�sin2��f�

��f�2 . �26�

Inserting into Eq. �19� and using the Poisson sum formula
�29� leads to

SA0�f� = r0 −
sin2��f�

��f�2 �r0 − r0
2 �

n=−�

�

��f − nr0�� . �27�

We note that this spectrum is a special case of one obtained
much earlier by other authors �see Ref. �24� and references
therein�.

Figures 4 and 5 show the power spectra for different lev-
els of noise. The spectrum of model A �see Eq. �27� and Fig.
4� consists of a continuous function and � functions at the
eigenfrequency r0 of the neuron and its higher harmonics. It
can be easily seen from Eq. �27� that the spectrum drops to
zero for vanishing frequency. The main effect of raising the
noise level is an overall increase of the continuous part and a
drop in the weights of the � functions �except in certain
narrow frequency bands�.

Model B �see Fig. 5�, in contrast, shows no � peaks in its
spectrum and possesses a finite zero-frequency limit. In par-
ticular, for small noise the spectrum displays peaks of finite
width and height at the eigenfrequency r0 and its higher har-
monics. Increasing the noise level diminishes those peaks

FIG. 3. The first nth-order interval densities �n=1,2,3,4� for
models A and B. The density for the nonrenewal model �dashed
lines� is obtained by shifting the ISI density �Eq. �22�� by
�n−1��I�, where �I�=1 for the parameters used. The densities of the
renewal model �solid lines� is obtained by taking the inverse Fourier
transform of �F1�f��n, with F1�f� given in Eq. �23�. Parameters are
�0=1, �=1, and D=0.2.
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and makes them broader, raising at the same time the overall
level of the spectrum.

The two main differences in the spectra of models A and
B, namely, the behavior at low frequencies and the sharpness
of the peaks at the eigenfrequency, can be attributed to the
negative ISI correlations. Firstly, the spectrum at zero fre-
quency can be expressed by the moments of the ISI and the
SCC as follows:

S�0� =
��I − �I��2�

�I�3 �1 + 2�
k=1

�

�k� . �28�

Thus, if the sum of the SCC over all lags is equal to − 1
2 , as is

the case for model A, the spectrum must vanish at zero fre-
quency. In contrast to that for vanishing ISI correlations as
for model B, the spectrum at zero frequency is finite. Sec-

ondly, due to the ISI correlations displayed by model A, the
standard deviation of the nth-order interval for model A does
not grow with the number of intervals but is the same as for
the single ISI density �Eq. �22��. As discussed earlier, this
introduces a strict periodicity in the spike train that is re-
flected by the � peaks in the power spectrum.

We note that both the reduction of power at low frequen-
cies as well as the sharpening of the spectral peak at the
eigenfrequency have been observed in more realistic nonre-
newal models �30�. Since no real cell shows a perfect peri-
odicity �or equivalently an SCC with �k=1

� �k=− 1
2 that would

lead to such a periodicity�, the spectrum of a real neuron
with negative ISI correlations decreases �but not to zero� and
shows higher and narrower peaks at its eigenfrequency than
a comparable renewal neuron would do. In this sense, model
A is only a caricature that exaggerates important spectral
properties that are due to negative ISI correlations.

Finally, we compare the spectra of models A and B di-
rectly with each other �see Fig. 6�. At low frequencies �f

0.25� and also in the range f �1 around the eigenfre-
quency of the neuron, the spectrum of model A shows much
less power �except, of course, for the � peak at f =1� than the
spectrum of model B does. The noise power lacking in this
range is, however, exactly compensated by an excess in other
frequency ranges and by the power contained in the � peaks.
This is illustrated in the inset of Fig. 6, showing the inte-

grated power �0
f d f̃S� f̃� as a function of the upper integration

boundary. At large f , the integrals for both spectra converge,
with the difference between them going to zero. Because of
the infinite variance of the spike trains, the integral diverges
for growing frequency. However, even if we subtract the
finite spectral limit �given by the firing rate r0�, we obtain a
vanishing difference between the remaining powers of mod-
els A and B. This can be understood on simple physical
grounds as follows: Subtracting the high-frequency limit
from the spectrum, applying the inverse Fourier transform,
and using the Wiener-Khinchin theorem �Eq. �10��, we ob-
tain

FIG. 4. Power spectra of model A for different values of the
noise intensity as indicated. The continuous part of Eq. �27�
�smooth lines� is compared to numerical simulations �symbols�. For
the latter, we used a simple Euler procedure with time step 
t=5
�10−3. The power spectra were obtained by averaging over the
Fourier transforms of 20 spike trains of length Tsim=2621.44 �in
arbitrary units�. Parameter values for numerical simulations were
	0=1, �=1, and s�t�
0.

FIG. 5. Power spectra of model B for different values of the
noise intensity as indicated. The analytical result �Eq. �24�� �smooth
lines� is compared to numerical simulations �symbols�; simulation
procedure and parameters are the same as in Fig. 4.

FIG. 6. Comparison between power spectra of models A and B
for D=0.2. The arrow indicates the frequency at which both power
spectra intersect for the first time. The inset shows the integrated
power from zero up to the frequency f as a function of f . The
convergence of the two lines demonstrates that the two spectra dif-
fer only in their shape but have equal total power.
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�
−�

�

dfe−2�if��S�f� − r0� = �x�t�x�t + ��� − r0����

= r0�m��� − r0� . �29�

Here m��� is the probability per unit time to observe a spike
under the condition that at �=0, a spike has occurred. Note
that this includes all spikes except for the reference spike.
For any spike model that possesses an absolute refractory
period, we have m�0�=0, and thus

�
−�

�

df�S�f� − r0� = − r0
2. �30�

Since both models A and B show an absolute refractory pe-
riod in the spontaneous case �and even in the case of a weak
signal� and possess the same spike rate, the integral over the
power spectrum is equal for both models. The effect of the
ISI correlations on the power spectrum is therefore truly a
noise-shaping effect �i.e., a redistribution of spectral power
over frequencies�, without suppression or amplification of
the total noise power. In Fig. 6, we have also indicated the
lowest frequency at which the power spectra of both models
are equal. This value will be of importance for the mutual
information as shown later. Setting the power spectra �Eqs.
�24� and �27�� equal yields a comparably simple transcen-
dental equation for the determination of the points of inter-
section

sin2��f*� − ��f*�2�1 + 2 cos�2��I�f*�� = 0. �31�

The smallest numerical solution of this equation gives f*

�0.25, in good agreement with the numerical result �see Fig.
6�.

IV. CALCULATION OF THE SPECTRAL STATISTICS
OF THE SPIKE TRAIN IN THE PRESENCE

OF A WEAK STIMULUS

In this section, we study the influence of the spontaneous
activity of models A and B on their respective signal-
transmission properties. Although our models are rather
simple, the inclusion of arbitrary driving signals s�t� leads to
mathematical difficulties because of the nonlinearity im-
posed by the threshold condition. Here, we choose to study
the important case of a weak stationary Gaussian signal with
uniform although band-pass-limited spectral power

Sst = lim
T→�

��ŝ�f��2�s = �� , fL 
 �f � 
 fC

0, elsewhere,
� �32�

where fL and fC denote the lower and upper cutoff frequen-
cies of the stimulus, and the angle brackets indicate the av-
erage over the stimulus ensemble. The small parameter of the
signal is given by the variance

�s2�t��s = 2��fC − fL� . �33�

If �s2�t��s��2, we can calculate the spectral coherence
function using the linear response theory �LRT� �31�, as fol-
lows: According to LRT, the time-dependent part of the mean

value of the spike train x�t�, i.e., the instantaneous firing rate,
is given by

�x�t�� = �
−�

t

dt���t��s�t − t�� , �34�

which reads in the spectral domain

�x̂�f�� = �̂�f�ŝ�f� , �35�

where �̂�f� is the susceptibility with respect to perturbations
in the base current �. Note that in the relations here we have
not yet performed the average over the stimulus, i.e., we deal
so far with a “frozen” noisy input. The fact that we can
separately average over the stimulus ensemble and the inter-
nal noise �i.e., the threshold noise� leads to the nice property
that the cross spectrum �being a second-order statistical
quantity� is essentially determined by the mean value of the
spike train �which is a first-order quantity�

Sx,s = ��x̂�f�ŝ*�f���s = ��̂�f�ŝ�f�ŝ*�f��s = �̂�f�Sst�f� . �36�

The power spectrum itself is still truly a second-order quan-
tity that cannot be strictly inferred from the susceptibility.
We can obtain, however, an estimate for it by assuming that
the system behaves like a linear system with the transfer
function given by the susceptibility. In this case, internal
noise and transferred stimulus could be separated yielding

x̂�f� = x̂0�f� + �̂�f�ŝ�f� , �37�

where x̂0�f� corresponds to the spontaneous activity in the
absence of the stimulus. Obviously, ��x̂0�f�ŝ�f���s=0, i.e., the
spontaneous activity is uncorrelated with the stimulus. With
this approximation, the power spectrum reads

S�f� � S0�f� + ��̂�2Sst�f� . �38�

This simple estimate and the expression for the coherence
and the mutual information resulting from it via Eqs. �12�
and �13� will be henceforth referred to as theory I.

We note that Eq. �38� has been several times successfully
used in the literature �13,32,33�. This must be taken with
caution, however, for two reasons. First, there is at least one
counter example where Eq. �38� does not hold even in the
first order of the signal variance. In Ref. �34�, McNamara
and Wiesenfeld derived an expression for the power spec-
trum of a two-state system driven by a cosine signal; the
achieved formula for the power spectrum is exact up to the
first order in the signal variance. This expression coincides
with Eq. �38� except for a small overall reduction of the
background spectrum not reflected by Eq. �38�. Second, in
particular for model A, we also expect a qualitative change in
the spectrum for an arbitrarily small but finite amplitude of
the random stimulus. A small amount of external noise will
break the infinite coherence of the spike train introduced by
the reset rule. Hence, we expect that the spectral � peaks
become finite—which obviously cannot be reproduced by
Eq. �38� or by any other theory that provides additive cor-
rections to the unperturbed power spectrum. Third, consider-
ing the total power, i.e., the integrated spectrum, we note that
one can argue as we did when comparing the total power of
models A and B in the spontaneous case that even in the
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presence of a weak signal, both neuron models still show a
zero probability of firing right after a spike. Furthermore, as
shown in the Appendix, the stationary spike rate ��r�t���s is
for a weak stimulus the same as in the spontaneous case,
namely, r0. This means that the integral over S�f�−r0 will
still be −r0

2, according to Eq. �30�. This, however, is obvi-
ously not fulfilled by Eq. �38�, since the transmitted input
spectrum in Eq. �38� makes a positive contribution to the
total integral. The error made in this way is small because it
is proportional to �s2�t��s—nevertheless, a more accurate
theory should not have this error. We will use Eq. �38�, be-
cause this simple approximation gives valuable insights re-
garding the information gain through negative ISI correla-
tions. We will, however, also present a refined analytical
approach to the power spectrum in the second subsection.

From the preceding discussion, it should be apparent that
we can obtain approximations for the coherence function and
the mutual information if we know the susceptibility of the
models A and B. Put differently, we have to know the instan-
taneous firing rate in the presence of a time-varying signal.
The theoretical tools used in the preceding section, however,
do not suffice to calculate this function. This can be done if
we describe the system by evolution equations for the
asymptotic probability density of the voltage variable v as
follows. An alternative approach based on a time transforma-
tion is presented in the next Sec. IV A.

A. Susceptibility calculated using equations for the probability
density and a simple estimate for power spectrum

and coherence (theory I)

For model A, the probability is governed by the drift term
�+s�t�, by the absorption of probability at the random values
of the threshold, and by the influx of probability at the reset
points �see Fig. 7�a��. This yields the following equation:

�tPA�v,t� = − �� + s�t���vPA�v,t� − ��v,t�PA�v,t�

+ ��v + �0,t�PA�v + �0,t� . �39�

The absorption is determined by a rate ��v , t� still to be
determined. Note that the efflux of probability at v corre-
sponds according to the reset rule for model A to an influx at
v−�0, or—as in the preceding equation—an influx at v is
generated by an efflux at v+�0. Obviously, the Eq. �39�
conserves the total probability.

For model B, we can find the evolution equation by
changing the reset term. Since the reset point is completely
random in this case, only the magnitude of the influx will be
determined by the total efflux of probability in the region of
possible thresholds �see Fig. 7�b��

�tPB�v,t� = − �� + s�t���vPB�v,t� − ��v,t�PB�v,t�

+
HR�v�

2D
� dṽ��ṽ,t�P�ṽ,t� . �40�

Here, we have used the abbreviation HR�v�=H�v ,−D ,D�
with the previously introduced piecewise constant function
H�v ,a ,b�; similarly, we will use in the following HT�v�
=H�v ,�0−D ,�0+D�.

The absorption rate ��v , t� is the same for both models; it
depends on the probability densities of thresholds and on the
velocity of trajectories. Obviously, it is finite only in the
threshold region and for a total input �+s�t� being positive.
Furthermore, if we look at a certain value of v��0−D, we
exclude realizations for which the threshold is below this
value, i.e., we condition the probability density of thresholds.
Putting all of this together, we obtain

��v,t� = HT�v�U�� + s�t��Prob�v 
 � 
 v + dv�v 
 �� .

�41�

The second factor is U�x�=x for x�0 and zero elsewhere. �It
sets the rate to zero for an input s�t�
−�, in which case, no
threshold crossings can be observed.� The last factor
Prob�¯�¯ � gives the density of the random threshold value
conditioned by the fact that the threshold has to be larger
than the voltage value �otherwise, the voltage could not have
attained this value�. Expressing the last factor by

Prob�v 
 � 
 v + dv�v 
 ��

=
Prob�v 
 � 
 v + dv;v 
 ��

Prob�v 
 ��

=
1/�2D�

1/�2D��
v

�0+D

dṽ

=
1

�0 + D − v
, �42�

we obtain

FIG. 7. Illustration of probability fluxes �arrows� in model A �a�
and model B �b�. In model A, probability is driven by the drift to the
right until t reaches the threshold region �open gray box�. Probabil-
ity that is absorbed within this region is reinjected into the reset
region �indicated by the closed gray box on the left�. For model A
�a�, the efflux at a certain value v equals the influx at v−�0. For
model B �b�, in contrast, the probability flowing out at v is equally
distributed in the interval �−D ,D�.
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��v,t� = HT�v�
U�� + s�t��
�0 + D − v

. �43�

The firing rate of the neuron is related to the probability
density by the following equation:

r�t� = �x�t�� =� dv��v,t�P�v,t� , �44�

since the fraction of realizations passing through the en-
semble of thresholds corresponds to the firing rate of the
single neuron.

We are interested in solutions of the two equations in the
case of a weak signal s�t��� and with a randomized initial
time. The latter is required for model A—due to the infinite
phase coherence of spiking in the spontaneous case �s�t�

0�, we cannot obtain a stationary solution if we start, for
instance, all the probability at a certain voltage at a fixed
point in time.

We first set s�t�
0 and discuss the stationary solution
P0�v�. Setting �tPA,B to zero and solving the two equations
separately in the three regions �v��0−D; D
v
�0−D;
v
D� leads for both models to the same stationary density

P0�v� =
r0

��
v + D

2D
, − D 
 v 
 D

1, D 
 v 
 �0 − D

�0 + D − v
2D

, �0 − D 
 v 
 �0 + D .�
�45�

The density possesses a trapezoid shape and is zero for v=
−D as well as for v=�0+D. Normalization of this density
leads to the known relation for the firing rate found above
r0=� /�0.

We also would like to point out that both density-
evolution equations can be used to calculate the power spec-
trum in the case s�t�
0, which we already obtained by a
different method in the preceding section. For this purpose,
we choose the initial condition PA,B�v ,0�=HR�v� / �2D�, cor-
responding to the state of an ensemble right after a spike has
occurred. The time-dependent firing rate r�t� equals, in this
case, the conditional spike rate m�t�, and its Fourier trans-
form m̃�f�—found from the solution of the density
equation—allows for the determination of the power spec-
trum by virtue of the Wiener-Khinchin theorem. The results
calculated in this way agree for both models with the expres-
sions in Eqs. �24� and �27�, which is a further confirmation of
the validity of the evolution equations �39� and �40�.

Considering the case �s�t����, we can perform a pertur-
bation calculation �with �s2�t��s /�2 being the small param-
eter� for the probability density P�v , t� and obtain the
asymptotic probability density. This is not necessary, since
the solution obtained in this way equals the stationary prob-
ability density, which becomes quickly apparent, as follows.
If s�t���, the function U��+s�t�� �being strictly zero for
negative argument� can be well approximated by �+s�t�.
Then all the terms on the right-hand sides of Eqs. �39� and

�40� contain �+s�t�, which can be factored out. The remain-
ing sums are zero for PA,B�v , t�= P0�v�, and so are the left-
hand sides �the temporal derivatives of PA,B�v , t��; hence,
P0�v� solves the problem. The fact that the probability den-
sity does not depend on time does not imply, though, that the
firing rate is also time independent. According to Eq. �44�,
we find for the firing rate

r�t� = r0�1 +
1

�
s�t�� . �46�

From this, it is clear that the susceptibility is a constant; it is
the same for both models A and B

�̂�f� = r0/� =
1

�0
. �47�

With the susceptibility, we may calculate the cross spectrum
using Eq. �36�

Sx,s�f� =
1

�0
Sst�f� , �48�

and an estimate of the power spectrum according to Eq. �38�

S�f� = S0�f� +
1

�0
2Sst�f� . �49�

Using the latter approximation for the spike-train power
spectrum, the coherence function can be calculated by

C�f� = �1 +
�0

2S0�f�
Sst�f� �−1

. �50�

In all formulas, the respective quantity for models A and B is
obtained by inserting the spectrum of the spontaneous activ-
ity according to Eqs. �24� and �27�, respectively. Note that in
our previous work, we made some writing errors in the re-
spective formulas �see also �35��. As shown in the next sec-
tion, the susceptibility can be fairly easily obtained from an
alternative calculational approach, which also yields a much
better approximation for the power spectrum. We neverthe-
less believe that the equations for the probability density
presented here can be useful in situations where we cannot
use the other approach. For instance, the generalization to a
leaky integrator model with threshold noise should be
straightforward—in this case, the susceptibility may show
more complicated but also more interesting behavior than for
the perfect integrator neurons studied here.

B. Susceptibility and power spectrum calculated using
a time transformation (theory II)

Our alternative approach is based on the simple observa-
tion that a new time variable,

t� = t +
1

�
�

0

t

d�s��� , �51�

transforms Eq. �14� into the unperturbed problem �v̇=��. In
other words, measuring time with a “signal-tuned” clock that
runs slower or faster according to Eq. �51� will result in an
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interspike-interval sequence equal to that of the unperturbed
system with the same sequence of random thresholds �and
for model B, random reset points� as in the unperturbed case.
Since the transformation should be unique �monotonic�, we
have to demand that dt� /dt=1+s�t� /��0, which amounts
to the weak-signal assumption �s2�s��2 that we have al-
ready made in the preceding section. This does not strictly
exclude a violation of the transformation’s monotonicity be-
cause s�t� is Gaussian; such events may be taken care of by
setting the signal for the respective intervals to a value −�
+��−�, which is not expected to change anything drasti-
cally as long as these events are very rare.

The starting point for all of the following calculations is
the spike count. In accord with the preceding line of reason-
ing, this function can be expressed by the spike count of the
unperturbed system

N�t� = N0�t�� = N0�t +
1

�
�

0

t

d�s���� . �52�

From this, we see that the effect of the stochastic stimulus is
that of a phase noise, shifting the spike times by some ran-
dom amount, the magnitude of which depends on t. The first
insight concerns the instantaneous firing rate averaged only
over the internal noise

r�t� = � dN�t�
dt

� = � dN0�t��
dt�

� dt�

dt

= � dN0�t��
dt�

��1 +
1

�
s�t�� = r0 +

1

�0
s�t� ,

�53�

where, in the last line, we have assumed a randomization of
the initial time in the stationary ensemble. The last line re-
produces without much effort the result from the density cal-
culation in the preceding section—the firing rate of the neu-
ron �be it model A or B� is directly proportional to the
stimulus, and thus the response of both models is spectrally
flat. We point out that so far we have not used any charac-
teristics of the model but Eq. �14�, i.e., the fact that the
neuron is a perfect integrator. Thus, the above formula and
those we will derive in the following hold for any perfect
integrator �with random or constant threshold and reset
points� driven by a weak stimulus.

As derived in the Appendix, the approach leads by further
plausible simplifications to the following integral expression
for the power spectrum in the presence of a Gaussian signal
with power spectrum Sst�f�:

S�f� = r0 +
r0

2

�2Sst�f� + �
−�

�

df��S0�f�� − r0�I�f , f�� . �54�

The function I�f , f�� is given by

I = �
−�

�

dte2i��f−f��te−2�2f�2�2�t��1 +
ks�t�
�2 − 4i�f�ym�t�� ,

�55�

where we used

ym�t� =
1

�2�
0

t

d�ks��� , �56�

�2�t� =
2

�2�
0

t

d��t − ��ks��� , �57�

with ks�t� being the signal’s autocorrelation function. The
preceding equation can be further simplified. Before doing
so, we want to point out two facts. First, by setting the terms
ym�t� and �2�t� in Eq. �55� to zero �those terms are propor-
tional to the signal variance�, the time integral yields a �
function in f − f�. Consequently, the integral expression in
Eq. �54� reads S0�f�−r0, which leads exactly to our first
rough approximation of the power spectrum �Eq. �49�, cor-
responding to the general ansatz equation �38��. Second, we
may integrate the expression equation �54� and check
whether the total power has changed �as is the case for Eqs.
�38� and �49�� or not �as it should be�. Specifically, we look
at the difference between the spectrum and its high-
frequency limit. Integrating over f requires us to integrate
I�f , f�� over f . This integral yields

�
−�

�

dfI�f , f�� = �
−�

�

dte−2�if�te−2�2f�2�2�t�

��1 +
ks�t�
�2 − 4i�f�ym�t����t�

= 1 +
ks�0�
�2 = 1 +

1

�2�
−�

�

df̃Sst� f̃� . �58�

Using this while integrating Eq. �54�, we obtain

�
−�

�

df�S�f� − r0� = �
−�

�

df
Sst�f�
�0

2 + �
−�

�

df��S0�f�� − r0�

��1 +
1

�2�
−�

�

df̃Sst� f̃��
= �

−�

�

df�S0�f� − r0� , �59�

where we have used Eq. �30�. Hence, the total integrated
power equals that in the spontaneous case, regardless of the
presence or absence of a stimulus and regardless of the
model under consideration. This is an indication that theory
II yields a better approximation to the power spectrum than
the simple theory I.

The power spectrum given in Eqs. �54�–�57� is still a
fairly complicated expression and hard to tackle numerically;
it is, however, possible to simplify the particularly cumber-
some integral in Eq. �55�. The problem in the latter expres-
sion is the term exp�−2�2f�2�2�t��; an expansion of this ex-
ponential in a series has to be done in different ways,
depending on the long-time behavior of �2�t�. The latter is
proportional to the stimulus spectrum at zero frequency �see
the Appendix�; thus, we obtain different expressions for the
integral equation �55� and also for the power spectrum, de-
pending on the lower-cutoff frequency of the stimulus. In the
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case of a finite lower-cutoff frequency, we obtain for the
power spectrum

S�f� = S0�f� + ��̂�f��2Sst�f� +
f2

�2�
−�

�

df�

��S0�f − f�� − S0�f��
Sst�f��

f�2 . �60�

It is remarkable that the correction to the heuristic formula
�49� �i.e., the second line of the preceding formula� appears
to be a convolution of the input spectrum and the spectrum
of the unperturbed system. This structure gives rise to side
bands in the spectrum, as we will see later. Regarding model
A, we note that the � spike component in the background
spectrum makes the strongest contribution, while that from
the continuous part is fairly weak.

The approximation formula becomes more complicated in
the case of a zero lower-cutoff frequency. In this case, we
obtain

S�f� = r0 + ���2Sst�f� + �
−�

�

df��S0�f�� − r0�I�f , f�� , �61�

where I�f , f�� is given by

I�f , f�� =
4�4a�2f�2�3

�16a2�4f�4 + 4�2�f − f��2�2

+ 2 Re� �4a�2f�2 − 2i�f�2

�4a�2f�2 − 2i��f − f���2

� �
−�

�

df̃
Sst� f̃�/�2

4a�2f�2 − 2i��f − f� − f̃�
� , �62�

where we have abbreviated a=2�2Sst�0� and Re	¯
 denotes
the real part of a complex number. For the special case of the
band-pass-limited white noise given by Eq. �32� with fL=0,
the integral in the real-part function can be evaluated, yield-
ing

�
−�

�

df̃
Sst� f̃�

af�2 − 2�i�f − f� − f̃�

=

arctan�2��f� + fC − f�
af�2 � − arctan�2��f� − fC − f�

af�2 �
2�

+
i

4�
ln�a2f�4 + �2��f − f� + fC��2

a2f�4 + �2��f − f� − fC��2� . �63�

We note that using this expression in Eqs. �61� and �62�, we
still have to evaluate one integral numerically in Eq. �61�.
The expression for the power spectrum also contains higher-
order terms than just the signal variance �note, for instance,
the a3 term in the first line in Eq. �62��. This is, strictly
speaking, not in accord with the derivation of these equations
from Eq. �54�, in which we already neglected terms of higher
than first order in the signal variance. Still, as shown in the
following, the nonlinearities kept in Eq. �61� reflect those

seen in power spectra obtained by numerical simulations of
the stochastic models.

The main qualitative differences to the case with finite
lower-cutoff frequency is that we cannot extract the spectrum
of the unperturbed system anymore. The reason for this is the
qualitative change at the eigenfrequency and its higher har-
monics. Due to a stimulus with power at arbitrary low fre-
quencies, the � peaks of the background spectrum are re-
placed by finite-width peaks. This becomes very clear if one
subdivides S0�f�−r0 in a continuous part and the sum of �
peaks. The convolution integral in f� will change these �
peaks in peaks of finite width and height corresponding to
the loss of infinite coherence length in the spike train in the
presence of a random signal. This fact is not hard to under-
stand from a physical point of view—adding a random signal
will perturb the internal clock. More remarkable is the fact
that the infinite periodicity of the spike train is unchanged for
a stimulus having power in a band with finite lower-cutoff
frequency.

V. SPECTRAL MEASURES IN THE PRESENCE
OF A WEAK STIMULUS—COMPARISON OF THEORY

AND SIMULATION RESULTS

The simulation results shown in this section are obtained
as follows: the dynamics equation �14� is numerically inte-
grated with a simple Euler procedure, taking into account the
respective reset rules of the models. Thresholds and reset
points �the latter only for model B� are generated with a
pseudo-random-number generator. For the generation of
band-pass-limited white noise stimuli, we draw random am-
plitudes and phases with Gaussian and uniform density, re-
spectively, using random-number generators that obey these
statistics. This is done independently for Nbin frequency bins
�where Nbin is determined by the band width and total length
of the desired trajectory�, and the resulting “random spec-
trum” is fast Fourier transformed into the time domain �see
Ref. �36� regarding a similar method to generate Ornstein-
Uhlenbeck noise�. At the spiking instants of the respective
model, the spike train is approximated by 1/ �
t�; otherwise,
the spike train is zero. Cross and power spectra are obtained
from the fast Fourier transforms of the spike train and the
stimulus. We repeat this procedure Nreal times in order to
obtain reliable estimates of cross and power spectra. We note
that our procedure differs from the one used in Ref. �13� with
respect to the stimulus generation—in Ref. �13�, the stimulus
has been generated by a fourth-order Butterworth filter �37�.
We would also like to point out that depending on the quan-
tity to be determined, extensive simulations with rather small
time step �power spectrum�, large simulation time �coherence
at low frequencies�, or many realizations �cross spectrum
around the eigenfrequency of the neuron� are required; we
will discuss these technical problems briefly later. In spite of
the apparent simplicity of the models, it may thus take con-
siderable computation time to achieve a sufficient conver-
gence for the simulation results, i.e., such that the resulting
curves do not change appreciably when one of the critical
parameters is increased �Nreal ,Tsim� or decreased �time step

t�.
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A. Power spectra in the presence of a weak stimulus

We start with a discussion of the power spectra for the
various cases. The spectral height of the stimulus is kept
fixed to �=0.015 625, the noise intensity is D=0.2, and we
consider the spectra for different lower- and upper-cutoff fre-
quencies. First, we consider model A with a zero lower-
cutoff frequency at a low upper-cutoff frequency fC=0.3 �see
Fig. 8, top�. The signal power that increases the spectrum up
to f = fC becomes clearly apparent by the jump of the spec-
trum at fC. In this low-frequency region, the simulations and
both the simple theory �Eq. �49�� and the more accurate for-
mula agree very well. Outside the range of stimulus frequen-
cies, the simple estimate �49� assumes no effect of the stimu-
lus; thus, theory I gives a monotonically increasing function
on which a � spike is superposed �indicated by the vertical
dashed line�, exactly as in the spontaneous case �see Fig. 4�.
In contrast to this prediction, we note deviations of the
simple theory from the simulation results around the eigen-
frequency �f =1� of the model—here, the simulations show a
peak of finite height and considerable width. Put differently,
the stimulus has a considerable effect outside its frequency
range. A random stimulus with power at arbitrary low fre-
quencies breaks the infinite phase coherence introduced by
the negative correlations. As a consequence, the � peak indi-
cating a perfect internal clock in the spontaneous spiking of

model A becomes a finite-width peak—indicating a finite
coherence length determined by the strength of the stimulus.
The finite peak is exactly reproduced by theory II �Eq. �61�
together with Eqs. �62� and �63��. We note that for the chosen
parameters �fC, D, and ��, the main contribution for the
finite-width peak stems from the first two � function terms in
Eq. �61� �hidden in S0�f���, which do not require a numerical
integration �plotting only these in Fig. 8 will yield the same
curve shown by the solid line�.

Turning to higher-cutoff frequency fC=2.1 �Fig. 8, bot-
tom�, the agreement at low frequencies between simulations
and both theories is still very good, while around the eigen-
frequency of the neuron �f �1�, we observe again the peak
of finite width and height in contrast with what is predicted
by Eq. �49�. Also, for the higher-cutoff frequency, the more
elaborated theoretical result �61� reproduces the simulation
result in every respect. This is nontrivial because with in-
creasing cutoff frequency, the signal variance—which is the
small parameter of both theoretical approaches—increases.

For model B, the power spectrum in the spontaneous case
already has a finite-width peak. In the presence of a stimulus
with zero lower cutoff and comparably low higher cutoff
frequencies �see Fig. 9, top�, this peak becomes slightly
wider, as can be expected in the presence of an additional
noise. Again, this effect cannot be reproduced by the simple

FIG. 8. Power spectra for model A with fL=0, fC=0.3 �top�, and
fC=2.1 �bottom�. Other parameters are �=0.015625, D=0.2. Simu-
lation results are shown as symbols, the simple theoretical estimate
�49� as a dashed line, and the more accurate theory �Eqs. �61�, �62�,
and �63�� as a solid line.

FIG. 9. Power spectra for model B with fL=0, fC=0.3 �top�, and
fC=2.1 �bottom�. Other parameters are �=0.015625, D=0.2. Simu-
lation results are shown as symbols, the simple theoretical estimate
�49� as a dashed line, and the more accurate theory �Eq. �61� to-
gether with Eqs. �62� and �63�� as the solid line.
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estimate �49�, since it does not reflect any effect of the stimu-
lus outside of its own frequency range. Once more, theory II
excellently describes the widening of the peaks around the
eigenfrequency and its higher harmonics. We point out that
again, as for model A, the agreement of simulations and both
theories is very good at low frequencies �f 
0.25�. This is
also the case for a higher-cutoff frequency fC=2.1 �see Fig.
9, bottom�. Since for a larger value of fC, the variance of the
input gets stronger, the width of the peak increases slightly
compared to the case fC=0.3. �Note that the deviation of the
simulation results from the dashed line is somewhat stronger
in the lower panel than in the top panel in Fig. 9.�

Turning to the case of a finite low-cutoff frequency fL
=0.2 and again to model A, we find an important qualitative
change with respect to the peak at the eigenfrequency. Where
a stimulus with arbitrary low-cutoff frequency leads to a
complete nonlinear transformation of the � peak of the spon-
taneous spectrum, the band-pass stimulus does not. The �
peaks remain �although their weights are reduced according
to Eq. �60��; in addition to those peaks, side bands appear
starting at a distance of −fL and fL from the eigenfrequency
of the model. The side bands are well reproduced by Eq.
�60�. Apart from these side bands, both theoretical ap-
proaches agree fairly well with each other and with the simu-

lation result. Note, however, that the stimulus variance is
very small because of the small bandwidth fC− fL=0.1 in
Fig. 10 �top� and therefore all correction terms to the power
spectrum except for that resulting from the nonlinear inter-
action with the � spikes in the background spectrum are ex-
pected to be rather small.

For model B �Fig. 11�, we find again a very good agree-
ment between the more involved theory �60�, while the
simple theory �49� shows a slightly narrower peak at the
eigenfrequency of the neuron. The widening of the peak is
stronger for higher-cutoff frequency fC=2.1 �Fig. 11, bot-
tom� than for lower-cutoff frequency fC=0.3 �Fig. 11, top�,
but in both cases, not as strong as for zero low-cutoff fre-
quency �see Fig. 9�.

So far, we have fixed the noise intensity to a moderate
value �D=0.2�. How do the power spectra change if we de-
crease the noise? It is plausible that in the limit of a vanish-
ing threshold noise, the external stimulus will dominate the
spectral statistics, while the variability of the threshold and
the kind of reset rule will not matter anymore. Indeed, the
spectra of models A and B become very similar for a small
value of noise �D=0.025�, as illustrated in Fig. 12. Remark-
ably, theory II yields very similar curves that agree well with
each other �differences are smaller than line thickness in Fig.
12� and with the numerical simulations of either model. In

FIG. 10. Power spectra for model A with finite lower-cutoff
frequency fL=0.2 for fC=0.3 �top� and fC=2.1 �bottom�. Other pa-
rameters are �=0.015625, D=0.2. Simulation results are shown as
symbols, the simple theoretical estimate �49� as a dashed line, and
the more accurate theory �Eq. �61� together with Eqs. �62� and �63��
as the solid line.

FIG. 11. Power spectra for model B with finite low-cutoff fre-
quency fL=0.2 for fC=0.3 �top� and fC=2.1 �bottom�. Other param-
eters are �=0.015625, D=0.2. Simulation results are shown as
symbols, the simple theoretical estimate �49� as a dashed line, and
the more accurate theory �Eqs. �61�, �62�, and �63�� as the solid line.
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contrast, theory I fails completely to reproduce the numerical
simulations at small noise. The reason for this is that at small
noise, the widening of the peaks of the spontaneous spectrum
dominates the shape of the spectra. As pointed out earlier,
this change in the power spectrum cannot be described by
means of the simple additive ansatz �49�.

In summary, we can state that the more sophisticated
theory II describes accurately the power spectra of both mod-
els under the influence of a weak stimulus for both low and
high threshold noise. Deviations from the simple theory are
mainly observed at low threshold noise around the eigenfre-
quency of neurons; they are stronger for the power spectra of
model A than for those of model B. Regarding effects of the
stimulus outside its frequency range, we have noticed non-
linear interactions of the eigenfrequency of the neuron with
the stimulus. For model A, these interactions are qualita-
tively different in the case of zero and finite low-cutoff fre-
quency, respectively.

B. Cross spectra

We turn now to the cross spectra. The absolute value of
the cross spectrum of model A is shown in Fig. 13 for two
values of the cutoff frequency; for both cutoffs, we obtain
box-shaped functions proportional to the stimulus spectrum,
as predicted by the theory �48�. Similar curves are obtained
for model B in accordance with our theory that states that the
cross spectrum is not influenced by the way we reset the
voltage after firing.

For a cutoff frequency above the eigenfrequency of the
system �as, e.g., in Fig. 13 �bottom�, where fC=2.1�1�, we
have noticed that the numerical variance of the cross spec-
trum increases for frequencies around f =1. This effect be-
comes even stronger if we consider a stimulus with finite
lower-cutoff frequency �see Fig. 14� acting on model A.
Here, a strong peak is observed at the eigenfrequency f =1 if
the number of realizations we use for the average is not large
enough. As shown in Fig. 14, increasing the number of real-

izations decreases the peak and makes the cross spectrum flat
again, as we expect from the theory. Since the peak found for
Nreal=103 increases strongly for increasing simulation time,
we suppose that the variance of the cross spectrum has a �
peak at the eigenfrequency. This higher-order spectral statis-
tics is beyond the framework of our study.

FIG. 12. Power spectra for fL=0, fC=2, D=0.025 for models A
�gray circles� and B �white squares�. Theory II yields for these
parameters the same curve for both models �solid line�. Spectra
according to theory I are still very different for models A �solid line�
and B �dotted line� but fail entirely to reproduce the simulation
spectra.

FIG. 13. Absolute value of cross spectra for model A with zero
low-cutoff frequency fL=0 for fC=0.3 �top� and fC=2.1 �bottom�.
Other parameters are �=0.015625, D=0.2. Simulation results are
shown as symbols, and theory �48� as a solid line.

FIG. 14. Absolute value of cross spectra for model A with finite
low-cutoff frequency fL=0.2 for fC=2.1. Other parameters are �
=0.015625, D=0.2. Simulation results are shown for Nreal=103 sto-
chastic realizations of spike train and stimulus, and for Nreal=104

stochastic realizations; theory is shown as a black solid line. Note
that the peak occurring for Nreal=103 is considerably diminished if
the number of realizations is increased.
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C. Coherence functions

Since the cross spectrum is flat and does not differ for the
two models, the coherence is entirely determined by the
spike-train power spectra considered earlier. We now show in
Fig. 15 the coherence for the case of zero low-cutoff fre-
quency and for a small and large value of the upper-cutoff
frequency.

For model A at low fC, the two theories both predict simi-
lar curves, which are confirmed by the simulation results.
The coherence is close to one around f =0, which implies
vanishing noise power at low frequency. This is clearly due
to the negative correlations in the spontaneous activity of the
neuron—all variability at low frequencies stems from the
stimulus, and hence the transmission of the input signal in
this frequency range is very good. Going to larger values of
the cutoff frequency reveals a discrepancy between the
simple theory I �shown by the dashed line� and the simula-
tions, especially for frequencies around f =1 �i.e., the eigen-
frequency of the neuron�. Since the simple theory does not

describe the transformation of the spectral � peak into a
finite-width peak as discussed earlier, it has to fail in this
frequency range. Theory II, however, correctly reproduces
the lowering of the coherence due to the widening of the �
peak. We still note that the agreement between both theories
and the simulation result is still good at low stimulus fre-
quencies. Generally, the simple theory overestimates the co-
herence. For model B �see Fig. 16�, the coherence is much
lower than for model A at low frequencies. Again, for fC
=0.3, both theories yield roughly the same curves, which are
remarkably flat as a function of the frequency. As for model
A, the simple theory fails in describing the coherence around
f �1 for a broadband stimulus with fC=2.1. There, as we
saw in the discussion of the power spectra, the spectral peak
around the eigenfrequency becomes wider under the influ-
ence of the random stimulus. Compared to the prediction of
theory I �dashed line in Fig. 16�, the true coherence �i.e.,
according to the simulations as well as to theory II� is there-
fore larger around the eigenfrequency �0.9
 f 
1.1� and

FIG. 15. Coherence function for model A, with fL=0 and fC

=0.3 �top� and fC=2.1 �bottom�. Other parameters are �
=0.015625, D=0.2. Simulation results are for Nreal=103 stochastic
realizations of spike train and stimulus, with a time step of 
t=5
�10−3; 2�1021 time steps were used. The coherences according to
theory I and II are shown as a dashed and a solid line, respectively.
The two theories do not differ much for fC=0.3 but yield large
differences for a high-cutoff frequency fC=2.1, in particular, in the
frequency band around the eigenfrequency of the neuron f �1.
These differences do not matter too much when looking at the co-
herence on a linear scale �inset, bottom�.

FIG. 16. Coherence function for model B, with fL=0 and fC

=0.3 �top� and fC=2.1 �bottom�. Other parameters are �
=0.015625, D=0.2. Simulation results are for Nreal=103 stochastic
realizations of the spike train and stimulus, with a time step of 
t
=5�10−3; 2�1021 time steps were used. The coherences according
to theory I and II are shown as a dashed and a solid line, respec-
tively. The two theories do not differ much for fC=0.3 but yield
large differences for a high-cutoff frequency fC=2.1, in particular,
in the frequency band around the eigenfrequency of the neuron f
�1. Again the difference in coherence between the two theories is
not that large if looked at on a linear scale �inset, bottom�.
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smaller for frequencies outside this range. Thus, in contrast
to what we found for model A, the simple theory overesti-
mates or underestimates the coherence, depending on the fre-
quency considered.

VI. INFORMATION TRANSFER THROUGH RENEWAL
AND NONRENEWAL MODELS

First, we consider the mutual information rate for fL=0,
obtained by integrating numerically the coherence according
to Eq. �13�. In Fig. 17, we vary the upper-cutoff frequency
and also look at the difference between the mutual informa-
tion for models A and B. This corresponds to the case dis-
cussed in Ref. �13�. The lower bound for the mutual infor-
mation grows for both models with increasing cutoff
frequency. Model A possesses a much higher MI rate than
model B. The difference between the MI of the models goes
through a maximum. According to the simple theory, this
maximum occurs if the cutoff frequency equals the fre-
quency at which the spontaneous spectra intersect for the
first time, since

d

dfC
�MA − MB� =

d

dfC
�

0

fC

df log2�1 − CA�f�
1 − CB�f��

= log2�1 − CA�fC�
1 − CB�fC�� , �64�

which is apparently zero if the coherence functions are equal.
According to theory I, the coherence only depends on the
power spectrum of the unperturbed system �see Eq. �50��;
hence, the coherence functions are equal, if the power spec-
tra are equal. Consequently, if the cutoff frequency equals
the frequency at which the spontaneous spectra are equal we
can expect an extremum. In our numerical example, this is at
fC�0.25, in good agreement with the smallest positive so-
lution of Eq. �31�. We note that the maximum is also present
in theory II and occurs close to the one found in the simula-
tions and in theory I.

For both models, the agreement between the full theory
�theory II, shown by the solid line in Fig. 17� and the simu-
lation results is rather good. Even the differences to the sim-
pler theory I that was solely used in Ref. �13� are not
severe—the simple theory overestimates the mutual informa-
tion rate, in particular, at high-cutoff frequency fC. This can
be expected, because with increasing cutoff frequency, the
intensity of the stimulus grows, and we obtain stronger de-
viations between simulation and theory. This is true even for
theory II; at high fC, theory II also overestimates slightly the
true value of the mutual information rate.

We want to point out a slight discrepancy between the two
different sets of simulation results shown in Fig. 17. The set
of large white symbols corresponds to the old results shown
in Ref. �13�; we recall that they were obtained by using a
white noise generated by a so-called Butterworth filter. Ad-
ditionally, for the Fourier transform, a windowing procedure
was used. In the other set of simulation results �small black
symbols�, we used a white noise generated in the Fourier
domain; no windowing was used, but we extended the simu-
lation time until a convergence of the data was obtained.

There are essentially no differences between both sets of
simulation results for model B. For model A, the new simu-
lation results are slightly smaller than the previous ones, in
particular, at higher frequencies. The new results seem to be
more reliable; note, however, that they required a much
longer simulation time.

In the case just studied, we kept the intensity �i.e., the
height of the stimulus spectrum� constant while varying the
cutoff frequency. However, in an experimental situation and
also in theoretical investigations, researchers often keep the
signal variance constant while increasing the cutoff fre-
quency. This was, for instance, the case in Ref. �10�, where a
maximum in the gain of mutual information rate vs cutoff
frequency was found. In Fig. 18, we show the mutual infor-
mation rate for both models, together with the difference
between the curves. For both models the mutual information
rate first increases, goes through a maximum, and then de-
creases again. This is in marked contrast to the preceding
case �Fig. 17�, where we fixed the intensity of the stimulus.
Note that for fixed-stimulus variance, the integral over the
stimulus power spectrum must yield the same value for all
cutoff frequencies. This requires that, as we increase the cut-
off frequency, power at low frequency is transferred into
higher-frequency bands. For fC→�, we end up with a stimu-
lus that has infinitesimal height in an infinite-frequency band.
Such a stimulus has no effect on a dynamical system at all,
and thus the mutual information rate must drop to zero if the
cutoff frequency tends to infinity. Note that in Ref. �10�, only
comparably small cutoff frequencies were considered such
that the range of decreasing mutual information rate had not
been reached yet. Numerical simulations of our models re-
vealed that for stronger stimuli, the maxima in the MI rates
are attained at larger frequencies �not shown�. This may ex-

FIG. 17. Mutual information rate as a function of the cutoff
frequency, with fL=0. Other parameters are �=0.015 625, D=0.2.
Simulation results �small black symbols� are for Nreal=103 stochas-
tic realizations of the spike train and stimulus, with a time step of

t=2�10−2. 2�1021 time steps were used for model A �upper
traces�, and 2�1018 for model B �lower traces�. We also show the
simulation results from Ref. �13� �squares, diamonds, circles� that
were obtained using a different numerical scheme �see text�. Also
shown are the theories I �dashed lines� and II �solid lines� as well as
the difference MA−MB between the mutual information rates of
model A and B.
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plain why a drop in MI rates was not seen in the numerical
study of Ref. �10�, since the stimulus amplitudes used in Ref.
�10� were quite strong. Also, Ref. �10� used the direct
method for the estimation of the mutual information, and the
transfer function was similar to that of a high-pass filter.

Not only the MI rates, but also the difference between the
rates of the two models goes through a maximum as a func-
tion of cutoff frequency �see inset in Fig. 18�. This is in
qualitative agreement with the findings from Ref. �10�. The
maximum is attained at a smaller cutoff frequency �fC,max

�0.16� than for fixed-signal intensity �fC,max�0.25� but at a
smaller frequency than the maxima of the rates.

While introducing the model, we found that � and �0 are
redundant parameters that can both be set equal to unity. So
the only remaining parameter characterizing the neuron itself
�and not the stimulus� is the threshold noise parameter D.
The dependence of the mutual information rates on this
threshold noise is shown in Fig. 19. For both models, the
mutual information rate is a monotonically decreasing func-
tion of the threshold noise; there is no stochastic resonance
�SR� effect, i.e., the information transfer is not maximal at a
finite but at vanishing internal noise. This is not surprising—
since both models are perfect integrators, we operate in a
suprathreshold firing regime where SR is usually absent. �For
neuron models like the FitzHugh-Nagumo model, this can be
different for certain stimuli; see Ref. �38�.�

Remarkably, however, the difference between the mutual
information rates, i.e., the gain in mutual information, goes
through a maximum as a function of the noise strength. This
is well described by theory II, while theory I fails to repro-
duce the mutual information rates and, thus, also their differ-
ence at low noise. What is the reason for the maximum in

gain at a finite noise level? In the limit of strong noise �D
→0.5�, the mutual information rate for both models is
strongly reduced, and thus, at some point, their difference
will also decrease. In the opposite limit of very weak noise,
both models become more and more similar—the stimulus,
i.e., the input noise dominates, and the internal noise and the
kind of reset rule we are using becomes less important. This
was already discussed for the power spectra �see Fig. 12 and
the related discussion�.

Finally, we turn to the mutual information rate in the case
of a finite lower-cutoff frequency. If we exclude a consider-
able range of lower frequencies, the mutual information rate
can be larger for the renewal model B. This is shown in Fig.
20—the difference in mutual information rates starts at a
small positive value at low fC but becomes quickly negative
as soon as the higher-cutoff frequency grows beyond fcrit
�0.25. The difference passes through a minimum, which is
attained around fC�0.75. This is again determined mainly
by an intersection point of the power spectra of the unper-
turbed models in accordance with the discussion around Eq.
�31�. This time, however, it is the second intersection point
that yields the extremal point in the difference; this point is
at f �0.75, as can be seen in Fig. 6.

The lower-cutoff frequency in this last example �i.e, Fig.
20� is quite large. A value fL=0.2 implies that time scales
much longer than five ISIs are excluded from the
stimulus—an assumption that might apply to special cases
but is generally not justified; typical realistic stimuli will also
contain slower time scales. For a lower-cutoff frequency
much smaller than the value we used earlier, the gain by the
negative correlations will still be positive and strong compa-
rable to the case fL=0. We have studied, for instance, fL
=0.02, which yielded a still considerable positive gain in
mutual information rate due to the negative ISI correlations.
We are thus confident that an information gain will be found
for most neurons that show strong negative ISI correlations,
except for the case in which these neurons are stimulated by
a strongly high-pass-filtered signal.

FIG. 18. Mutual information rate as a function of the cutoff
frequency, with fL=0 and the stimulus variance fixed ��s2�s=6.25
�10−3�. Noise intensity was D=0.2. Simulation results �symbols�
are for Nreal=103 stochastic realizations of the spike train and
stimulus, with a time step of 
t=5�10−3. 2�1023 time steps were
used for model A �upper traces�, and 2�1018 for model B �lower
traces�. The solid line is the theory—because of the small variance
we chose, both theory I and II yield curves that agree in line thick-
ness. The discrepancy between the simulation data and the theory
can be ascribed to the finite length of the simulation time. The inset
shows the difference MA−MB between the mutual information
rates of models A and B.

FIG. 19. Mutual information rate as a function of the threshold-
noise parameter D. The stimulus had cutoff frequencies fL=0 and
fC=2.0. Theory II is shown as solid lines, while theory I is shown
as dashed lines. The simulation results for models A and B are
indicated by filled circles and squares, respectively, while the dif-
ference MA−MB between the values for models A and B is shown
as open diamonds.
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VII. SUMMARY AND CONCLUSIONS

We have derived a number of useful analytical results for
integrate-and-fire neurons with threshold noise. Although the
first approach we presented �which was also used in Ref.
�13�� has limited accuracy, it has several advantages. First,
the resulting formulas are much simpler, and hence, the nu-
merical evaluation of spectral measures is readily accessible.
Second, the simple physical picture of the noise-shaping ef-
fect we were interested in becomes already apparent if the
simple approach of theory I is used. Third, the approach
developed for calculating the cross spectrum between stimu-
lus and spike train may also be used to treat more compli-
cated but also more realistic models, as for instance, a leaky
integrate-and-fire neuron with threshold noise.

The second approach �theory II�, which was based on a
time transformation, enabled us to correctly describe spectral
“interactions” between the stimulus spectrum and the spike-
train power spectrum of the spontaneous system. This in-
cluded the appearance of side bands in the power spectrum
and also the widening of sharp peaks at the eigenfrequency
of the neuron. Such effects have great importance in neural
systems �5� but are usually only numerically studied. Our
approach to the perfect integrate-and-fire neuron may allow
for an analytical description of such effects.

Turning back to our motivating problem from the Intro-
duction, we have seen how negative correlations shape the
background spectrum and thus lead to an enhanced neural
information transfer for stimuli with power at low frequen-
cies. The relative gain achieved by this mechanism was
shown here to depend nonmonotonically on the stimulus cut-
off frequency and on the noise intensity, and is thus maximal
at finite cutoff frequency as well as at a finite noise intensity.
It was also shown that a renewal model may perform better

than the model with negative ISI correlations if the low-
frequency part of the stimulus spectrum is missing. In con-
clusion, negative ISI correlations will improve signal transfer
through noisy neurons for signals that contain sufficient
power at low frequencies. Both of these conditions are ful-
filled for many sensory cells. Whether the effect of negative
ISI correlations also plays a role in the communication of
higher-order �e.g., cortical� cells or whether it influences net-
work behavior remain exciting open issues that should be
explored.

APPENDIX: CALCULATION OF THE SPIKE-TRAIN
POWER SPECTRUM IN THE PRESENCE OF A SIGNAL

BASED ON THE REFINED APPROACH

Here, we give the details of how to calculate the spike-
train power spectrum in the presence of a signal using the
refined approach based on the time transformation equation
�51�.

First, we must determine whether the signal changes the
stationary firing rates of the neuron models, i.e., the rate
averaged over the stimulus ensemble. This is not the case, as
revealed by taking the average of Eq. �46� and �53�, respec-
tively

�r�t��s = r0 + �s�t��s = r0. �A1�

Hence, the firing rates of both models do not change due to
the presence of a weak signal.

In order to calculate the power spectrum, we make use of
the Wiener-Khinchin theorem in the following form:

S�f� = r0�
−�

�

dte2�ift�m�t� − r0� + r0. �A2�

The last term takes into account the � spike in the correlation
function �the spike train has an infinite variance�. In the first
term, m�t� is the conditional firing rate, i.e., the probability
that a spike occurs at time t�0, given that there was a spike
at t=0 �see also �39��. The function m�t� can be expressed by
the temporal derivative of the mean conditional spike count
N�t �0� �the condition is again that a spike occurred at t=0�.
Using the latter and its relation to the conditional spike count
of the neuron in absence of a signal given in Eq. �52� leads to

S�f� = r0�
−�

�

dte2�ift� d

dt
��N0�t + y�t��0���s − r0� + r0.

�A3�

Here, the average runs over both the internal noise �i.e., dif-
ferent realizations of threshold and possibly also reset se-
quences� and the stimulus. We have abbreviated the inte-
grated signal as follows:

y�t� =
1

�
�

0

t

s�t� . �A4�

In order to calculate the needed average, we use the condi-
tional spike function of the unperturbed system m0�t� and its
relation to the background power spectrum S0�f� �see Eq.
�29��

FIG. 20. Mutual information rate as a function of the cutoff
frequency, with fL=0.2. Other parameters are �=0.015625, D
=0.2. Simulation results �small black symbols� are for Nreal=103

stochastic realizations of the spike train and stimulus, with a time
step of 
t=2�10−2. 2�1021 time steps were used for model A
�upper traces� and 2�1018 for model B �lower traces�. We also
show our old simulation results from Ref. �13�, which were ob-
tained using a different numerical scheme �see text�. Also shown are
the theories I �dashed lines� and II �solid lines�, as well as the
difference MA−MB between the mutual information rates of
model A and B.
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��N0�t + y�t��0���s =��
0

t+y�t�

dt�m0�t���
s

=��
0

t+y�t�

dt��
−�

�

df�e−2�t�f�

�
r0

2��f�� + S0�f�� − r0

r0
�

s

= �
−�

�

df�
r0

2��f�� + S0�f�� − r0

− 2�if�r0

���e−2�i�t+y�t��f��SP − 1� . �A5�

Here, the index sp indicates that the average has to be taken
with respect to realizations of the stimulus having caused a
spike at t=0. This latter condition complicates further sim-
plifications and forces us to use a sensible approximation for
the stimulus statistics conditioned by the spike at t=0. We
assume that the multivariate probability density Pn+1,sp of the
stimulus for ti�0�i=1,… ,n� is conditioned on the spike at
t=0 only through the stationary probability density of the
stimulus at t=0. We thus make the following ansatz:

Pn+1,sp�s0,0,s1,t1;s2,t2;…;sn,tn�

= Pn�1�s1,t1;s2,t2;…;sn,tn�s0,0�PF�s0� , �A6�

where Pn�1 is the conditional probability of the stimulus and
PF�s0� is the probability density of the stimulus upon spik-
ing. The relation equation �A6� is certainly true for a Markov
process for which the statistics at any future instant in time
depend only on the present time but not on the past. We were
not able to show whether Eq. �A6� is also true in general.
Our numerical results for a band-pass-limited white noise
�that is, certainly not a Markov process� indicate, however,
that Eq. �A6� is at least a good approximation.

For a weak stimulus, the density PF�s0� can be approxi-
mated as follows �Ref. �12��:

PF�s0� = P0�s0��1 + s0/�� . �A7�

The probability density equation �A6� is used in the follow-
ing way in order to calculate �e−2�iy�t�f��SP. We expand the
exponential function into a series

�ei�y�t��SP = �
n=0

�i��n

n!
�yn�SP, �A8�

and calculate the moments as follows:

�yn�SP = �
0

t

dt1 ¯ �
0

t

dtn� ds1 ¯� dsn
s1 ¯ sn

�n

� Pn,sp�s1,t1;s2,t2;…;sn,tn� . �A9�

Inserting Eq. �A6� and using Eq. �A7�, we arrive at

�yn�SP = �
0

t

dt1 ¯ �
0

t

dtn
�s�t1� ¯ s�tn��s

�n

−
d

d�
�

�

t

dt1 ¯ �
�

t

dtn�
�

t

dt0� �s�t1� ¯ s�tn�s�t0��s

�n + 1��n+1 �
�=0

.

�A10�

Inserting this into the expansion equation �A8�, we obtain

�ei�y�t��SP = ��1 −
1

i�

d

d�
��e−2�iy��t�f��s�

�=0
, �A11�

with

y��t� = �
�

t

dt�s�t��/� . �A12�

For the unconditional average in Eq. �A11�, we use the fact
that y�t� is a Gaussian variable, because s�t� is Gaussian
variable and the integral is a linear operation that transfers a
Gaussian into a Gaussian. Hence, for the probability density,
we have

P�y�� = e−y�
2/�2��

2�t��/�2���
2�t� , �A13�

with the variance given by

��
2�t� = �y�

2�t��s =
1

�2�
�

t

dt��
�

t

dt��s�t��s�t���s

=
2

�2�
0

t−�

dt��t − � − t��ks�t�� , �A14�

where ks�t�� is the autocorrelation function of the stimulus.
Performing the average, we obtain

�ei�y�SP = e−�2�2�t�/2�1 + i�ym�t�� . �A15�

Here, ym is the conditional mean of y�t� given a spike at t
=0. This function is given by the integrated stimulus corre-
lation function

ym�t� = �
0

t

dt�ks�t�� . �A16�

With Eq. �A15�, we are now able to simplify Eq. �A5� and its
temporal derivative. For the latter, we obtain, by taking into
account only zeroth and first-order terms of the correlation
function,

d�N0�t + y�t��0��SP

dt
� r0 +

r0

�2ks�t�

+ �
−�

�

df�
S0�f�� − r0

r0
e−2i�f�t−2�2f�2�2�t�

� �1 +
ks�t�
�2 − 4i�f�ym�t�� . �A17�

For the power spectrum, we obtain Eq. �54�, involving the
time integral equation �55�, which we rewrite here for con-
venience
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I = �
−�

�

dte2i��f−f��te−2�2f�2�2�t��1 +
ks�t�
�2 − 4i�f�ym�t�� .

�A18�

For the band-pass-limited white noise used in our models,
the functions ym�t� and �2�t� can be expressed by higher
mathematical functions. Inserting those functions and calcu-
lating the double integral in Eq. �54� is still a numerically
difficult task. However, using the weak-signal assumption
and making further assumptions about the spectral statistics
of the stimulus, the integral equation �A18� can be further
simplified, and we end up with expressions for the power
spectrum that contain one integral only.

We first treat the case that the lower-cutoff frequency of
the stimulus is finite and not too small. We have then

lim
t→�

ym�t� =
1

�2�
0

�

dt�ks�t�� =
1

2�2Sst�0� = 0, �A19�

and

lim
t→�

�2�t� =
1

4�2�2�
−�

�

dfSst�f�/f2. �A20�

For any finite value of t, both functions are bounded �there
are no divergencies� and proportional to the variance of the
stimulus, which is our small parameter. Under these condi-
tions, it is justified to expand the exponential involving �2�t�
in Eq. �A18� and take into account only zero and first-order
terms in ks�t�, ym�t�, and �2�t�. This yields

I � �
−�

�

dte2i��f−f��t�1 +
ks�t�
�2 − 4i�f�ym�t� − 2�2f�2�2�t��

= ��f − f�� +
Sst�f − f��

�2 − 4i�f�ỹm�f − f��

− 2�2f�2�̃2�f − f�� . �A21�

In order to calculate the Fourier transform ỹm�f − f��, we
write ym�t� as a convolution of the correlation function with
a Heaviside jump function H�x�,

ym�t� =
1

�2��
−�

�

dt�ks�t��H�t − t�� − �
−�

0

dt�ks�t���
=

1

�2�
−�

�

dt�ks�t��H�t − t�� . �A22�

Using the convolution theorem and the Fourier transform of
the Heaviside function, we obtain

ỹm�f − f�� =
1

�2�Sst�f − f��
2

���f − f�� +
i

��f − f��
��

= i
Sst�f − f��

2�2��f − f��
. �A23�

Similarly, we express �2�t� as the time integral of ym�t�, and
express this integral again as a convolution with the Heavi-
side function

�2�t� = 2��
−�

�

dt�ym�t��H�t − t�� − �
−�

0

dt�ym�t��� ,

�A24�

which yields

�̃2�f − f�� = −
Sst�f − f��

2�2�2�f − f��2 +
1

4�2�2

���f − f���
−�

�

df�
Sst�f��

f�2 . �A25�

Inserting this into the time integral and the latter into the
formula for the spectrum, we arrive after a number of further
straightforward simplifications at Eq. �60�.

Next, we turn to the more complicated case in which the
stimulus has power at arbitrary low frequencies. Then the
exponent −2�2f�2��t� grows unbounded in the long time
limit, since Sst�0��0

�2�t� �
2

�2�t�
0

�

dt�ks�t�� − �
0

�

dt�ks�t��t��
�

Sst�0�
�2 t as t → � . �A26�

For arbitrary t, it is possible to write the variance as follows:

�2�t� = 2�t�a −
2

�2��t��
�t�

�

dt�ks�t�� + �
0

t

dt�ks�t��t�� ,

�A27�

with a =
Sst�0�
2�2 , �A28�

where the second term is now bounded for all t and can be
expanded, as we did in the preceding case. Doing this and
using the abbreviations �=2�f� and �=2��f − f��, we ob-
tain

I �
1

�2�
−�

�

dtei�t−a�2�t���2 + ks�t� − 2i��
0

t

dt�ks�t��

+ �2�t��
�t�

�

dt�ks�t�� + �2�
0

t

dt�ks�t��t�� . �A29�

Expressing the correlation function once more by the Fourier
transform of the stimulus power spectrum, we can carry out
the temporal integral �including multiple integrations by
part� and finally arrive at

I =
4�a�2�3

�a2�4 + �2�2

+ 2 Re��a�2 − i�� + ���2

�a�2 − i��2 �
−�

�

d�̃
Sst��̃/�2���/2��2

a�2 − i�� − �̃� � .

�A30�

For a general input spectrum Sst�f�, we are thus left with two
integrals after inserting Eq. �A30� into Eq. �54�. Note, how-

LINDNER, CHACRON, AND LONGTIN PHYSICAL REVIEW E 72, 021911 �2005�

021911-20



ever, that our original formula for the integral involved inte-
grals of the correlation function, too. In the case of band-
pass-limited white noise, the integral over the power
spectrum in Eq. �A30� can be performed, yielding Eq. �63�.

Sorting out the real and imaginary parts of the prefactor
gives a lengthy but explicit formula for the integral that can
be used to calculate the power spectrum by only one integra-
tion �that with respect to f��.
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