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The entropy of a polymer confined in a curved surface and the elastic free energy of a membrane consisting
of polymers are obtained by scaling analysis. It is found that the elastic free energy of the membrane has the
form of the in-plane strain energy plus Helfrich’s curvature energy �Z. Naturforsch. C 28, 693 �1973��. The
elastic constants in the free energy are obtained by discussing two simplified models: one is the polymer
membrane without in-plane strains and asymmetry between its two sides, which is the counterpart of quantum
mechanics in a curved surface �H. Jensen and H. Koppe, Ann. Phys. �N.Y� 63, 586 �1971��; the other is the
planar rubber membrane with homogeneous in-plane strains. The equations to describe equilibrium shape and
in-plane strains of the polymer vesicles by osmotic pressure are derived by taking the first-order variation of
the total free energy containing the elastic free energy, the surface tension energy, and the term induced by
osmotic pressure. The critical pressure above which a spherical polymer vesicle will lose its stability is
obtained by taking the second-order variation of the total free energy. It is found that the in-plane mode also
plays an important role in the critical pressure because it couples with the out-of-plane mode. Theoretical
results reveal that polymer vesicles possess mechanical properties intermediate between those of fluid mem-
branes and solid shells.
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I. INTRODUCTION

Thin structures exist widely in nature. Many things such
as eggs, snails, airplanes, and so on in our daily life are
covered with solid shells that play protective roles. In the
realm that we cannot see with naked eyes, viruses usually
have protein shells, and eukaryotic cells are enclosed by cell
membranes that consist of lipids, proteins, and carbohy-
drates, etc. A lipid molecule has a polar hydrophilic head
group and one or two hydrophobic hydrocarbon tails. When
a quantity of lipid molecules disperse in water, they will
assemble themselves into a lipid bilayer in which the hydro-
philic heads shield the hydrophobic tails from the water sur-
roundings because of the hydrophobic forces. Solid shells
and lipid bilayers are, respectively, in the categories of hard
and soft condensed matter. Their mechanical properties have
attracted much attention for a long time �1–6�.

The significant difference between solid shells and lipid
bilayers is that the former can endure in-plane shear stress
but the latter cannot. Due to this difference, solid shells and
lipid bilayers have different forms of deformation energy.
Under the assumption of homogenous and isotropic bulk ma-
terials and in the limit of thin thickness, the elastic free en-
ergy per unit area of a solid shell is expressed as �1�

Esh =
D

2
��2H�2 − 2�1 − ��K� +

C

2�1 − �2�
��2J�2 − 2�1 − ��Q� ,

�1�

where D= �1/12�Yh3 / �1−�2� and C=Yh are the bending ri-
gidity and in-plane stiffness of the shell. Y ,�, and h are,
respectively, the Young’s modulus, the Poisson ratio, and the
thickness of the shell. 2J and Q are the trace and determinant
of the in-plane strain tensor, respectively. For a spherical
solid shell with radius R, the critical osmotic pressure �i.e.,
the pressure difference between the outer surface and inner
one of the shell, above which the shell loses its stability� is
�2�

pcs =
2Yh2

�3�1 − �2�R2
. �2�

In 1973, Helfrich �3� recognized that the lipid bilayer was
just like a liquid crystal in the smectic-A phase at room tem-
perature. Based on the elastic theory of liquid crystals �7�, he
proposed the curvature energy per unit area of the bilayer

Elb = �kc/2��2H + c0�2 + k̄K , �3�

where kc and k̄ are elastic constants, and H ,K, and c0 are the
mean curvature, Gaussian curvature, and spontaneous curva-
ture of the lipid bilayer, respectively. For phospholipid bilay-
ers at room temperature T, the persistence length is usually
much larger than the size of the membranes and the effect of
shape fluctuations is negligible �4� because kc�10−19J
�kBT �8�, where kB is the Boltzmann factor. The free energy
of a closed bilayer under the osmotic pressure p is written as
Flb= ��Elb+��dA+ p�dV, where dA is the area element and
V the volume enclosed by the closed bilayer. � is the surface*Email address: oy@itp.ac.cn
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tension of the bilayer. The first-order variation of Flb gives
the shape equation of the closed bilayer �9�:

p − 2�H + kc�
2�2H� + kc�2H + c0��2H2 − c0H − 2K� = 0.

�4�

For a spherical lipid bilayer with radius R, the critical os-
motic pressure for stability is �10�

pcl =
2kc�6 − c0R�

R3 . �5�

It follows that pcl	kc /R3 because the typical value of c0R is
about 1. Therefore, a lipid bilayer is, indeed, much softer
than a solid shell.

Are there membranes intermediate in state between Hel-
frich’s fluid lipid bilayers and classical solid shells? The
polymer vesicles discussed below may be an example. In the
last decade, Decher invented the layer-by-layer assembling
technique �11�. Following this technique, Caruso et al. made
spherical polyelectrolyte capsules by the stepwise adsorption
of polyelectrolytes onto charged colloidal templates and then
decomposition of the templates �12,13�. The capsules were
composed of about ten layers of alternating polystyrene sul-
fonate and polyallylamine hydrochloride. The thickness h of
capsules was about tens of nanometers which was remark-
ably less than their radii R �several micrometers�. Gao et al.
�14� found that the spherical polyelectrolyte capsule lost its
stability and changed its shape abruptly above some thresh-
old of osmotic pressure pc which was proportional to R−2 and
h2. In their experiment, the thickness dependence of pc might
not be exact because the polyelectrolyte capsule with more
than ten layers was chemically unstable as they claimed.
They also explained their results through the stability theory
of classical elastic solid shells �1,2�. But it is well known that
the classical theory is based on the assumption of homoge-
neous and isotropic bulk materials which entirely ignores the
characteristic of the polyelectrolyte capsule consisting of
many polymers. If we consider the polymer structures of
spherical polyelectrolyte capsule, can we still derive pc
	R−2?

In this paper, we will answer the above questions. To do
that, we derive the entropy of a polymer confined in a curved
surface and the elastic free energy of a membrane consisting
of polymers by scaling analysis. It is found that the elastic
free energy of the polymer membrane has the form of the
in-plane strain energy plus Helfrich’s curvature energy. The
elastic constants in the free energy are obtained by discuss-
ing two simplified models: one is the polymer membrane
without in-plane strains and asymmetry between its two
sides, which is the counterpart of quantum mechanics in a
curved surface �15�; the other is the planar rubber membrane
with homogeneous in-plane strains. The equations to de-
scribe the equilibrium shape and in-plane strains of polymer
vesicles by osmotic pressure are derived by taking the first-
order variation of the total free energy containing the elastic
free energy, the surface tension energy, and the term induced
by osmotic pressure. The critical pressure above which a
spherical polymer vesicle will lose its stability is obtained by
taking the second-order variation of the total free energy. It is

found that the in-plane mode also plays important role in the
critical pressure because it couples with the out-of-plane
mode. These theoretical results reveal that polymer vesicles
possess mechanical properties being intermediate between
those of Helfrich’s fluid membranes and classical solid
shells.

The following contents of this paper are organized as be-
low. In Sec. II, we derive the free energy of polymer mem-
brane by using scaling concepts �16�. In Sec. III, we obtain
the shape and in-plane strain equations of closed polymer
vesicles by using the surface variation theory developed in
Refs. �17,18�. In Sec. IV, we discuss the mechanical stability
of the spherical polymer vesicle by taking the second-order
variation of the free energy. In Sec. V, we give a brief sum-
mary and discussion.

II. THE FREE ENERGY OF THE POLYMER MEMBRANE

The polymer membrane discussed in this paper is one or a
few thin layers consisting of a cross-linked polymer structure
like rubber �19� at molecular levels. It can be represented as
a mathematical surface with curvature and strains. It is hard
to derive its free energy in a strict way. But we can drive it
by using scaling concepts in polymer physics proposed by de
Gennes �16�. In the following, we take de Gennes’ conven-
tion: the entropy S is a dimensionless quantity and the
Boltzmann factor kB is implicated in temperature T.

A. The free energy of the polymer membrane

If we take the Gaussian chain model �20�, the root mean
square end-to-end distance of a polymer is R0	�Nb0, where
b0 is the segment length of the polymer and N is the number
of segments. Assume that the principal radii of the surface
are much larger than R0. If the in-plane strain tensor of the
surface is denoted by � which is assumed to be a small
quantity, the entropy of the polymer confined to the surface
must be the function of 2HR0 ,KR0

2 ,2J, and Q because it is a
dimensionless invariant quantity under the transformation of
coordinates, where H ,K ,J=tr� and Q=tr� are the mean cur-
vature of the surface, the Gaussian curvature of the surface,
the trace of the strain tensor, and the determinant of the strain
tensor, respectively. Thus we can expand it as

S 	 A1�2HR0� + A2�2HR0�2 + A3KR0
2 + B2�2J�2 + B3Q

�6�

up to second-order terms, where A1 ,A2 ,A3 ,B2, and B3 are
constants. In this expression, an unimportant constant term is
neglected. Moreover, one must notice that generally we have
K	�2H�2 and Q	�2J�2. Additionally, there is no first-order
term of 2J in the expression of the entropy because we ex-
pect that −� plays the same role as � in the entropy. It is
useful to write the entropy in another equivalent form:

S 	 A2R0
2�2H + c0�2 + A3R0

2K + B2�2J�2 + B3Q , �7�

where c0=A1 / �2A2� is a constant, the so called spontaneous
curvature, which is expected to satisfy 
c0R0
�1. In fact, c0
vanishes if there is no asymmetric factor between two sides
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of the surface because H turns into −H if we change the
normal direction of the surface.

Assume h to be the membrane thickness and M the num-
ber of polymers per volume. Additionally, we neglect the the
entanglement of polymers. Consequently, the free energy per
unit area of a membrane consisting of polymers has the fol-
lowing form:

Epm = − �Mh�TS =
kd

2
��2J�2 − �Q� +

kc

2
�2H + c0�2 − k̄K ,

�8�

where kd=−2B2MhT, �=−B3 /B2, kc=−2MhTA2R0
2, and k̄

=MhTA3R0
2.

Obviously, Eq. �8� degenerates to Helfrich’s curvature en-
ergy of fluid membranes if kd=0, and to the elastic energy of
classical solid shells if c0=0, kd=C / �1−�2�, kc=D, �=2�1
−��, and k̄=D�1−��.

B. The elastic constants kd ,�, and kc

kd ,� ,kc, and k̄ are unknown universal constants indepen-
dent of the detailed shape and the small in-plane strains of
the polymer membrane. If we only discuss closed polymer

vesicles in this paper, we need not know k̄ because the inte-

gral of k̄K is an unimportant constant. To determine kd ,�,
and kc, we will discuss two ideal cases: one is the cylinder
polymer membrane without any strain and asymmetry be-
tween its two sides; the other is the planar membrane with
homogeneous in-plane strains.

In the former case, we denote as � the radius of the cyl-
inder. On the one hand, Eq. �8� is simplified as

Epm =
kc

2�2 . �9�

On the other hand, we know there is a 1:1 correspondence
relation between polymer statistics and the quantum path in-
tegral method �20� as shown in Table I. In 1971, Jensen and
Koppe dealt with the quantum mechanics of a particle con-
strained in a curved surface and obtained a nontrivial con-
clusion �15�: the constraint would induce an effective poten-
tial Vef f =−��2 /8m���2H�2−4K� in the Schrödinger equation,

where m is the particle mass. In terms of the correspondence
rules in Table I, there will be an effective potential Uef f
= �b0

2 /24	���2H�2−4K� for a polymer confined in a curved
surface. Especially, Uef f =Tb0

2 /24�2 for the cylinder with ra-
dius �. We must pay more attention to the fact that there is a
minus symbol in the potential term when we use the corre-
spondence rules. In fact, Yaman et al. overlooked this fact in
recent literature �21�. But this flaw cannot diminish the value
of their pioneer work in the study of polymers confined in a
curved surface. Thus their results can be safely transplanted
only if we change the sign. Consequently, we obtain the free
energy of the cylindrical membrane consisting of Mh poly-
mers per unit area

Epm =
MhTNb0

2

24�2 =
MhTR0

2

24�2 �10�

if we neglect the entanglement between polymers. Compar-
ing Eq. �9� with Eq. �10�, we obtain kc=MhR0

2T /12.
In the latter case, H ,K, and c0 are vanishing for planar

membrane with symmetry between its two sides. On the one
hand, Eq. �8� is simplified as

Epm =
kd

2
��2J�2 − �Q� . �11�

For homogeneous stain �, we can express it by its compo-
nents 
11,
22, and 
12=
21=0 in some orthonormal coordi-
nate system so that 2J=
11+
22 and Q=
11
22.

On the other hand, we notice that there might be cross-
linking joints between polymers in the membrane. This char-
acter suggests that the membrane should have the elastic
properties of rubber materials. In terms of the elasticity
theory of rubber �19�, the deformation energy of a planar
rubber per area can be expressed as fr= �MhT /2���1

2+�2
2

+1/ ��1
2�2

2�−3�, where �1=1+
11 and �2=1+
22 are exten-
sions. For small strains, it is expanded to the lowest order
terms as

Epm = 2MhT�
11
2 + 
11
22 + 
22

2 � = 2MhT��2J� − Q� .

�12�

Thus we can obtain kd=4MhT and �=1 by comparing Eq.
�11� with Eq. �12�.

TABLE I. The correspondence principle between polymer statistics and path integral method in quantum
mechanics.

Quantum mechanics Polymer statistics

Time t Number of segments N

i /� −	=−1/T

Lagrangian L̂= �m /2��dr /d��2−V�r(�)� Energy E= �� /2��dRn /dn�2+U�Rn�

Mass m �=3/ �	b0
2�

potential V(r(�)) −U�Rn�

Propagator K̂=�exp��i /���0
t L̂ d��D�r���� Partition function Z=�exp�−	�0

NE dn�D�Rn�

Hamiltonian Ĥ=−�2 2m�2+V P̂= 1  2�	2�2−U

i�� K̂ /�t= ĤK̂ �t�0� �1/	��Z /�N= P̂Z
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Therefore, we obtain the free energy of a closed polymer
vesicle under osmotic pressure p:

F = � �kd/2���2J�2 − Q�dA + � ��kc/2��2H + c0�2 + ��dA

+ p� dV , �13�

where � ,A, and V are the surface tension, surface area, and
volume enclosed by the vesicle, respectively. In this expres-
sion, the term related to the Gaussian curvature disappears
because its integration �K dA is an unimportant constant so
that it is omitted. It is easy to see that Eq. �13� degenerates to
the free energy of a closed lipid bilayer for kd=0, and to the
free energy of a solid shell with �=1/2 if c0=0, kd=C / �1
−�2�, and kc=D.

III. THE SHAPE AND IN-PLANE STRAIN EQUATIONS OF
CLOSED POLYMER VESICLES

In this section, we will give the shape and in-plane strain
equations of closed polymer vesicles from the first-order
variation of free energy �13�. The method has been fully
developed in Ref. �18�, and the key elements and notations
are shown in the Appendix.

If a point r0 in a surface undergoes a displacement u to
arrive at point r, we have du=dr−dr0 and naturally �idu
=�idr �i=1,2 ,3�.

If we denote dr=�1e1+�2e2 and du=U1�1+U2�2 with

U1
�1, 
U2
�1, we can define the in-plane strains �22�

�11 = du · e1


dr0
 ��2=0

� U1 · e1, �14�

�22 = du · e2


dr0
 ��1=0

� U2 · e2, �15�

�12 =
1

2�du · e2


dr0
 ��2=0

+ �du · e1


dr0
 ��1=0
� �

1

2
�U1 · e2

+ U2 · e1� . �16�

Using �idu=�idr and the definitions of strains �14�–�16�,
we can obtain the leading terms of variational relations:

�i�11�1 ∧ �2 = �i�1 ∧ �2, �17�

�i�12�1 ∧ �2 =
1

2
��1 ∧ �i�1 + �i�2 ∧ �2� , �18�

�i�22�1 ∧ �2 = �1 ∧ �i�2. �19�

Please note that the symbol ∧ in this paper expresses the
exterior �or wedge� product �18�.

From Eqs. �17�–�19� and �A12�–�A21�, we have

�1F = � kd�− d�2J� ∧ �2 −
�11d�2 − �12d�1

2

+
d��12�1 + �22�2�

2
��1, �20�

�2F = � kd�d�2J� ∧ �1 −
�12d�2 − �22d�1

2

−
d��11�1 + �12�2�

2
��2, �21�

�3F = � �kc�2H + c0��2H2 − c0H − 2K� + kc�
2�2H� + p

− 2H�� + kdJ� −
kd

2
�a�11 + 2b�12 + c�22���3dA .

�22�

Thus the Euler-Lagrange equations corresponding to the
functional �13� are

kd�− d�2J� ∧ �2 −
1

2
��11d�2 − �12d�1� +

1

2
d��12�1 + �22�2��

= 0, �23�

kd�d�2J� ∧ �1 −
1

2
��12d�2 − �22d�1� −

1

2
d��11�1 + �12�2��

= 0, �24�

p − 2H�� + kdJ� + kc�2H + c0��2H2 − c0H − 2K� + kc�
2�2H�

−
kd

2
�a�11 + 2b�12 + c�22� = 0. �25�

Equations �23� and �24� are called the in-plane strain equa-
tions because they describe the in-plane strains of polymer
vesicles under the pressure p. Equation �25� is called the
shape equation because it describes the equilibrium shape of
polymer vesicles under the pressure p.

Obviously, if kd=0, then Eqs. �23� and �24� are two iden-
tities while Eq. �25� degenerates into the shape equation �4�
of closed lipid bilayers. Generally speaking, it is difficult to
find the analytical solutions to Eqs. �23�–�25�. But it is easy
to verify that 
11=
22=� �a constant�, 
12=0 satisfy Eqs.
�23�–�25� for a spherical vesicle with radius R if the follow-
ing equation is valid:

pR2 + �2� + 3kd��R + kcc0�c0R − 2� = 0. �26�

IV. MECHANICAL STABILITY OF SPHERICAL
POLYMER VESICLES

Now we will calculate the second-order variation of func-
tional �13� and discuss the mechanical stability of a spherical
polymer vesicle.

In Ref. �18�, only the term �3
2F related to the out-plane

mode ��3� is calculated. Here we also consider the contribu-
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tion of the in-plane mode ��1 ,�2�. Due to the notation of
exterior differential d and Hodge star * ,�1 and �2 can be
expressed as

�1�1 + �2�2 = d� + * d� �27�

by two scalar potential functions � and � for a two-
dimensional manifold �23�. Using Eqs. �17�–�19� and �A12�–
�A21�, we can calculate �1

2F ,�2
2F ,�3

2F ,�1�2F ,�1�3F, and
�2�3F from Eqs. �20�–�22� and �26� for Spherical polymer
membrane. Eventually, we arrive at

�2F = �1
2F + �2

2F + �3
2F + 2�1�2F + 2�1�3F + 2�2�3F � G1

+ G2, �28�

where

G1 = � �3
2�3kd/R2 + �2kcc0/R3� + p/R�dA

+ � �3�
2�3�kcc0/R + 2kc/R

2 + pR/2�dA

+ � kc��2�3�2dA +
3kd

R
� �3�

2� dA

+ kd� ��2��2dA +
kd

2R2 � ��2� dA , �29�

G2 =
kd

4
� ��2��2dA +

kd

2R2 � ��2� dA . �30�

If we take �=kc /2, K=3kd /2, �=kd /2, w=�3, and �=� in
Eq. �6� and �7� of Zhang et al.’s paper �24�, then G1 and G2
correspond to F1�w ,�� and F2��� in that paper under the
conditions of p=0 and c0R=2. Obviously, there is no cou-
pling between modes ��� and �� ,�3�; but there is coupling
between in-plane mode ��� and out-of-plane mode ��3�. We
will show that in-plane modes have quantitive effect on the
stability of the cell membrane although they cannot qualita-
tively modify the results of Ref. �18�.

Because G2 is obviously positive definite, we merely need
to discuss G1. �3 and � in the expression of G1 can be
expanded by spherical harmonic functions �25� as �3
=�l=0

� �m=−l
m=l almYlm�� ,�� and �=�l=0

� �m=−l
m=l blmYlm�� ,�� with

alm
* = �−1�mal,−m and blm

* = �−1�mbl,−m. It follows that

G1 = �
l=0

�

�
m=0

l

2
alm
2�3kd + �l�l + 1� − 2��l�l + 1�kc/R
2 − kcc0/R

− pR/2�� − �
l=0

�

�
m=0

l
3kd

R
l�l + 1��alm

* blm + almblm
* �

+ �
l=0

�

�
m=0

l
kd

R2�2l2�l + 1�2 − l�l + 1��
blm
2. �31�

We find that if p� pl=3kd / �2l�l+1�−1�R+ �2kc�l�l+1�
−c0R�� /R3�l=2,3 ,…�, then G1 is positive definite, i.e., the
vesicle is stable. We must take the minimum of pl to obtain
the critical pressure:

pc = min�pl� = �
3kd

11R
+

2kc�6 − c0R�
R3 �

kc�23 − 2c0R�
R3 �3kdR2 � 121kc� ,

2�3kdkc

R2 +
kc

R3 �1 − 2c0R��3kdR2 � 121kc� . � �32�

But if we do not consider the in-plane mode ���, we will obtain the critical pressure �18�

pc = �
3kd

2R
+

2kc�6 − c0R�
R3 �

2kc�10 − c0R�
R3 �3kdR2 � 16kc� ,

4�3kdkc

R2 +
2kc

R3 �2 − c0R��3kdR2 � 16kc� . � �33�

Comparing Eq. �32� with Eq. �33�, we find that the in-
plane modes have a qualitative effect on the stability of the
polymer vesicles although the qualitative result absence of
these modes is unchanged.

Now we test the validity of Eq. �32� by considering two
special cases. The first case, kd=0, corresponds to a lipid
bilayer. In this case, Eq. �32� is exactly reduced to Eq. �5�,
the critical pressure for a spherical lipid bilayer. The second
case, c0=0, kd=Yh / �1−�2�, and kc=Yh3 / �12�1−�2�� with

�=1/2, corresponds to the solid shell with Young’s modulus
Y, Poisson ratio �, and shell thickness h. Under the condition
of h�R, Eq. �32� gives pc= �4/3�Yh2 /R2 which is exactly
the result of Eq. �2� with �=1/2. Thus we are sure of the
validity of Eq. �32�.

Now we turn to the polymer vesicle consisting of poly-
electrolytes. In the experiment by Gao et al. �14�, its thick-
ness is h	20 nm which is much smaller than its radius R
	2 �m. The segment length is taken as three times the
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carbon-carbon bond length, i.e., b0	4.2 Å. The number of
segments per polymer are about N	200 due to the molecule
weight 70 000. Thus R0	�Nb0	60 Å, which is less than R.
Considering kd=4MhT and kc=MhR0

2T /12, we arrive at
3kdR2 / �121kc�= �12R�2 / �11R0�2�1, i.e., 3kdR2�121kc. Un-
der this condition, Eq. �32� is reduced to

pc =
2MTR0h

R2 . �34�

The above equation can explain the experimental result pc
	R−2 obtained by Gao et al. But their result pc	h2 is in-
consistent with our theoretical result pc	h. The main reason
for this discrepancy is that the membrane consisting of poly-
electrolytes is chemically unstable if its layer number is more
than 10, which will prevent a test of the exact relation be-
tween critical pressure pc and thickness h.

V. CONCLUSION

In the above discussion, we briefly introduce the polymer
statistics and the correspondence principle �shown in Table I�
between it and the path integral method in quantum mechan-
ics. We derive the entropy of a polymer confined in a curved
surface and the elastic energy of a membrane consisting of
polymers by scaling analysis. It is found that the elastic en-
ergy of the polymer membrane has the form of the in-plane
strain energy plus Helfrich’s curvature energy as shown in
Eq. �8�. The elastic constants kd ,kc ,� in the free energy are
obtained by discussing two simplified models: one is the
polymer membrane without in-plane strains and asymmetry
between its two sides, which is the counterpart of quantum
mechanics in a curved surface; another is the planar rubber
membrane with homogeneous in-plane strains. The equations
to describe equilibrium shape and in-plane strains of polymer
vesicles by osmotic pressure are derived by taking the first
order variation of the total free energy �13� containing the
elastic free energy, the surface tension energy, and the term
induced by osmotic pressure. The critical pressure �32�,
above which the spherical polymer vesicle will lose its sta-
bility, is obtained by taking the second-order variation of the
total free energy �13�. It is found that the in-plane mode ���
also plays an important role in the critical pressure because it
couples with the out-of-plane mode ��3�.

We estimate that pc=2MTR0h /R2 through the experiment
by Gao et al. This result is qualitatively intermediate be-
tween pcl=2kc�6−c0R� /R3 for the lipid bilayer and pcs

=2Yh2 /�3�1−�2�R2 for a solid shell. Therefore polymer
vesicles possess mechanical properties intermediate between
those of Helfrich’s fluid membranes and classical solid
shells. But is it reasonable to use the present theory for poly-
electrolyte membranes? We discuss two points. �i� The deri-
vation of the bending rigidity of the polymer membrane uses
results for the quantum mechanics of a particle constraint in
a curved surface. The results can only apply to polymers that
are much more constrained perpendicular to the membrane
in than their lateral size. It seems that the polymer vesicles in
the experiment by Gao et al. do not satisfy this condition
since R0	6 nm and h	20 nm. But in fact, the vesicles con-

tain ten layers and the thickness of each layer is about 2 nm
which is much smaller than R0 and the total length of a
polymer. That is, the strong constraint in the normal direction
of the membrane is satisfied. �ii� The Gaussian chain model
is used in the present work. However, the polymers in poly-
electrolyte membranes may be nonideal. This is indeed a
difficulty. But the present theory is focused on small defor-
mations of polymer vesicles; the model of the ideal polymer
should give approximate results due to the lessons in classi-
cal theory of rubber elasticity �19�. Additionally, we indeed
obtain the relation pc	R−2 observed by the experiment.

It is a nontrivial thing that we analysis the mechanical
stabilities directly from second-order variations of the free
energy �13�. In the classical literature on stabilities of shells,
such as Refs. �1,2�, the critical pressure �2� is obtained under
a special assumption of the unstable mode that the concave
part after instability is the mirror image of its initial one.
Therefore, the present work implies that we can also analyze
the mechanical stabilities of solid shells directly from
second-order variations of free energy �1� without the special
assumption in conventional literature.

It is well known that cell membranes contain lipid bilay-
ers and membrane skeleton. Our theory of polymer mem-
branes may be applicable for the membrane skeleton because
it is also a cross-linking structure at molecular levels. In the
future, we can turn to the elasticity of cell membranes after
we have fully studied the elasticity of the lipid bilayer and
membrane skeleton.
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APPENDIX: SURFACE VARIATION THEORY

Here we briefly review the surface variation theory origi-
nated in Ref. �17� and fully developed in Ref. �18�.

We use a smooth and closed surface M in three-
dimensional Euclid space E3 to represent a membrane. As
shown in Fig. 1, we can construct a right-hand orthonormal
system �e1 ,e2 ,e3� at any point r in the surface and call
�r ;e1 ,e2 ,e3� a moving frame. The differential of the frame is
denoted by

�dr = �1e1 + �2e2,

dei = �ije j�i = 1,2,3� ,
� �A1�

where �1 ,�2, and �ij =−� ji �i , j=1,2 ,3� are one-forms. The
structure equations of the surface are

d�1 = �12 ∧ �2, �A2�

d�2 = �21 ∧ �1, �A3�

�13 = a�1 + b�2, �23 = b�1 + c�2, �A4�
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d�ij = �ik ∧ �kj�i, j = 1,2,3� . �A5�

Readers should notice that the operator “d” is an exterior
differential operator �18� in this paper. The area element,
mean curvature, and Gaussian curvature are, respectively, ex-
pressed as

dA = �1 ∧ �2, �A6�

H = �a + c�/2, �A7�

K = ac − b2. �A8�

If M undergoes an infinitesimal deformation such that
every point r in M has a displacement �r, we obtain a new
surface M�= �r�
r�=r+�r�. �r is called the variation of sur-
face M and can be expressed as

�r = �1r + �2r + �3r , �A9�

�ir = �iei�i = 1,2,3� , �A10�

where the repeated subindices do not represent Einstein sum-
mation. Due to the deformation of M ,e1 ,e2 ,e3 also change.
We denote the change as

�lei = �lije j, �lij = − �lji. �A11�

Using the commutativity between �i �i=1,2 ,3� and d, we
obtain the fundamentally variational identities of the moving
frame �18�:

�1�1 = d�1 − �2�121, �A12�

�1�2 = �1�12 − �1�112, �A13�

�113 = a�1, �123 = b�1, �A14�

�2�1 = �2�21 − �2�221, �A15�

�2�2 = d�2 − �1�212, �A16�

�213 = b�2, �223 = c�2, �A17�

�3�1 = �3�31 − �2�321, �A18�

�3�2 = �3�32 − �1�312, �A19�

d�3 = �313�1 + �323�2, �A20�

�l�ij = d�lij + �lik�kj − �ik�lkj . �A21�
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FIG. 1. Smooth and orientable surface M. We can construct a
right-hand orthonormal system �e1 ,e2 ,e3� at any point r in the sur-
face and call �r ;e1 ,e2 ,e3� a moving frame.
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