
Signal-to-noise ratio gain of a noisy neuron that transmits subthreshold periodic spike trains

Yan Mei Kang,1,2,* Jian Xue Xu,2 and Yong Xie2

1Institute of Information and System Science, School of Science, Xi’an Jiaotong University, Xi’an 710049, China
2Institute of Nonlinear Dynamics, School of Architectural Engineering and Mechanics, Xi’an Jiaotong Universtiy,

Xi’an 710049, China
�Received 3 November 2004; published 2 August 2005�

The transmission properties of an integrate-and-fire neuron model that transmits coherent subthreshold spike
trains in a shot noise environment are investigated by numerical simulation. For very weak coherent couplings,
it is shown that the input-output signal-to-noise ratio �SNR� gain is easier to exceed unity; while for stronger
coherent couplings it is difficult to observe the SNR gain larger than unity at the optimal noise intensity. These
observations are different from those acquired in the case of continuous noise. Our analysis further suggests
that the larger SNR gain in the very weak coherent coupling case should be due to the noise-induced resonance.
It is also shown that there is more possibility of the SNR gain above unity for slower periodic spike trains
transmitted by the model. The results may be useful in understanding the performance of real noisy neurons
acting as signal-processing elements.
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I. INTRODUCTION

The phenomenon of stochastic resonance �SR� was ini-
tially proposed in the context of the explanation of the cli-
matic periodicity, wherein an optimal amount of noise makes
the Kramers rate of a bistable system coincide with the drive
frequency, and as a result the output signal-to-noise ratio
�SNR� attains the maximum �1,2�. During the past 20 years,
the phenomenon has attracted intensive attention beyond
bistable systems, such as the evidences of it have been well
documented in underdamped systems �3,4�, excitable sys-
tems �5,6�, threshold devices �7,8�, etc., here to name but a
few. Since neurons in the brain engage in complex and very
efficient signal-processing operations in noisy environments,
plenty of neurophysiological experimental prototypes have
dedicated to investigate the effects of noise on neurons �see
Ref. �2� for a review�. Up to now the possibility that noise
helps neurons in the detection and transmission of subthresh-
old signals by means of SR has been proved extensively,
which greatly changes the old opinion that noise decreases
the responsiveness of neurons, but whether neurons indeed
use it still deserves confirmations. This motivates further in-
vestigations both into the experiments and the excitable
models to explore the conditions under which SR occurs.
Among these investigations, whether the output SNR can
exceed the input SNR, or whether the output signal can be
less noisy than input signal at the optimal noise intensity of
SR is another interesting question. The problem is often re-
ferred to as the SNR gain �7–14�.

The SNR gain has been demonstrated in systems includ-
ing the level crossing detector �7�, the static resonator �8�, the
Schmitt trigger �10–12�, the double well potential �13�, the
Hodgkin-Huxley neuron model �14�, etc. Since the proof that
there is no SNR gain in the small coherent signal limit with
Gaussian white noise �i.e., within the linear response theory�
has been given �9,15�, most of the research was confined to

the case of the coherent pulselike signals or to the case with
other types of noise so that the linear response theory was
circumvented. The stochastic excitation considered in all
these cases is continuous noise, however, and there is no
report of the SNR gain in the case of short noises. Since
spike trains are the most basic forms by which most neurons
communicate with each other, and recent neuralphysiological
studies �16–19� on their stochastic nature suggested that a
Poisson process can mimic the disturbance in interspike in-
tervals �ISIs�, using the shot Poisson noise to model the
background spike activities in the synaptic input is quite
natural. Therefore, in this paper we demonstrate the SNR
gain in this case by using an integrate-and-fire neuron model
with synaptic inputs involved a coherent component and a
random component, both modeled by discrete pulse trains,
and we expect to have an understanding of the case.

In the next section, the critical amplitude of the neuron
model and the numerical method we adopt are expounded. In
Sec. III, the detailed numerical results of the SNR gain are
given and analyzed. In Sec. IV, discussions and conclusions
are presented.

II. MODEL AND METHOD DESCRIPTION

We consider the classical integrate-and-fire neuron model
�18�. Under the threshold Vth, the neuron membrane, of time
constant �m, has its electric potential V�t� controlled by

�m
dV

dt
= − V + wss�t� + w���t� . �1�

As input signals on V�t� , the coherent component s�t�
=�n��t−nTs� is a periodic spike train with period Ts, which
carries the information of cognitive processes, while the
noise component ��t�=�n��t− tk� with tk’s to be the random
spike instants resulting from the background spike activities
is described by homogenous Poisson-distributed random
pulses of density 1/T� and the autocorrelation function
R�����= ���t���t+��= �1/T������+ �1/T��2. For the sake of*Electronic address: kangyanmei2002@yahoo.com.cn
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convenience, T� will be refereed to as the noise intensity
parameter in the following. The parameters ws and w� are
synaptic couplings for the coherent input and the noise path-
ways, respectively. Once the membrane potential V�t�
reaches the threshold Vth , a spike is discharged by the neu-
ron, and then the membrane potential is immediately reset to
zero, from where V�t� evolves again according to Eq. �1�.
The output of the neuron is usually recorded as y�t�=�n��t
− tn�, where tn is the nth instant when the neuron is discharg-
ing. Let us temporarily assume there is no noise in Eq. �1�,
namely w�=0 then Eq. �1� turns into

�m
dV

dt
= − V + ws�

n

��t − nTs� . �2�

It is clear that the solution of Eq. �2� reads

V�t� =
ws

�m
�
n=0

�

exp�−
1

�m
�t − nTs�	H�t − nTs� , �3�

where H�.� is the unit step function defined as

H�t� = 
1, t � 0

0, t � 0.
�

Supposing t�NTs, one defines

SN�t� =
ws

�m
�
n=0

N

exp�−
1

�m
�t − nTs�	H�t − nTs� , �4�

then

SN�t� =
ws

�m
�exp�−

t

�m
	 + exp�−

t − Ts

�m
	 + ¯

+ exp�−
t − NTs

�m
	


	
ws

�m
�exp�−

NTs

�m
	 + exp�−

�N − 1�Ts

�m
	 + ¯ + 1


=
ws

�m

1 − exp�− NTs/�m�
1 − exp�− Ts/�m�

= max„SN�t�… . �5�

Let t→� and N→�, then

FIG. 1. An example of calcu-
lated �a� interspike interval histo-
gram, �b� periodic histogram, �c�
autocorrelation function, and �d�
power spectral density of an out-
put spike train. T�=0.125�m, ws

=w�=0.5ŵs.
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Vmax = lim
N→�

max„SN�t�… = �ws

�m
	�1 − exp�−

Ts

�m
	
−1

. �6�

Let Vmax=Vth, then the critical amplitude of the coherent cou-
pling is

ŵs = �mVth�1 − exp�−
Ts

�m
	
 . �7�

From Eq. �7� we see that if the coherent spike train is sub-
threshold, i.e., ws� ŵs , the membrane potential cannot reach

FIG. 2. Dependence of the
output SNR on noise intensity pa-
rameter T� for different coherent
couplings where the vertical dot
lines denote the optimal noise in-
tensity parameters. w�=0.5ŵs, Ts

=10�m, ws is �a� 0.1, �b� 0.3, �c�
0.5, �d� 0.7, and �e� 0.9 ŵs.
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the threshold without noise, so the neuron of model �1� can-
not generate discharge, and the subthreshold periodic spike
train cannot be transmitted to other neurons. It suggests that
noise can assist the central neurons to transmit information
by means of SR, as reported in Ref. �18�, but whether there is

a SNR gain larger than unity at the optimal noise intensity of
SR has not been reported before.

Since the existing methods such as Gaussian approxima-
tions �20,21� for calculating the probability density of the
ISIs of Eq. �1� are only applicable to the case of ws=0, we

FIG. 3. Dependence of the
SNR gain on noise intensity pa-
rameter T� for different coherent
couplings. The parameters are the
same as those in Fig. 2.
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investigate the SNR gain by means of numerical simulation.
Noting that the intervals between random instants are mutu-
ally independent random variables with an identical expo-
nential distribution of parameter 1 /T�, the instants when the
driving neurotransmitters or spikes arrive are generated ac-
cording to tk= tk−1−ln�T�uk� with t0=0 and uk being uni-
formly distributed random numbers in �0,1� for k�1. To
integrate Eq. �1� for the output spike train, an Euler scheme
with time step 
t=10−2�m is used. Suppose �tk�k=0

� is an
output spike train recorded in a time span �0,T� with T
=5.0�104�m, then the interspike interval histogram, periodic
histogram, autocorrelation, and the output power spectral
density can be calculated as the average of 100 such record-
ings. For instance, for a spike recording, the power spectral
density is P���= �F����2, with

F��� =
1

2�
n

exp�n�tn��1 − cos�2
tn

T
	
 , �8�

which is the Fourier transform with Hanning windows of the
spike train, and the average of 100 such power spectral den-
sities is taken as the output power spectral density. Figure 1
is a numerical example. The output ISI histogram in Fig. 1�a�
is stochastic but tends to be a multipeaked distribution at
multiples of the signal period Ts, which shows that the output
spike train contains the coherent information. The periodic
histogram describes the distribution of the spike numbers
over the whole phase interval �22�, and the spikes are ran-
dom but prefer a certain phase near zero in Fig. 1�b�. The
output spike train in Fig. 1�c� is temporally correlated, espe-
cially obvious at the multiples of Ts , while the spectral den-
sity of the output spike train in Fig. 1�d� concentrates at the
multiples of the coherent frequency 1/Ts . For a given power
spectral density, both the SNR on the input and that on the
output of Eq. �1� are defined as

R =
P�1/Ts� − N�1/Ts�

N�1/TS�
, �9�

where P�1/Ts� stands for the spectral density at the coherent
frequency, N�1/TS� signifies the spectral density of the back-
ground noise measured by averaging the 40 spectral density
amplitudes around but not including P�1/Ts�, where the
spectral bin is chosen to be �1/TS� /100. And then the SNR
gain is defined as

G =
Rout

Rin
, �10�

where Rout and Rin represent the SNRs on input and output,
respectively. If at the optimal noise intensity there is G�1,
then one says that the input signal can be improved by add-
ing noise through SR. This is just the point concerned in the
SNR gain investigation.

III. NUMERICAL SIMULATION OF SR AND SNR GAIN

In the following, we take all coherent input signals to be
subthreshold, namely, they satisfy ws� ŵs. The curves of the
output SNR via noise intensity parameter and the curves of

the SNR gain via noise intensity parameter are shown in
Figs. 2 and 3, respectively. The output SNR curves exhibit
typical bell-shaped SR characteristic as reported in Ref. �18�.
By comparing Figs. 2 and 3 one sees that for stronger coher-
ent couplings such as ws�0.5ŵs, the SNR gain at the opti-
mal noise intensity parameter marked with a dot line be-
comes larger as the coherent coupling becomes stronger, but
SNR gain does not reach unity in these cases as shown in
Figs. 3�c�–3�e�. For the weaker coherent couplings, however,
the variability in the SNR gain at the optimal noise intensity
is toward a contrary direction, and Fig. 3�a� shows that the
SNR gain at the optimal noise intensity is larger than unity
for the weakest coherent coupling ws=0.1ŵs. This observa-
tion is different from those obtained in Refs. �7,8�, where
according to the type of continuous noise, the SNR gain at
the optimal noise intensity always increases as the coherent

FIG. 4. Dependence of the output SNR on noise intensity pa-
rameter T�. w�=0.5ŵs and ws are �a� 0.1 and �b� 0.9 ŵs, respec-
tively. The solid curve corresponds to Ts=5�m, the dashed curve
corresponds to Ts=10�m, and the dash-dotted curve corresponds to
Ts=20�m. The vertical dot lines denote the optimal noise intensity
parameters.
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input amplitude decreases or increases. Moreover, for all pe-
riodic pulse trains considered in Refs. �7,8�, the output SNR
can be improved through SR, but here the output SNR can be
improved by SR only when the coherent coupling is quite
weak.

To further support the above observation, we also give
numerical results for coherent inputs with different periods
as shown in Figs. 4 and 5. By comparing these figures, again
one sees that for the large coherent coupling ws=0.9ŵs as
shown in Fig. 5�b�, the SNR gain cannot attain unity at the
optimal noise intensities, while Fig. 5�a� shows that it ex-
ceeds unity at the optimal noise intensities for the weak co-
herent coupling ws=0.1ŵs in all three cases considered. This
suggests that the above observation should be the general
characteristics of Eq. �1�. Here, we emphasize that although
the optimal noise intensity parameters in different cases of
Fig. 4�a� are the same under our parameter axis scale, the
fact that they decreases as the coherent period reduces can be
identified at a more refined scale �the figure is omitted�. In
addition, by checking Fig. 5�b�, one observes that the SNR

gain at the optimal noise intensity becomes larger as the
driving coherent signal becomes slower. Therefore, we can
infer that the slower coherent signal in noisy environment is
more possible to be detected by the integrate-and-fire �IF�
neuron model �1�.

Why is there only a SNR gain larger than unity in the
weakest coherent coupling case? We turn to Eq. �1�. Similar
to the derivation of Eq. �3�, the solution of Eq. �1� with w�

�0 is given as

V�t� =
ws

�m
�
n=0

n1

exp�−
1

�m
�t − nTs�	H�t − nTs�

+
w�

�m
�
k=0

k1

exp�−
1

�m
�t − tk�	H�t − tk� , �11�

with n1=max�n : nTs	 t�, k1=max�k : tk	 t�. Noting that the
first term is the dedication of the coherent component, and
the second one is that of the random background activities,
from Eq. �11� we know that for given Ts, �m, and w�, if ws is
larger, V�t� reaches the threshold easier. Thus in the case of
larger coherent couplings, although the role of the synaptic
noise is necessary, the event of V�t� reaching the threshold is
dominated by the coherent signal; while in the case of quite
weak coherent couplings such as ws=0.1ŵs�w�=0.5ŵs as
shown in Fig. 2, whether V�t� reaches the threshold is nearly
completely dominated by the synaptic noise, namely, it is
mainly the noise energy that converts into the power compo-
nent of the output at the signal frequency 1/Ts. This view-
point is further confirmed in Fig. 6. Seen from the figure, for
larger coherent couplings, the optimal noise intensity param-
eter is nearly the noise intensity parameter where the mean
ISI is approximately equal to the coherent period such as in
the cases of ws=0.7ŵs and ws=0.9ŵs. But for weaker coher-

FIG. 5. Dependence of the SNR gain on noise intensity param-
eter T�. The parameters are the same as those in Fig. 4.

FIG. 6. Dependence of mean interspike interval on noise inten-
sity parameter T�. w�=0.5ŵs, Ts=10�m, ws takes 0.0, 0.1, 0.3, 0.5,
0.7, and 0.9 ŵs from the right-hand side to the left-hand side, re-
spectively. The vertical dotted lines denote the optimal noise inten-
sity parameter, and the level dotted line denotes the coherent input
period.
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ent couplings, the approximate relation is not true anymore.
Especially for the case of ws=0.1ŵs, where the optimal noise
intensity parameter T�

opt�0.02�m, there is no obvious match-
ing relation between Ts and the mean ISI at T�

opt. These
analyses show that the physical mechanism behind the SR
phenomenon in the weakest coherent coupling case and that
behind the SR phenomenon in the larger coherent coupling
case are different, and the former should be some kind of
resonance induced by noise, which is responsible for the dif-
ference.

IV. CONCLUSIONS

We have extended the research of the SNR gain from
peripheral sensory neurons that process analog stimuli to
central neurons that operate with spikes. For noisy threshold
input signals transmitted by an IF model, our investigation
has disclosed that the SNR gain at the optimal noise intensity
becomes larger as the coherent coupling increases for larger
coherent couplings, but it cannot exceed unity. While for the

weaker coherent couplings, the SNR gain at the optimal
noise intensity becomes larger as the coherent coupling de-
creases, and among all the cases considered by us, there is a
SNR gain larger than unity only for the weakest coherent
coupling case owing to the noise-induced resonance. Thus,
the shot noise might be more useful in assisting neurons to
process the weakest periodic pulse trains. The investigation
also suggests that for slow periodic spike trains, there is
more possibility for a SNR gain larger than 1, which might
be important in explaining that the brain sometimes is more
sensitive to slower discrete subthreshold signals. The conclu-
sions are expected to be useful in reflecting some common
properties of real neurons that transmit subthreshold pulse
modulations by means of shot noises. In future work, we will
consider how the duration time of periodic pulses influences
the SNR gain.
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