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The origin of the long-range interlayer interactions responsible for the variety of phases exhibited by
ferroelectric liquid crystals is discussed. It is shown that the anisotropy of the elastic constants that govern
layer bending in smectic-C liquid crystals results in an effective long-range interaction between the smectic
layers. The nature of this interaction is such as to favor a mutual alignment of the c directors of the layers in
either a parallel or antiparallel orientation. The free energy of the system is the sum of the contributions of
these long-range interlayer interactions and the short-range interaction between nearest-neighboring layers,
which favors a purely helical structure for the c directors. The long-range interaction is found to favor
commensurate structures while the short-range term favors incommensurate helices. The resulting structure is
of the type characterized in the “distorted clock model.” The phase diagrams that result from the application of
this theory are consistent with the experimentally observed phase sequences.
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I. INTRODUCTION

One of the most remarkable properties of smectic liquid
crystals is the wide variety of phases that can arise as the
temperature is varied over a comparatively narrow range.
Some of these phases display ordering phenomena in which
the average orientation of the molecules in one smectic layer
appears to be correlated with the orientation in a compara-
tively distant layer. This implies the existence of a long-
range interaction between these layers. The origin and nature
of this interaction has been one of the most long-standing
puzzles in the physics of liquid crystals.

Very recently a mechanism has been proposed that ap-
pears capable of giving rise to a long-range interlayer inter-
action �1�. In this paper we expand upon the brief account
given previously, and point out some of the strengths and
weaknesses of the underlying theory. We also indicate the
type of phase sequence that can be predicted on the basis of
this type of mechanism, and hence the type of phase se-
quence that would lie outside the range of possible predic-
tions. This is of interest, as any experimental result indicat-
ing the existence of such a phase sequence would cast doubt
on the adequacy of the model as a basis for a complete de-
scription of phase transitions in ferroelectric liquid crystals.

We begin by establishing the notation used to describe
smectic liquid crystals, in which rod-shaped molecules are
arranged in layers. In the case of the smectic-A phase the
average molecular orientation is along the layer normal,
which we take as defining the z axis. The system is then
isotropic in the x-y plane. In the smectic-C phase, on the
other hand, the molecules are tilted from the layer normal.
This tilt identifies a unique direction in the x-y plane, along
which the c director is said to lie. Of particular interest are
the smectic-C* phases that can arise when the liquid crystal
consists of chiral molecules, as in these materials the c di-
rector may vary from layer to layer. If we denote the angle

between the c director and the x axis in the lth smectic layer
as �l, we may characterize the system in terms of how �l
changes with increasing l. When �l remains constant we
have a synclinic phase, while when it increases by � per
layer the phase is anticlinic. The presence of a transverse
permanent electric dipole moment leads to the alternative
description of these phases as ferroelectric and antiferroelec-
tric. If the sample geometry permits, there may also be a
small constant increment per layer, giving the structure a
helically varying electric polarization. In the materials with
which we are concerned, there is an even richer structure,
with �l increasing by approximately 2� every three or four
layers �the so-called ferrielectric or intermediate phases�, or
advancing in an incommensurate manner.

A wide variety of sequences of phases has been observed
as the temperature is raised from the melting point through
the various smectic phases �2,3�. One example has the
sequence Sm-CA

* �antiferroelectric� – Sm-CFI1
* �intermediate�

– Sm-CFI2
* �intermediate� – Sm-C* �ferroelectric� – Sm-C�

*

�incommensurate� – Sm-A �4�. In other materials, one or
more of these phases may be missing, but the ordering gen-
erally follows in the same sequence. This suggests a common
origin in the underlying mechanism responsible for the exis-
tence of the various phases. We shall see that the possible
sequences are determined by the topology of a map in which
the stable phases appear as areas in a plot in which the prop-
erties of the nearest-layer interaction and the long-range in-
teraction are represented along the two axes.

Previous attempts to find a mechanism for interlayer in-
teractions have been mostly guided by perceptions held
about the nature of the layer structure at the time the particu-
lar theory was developed. Before recent observations had
clarified the nature of the variation of �l with l, two different
models had been proposed to describe the molecular arrange-
ment in these materials. In the Ising-like model �5–7�, ��l
��l+1−�l is restricted to be either 0 or �, while in the clock
model �8–11� ��l=2� /n, where n is the number of the lay-
ers in the repeating unit cell, namely, 1 for ferroelectric, 2 for
antiferroelectric, and 3 or 4 for the intermediate phases. Re-
cent experiments �12–14� have ruled out both the Ising-like*Electronic address: taylor@case.edu
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model and the pure clock model, and led to the introduction
of the so-called distorted clock model �15–20�. As indicated
in Fig. 1, in this model a system with three-layer periodicity
has ��3m+1=��3m+3=�, and ��3m+2=2��−��, while a sys-
tem with four layers in a unit cell can be characterized by
��4m+1=��4m+3=�, and ��4m+2=��4m+4=�−� with m
=0,1 ,2 , . . . . The measured values for � and � are closer to
� than to the expected values in a pure commensurate helix
�2� /3 and � /2 for three-layer and four-layer unit cells, re-
spectively�, which means that the observed structures are a
large distortion of the clock model.

A structure in which the angle �l at large l is uncorrelated
with its value at l=0 is said to be incommensurate. This type
of structure arises when the only interaction is between
nearest-neighbor layers. If the interaction energy is mini-
mized when ��l is equal to some angle �, then the ground
state will be a nonrepeating helical structure when � is an
irrational fraction of 2�. Even if � is a rational fraction of
2�, at finite temperatures long-range order will be lost. In
order to have the system form a commensurate helix, in
which �l is correlated over large distances, some type of
competing interaction of longer range is required.

The many papers that discuss the formation of the various
phases can be divided into two groups. The small number of
papers in the first group derive the form of the interlayer
interactions from first principles, and then proceed to inves-
tigate the resulting phase sequences. The much larger second
category comprises papers of a phenomenological nature, in
which some type of second-nearest-neighbor or higher-order
interaction is assumed without explicit derivation. Having
assumed that longer-range interactions do exist, these authors
then explored the consequent phase diagram. In some models
the system is described by the tilt vectors �l=�lcl, where cl
and �l are the c director and the molecular tilt angle, respec-
tively, in the lth layer. Dolganov et al. �17,18� have proposed
a model in which only the nearest-neighbor and next-nearest-
neighbor interactions are taken into account. The interlayer
part of their free energy is given by

F = �
l
��

i=1

2

ai�l · �l+i + f�l � �l+1 + a3��l � �l+1�2

+ b�l
2��l · �l+1 + �l−1 · �l�� . �1�

According to these authors, the fact that the layer tilt angle �

can vary from layer to layer results in stable intermediate
phases without the need for consideration of longer-range
interactions. Čepič et al. �9,16�, on the other hand, proposed
a phenomenological model in which the polarization induced
by piezoelectric and flexoelectric effects is taken into ac-
count, resulting in the free energy

F = �
l
��

i=1

4

ai�l · �l+i + �
i=1

3

f i�l � �l+i + b��l · �l+1�2� .

�2�

The third- and fourth-nearest-neighbor interactions arise in-
directly from a short-range interaction between the tilt vector
and an independently varying polarization vector when elec-
trostatic fluctuation forces are included.

Bruinsma and Prost �21� have discussed several candidate
mechanisms for a long-range interaction, but dismiss most of
these as vanishing or insignificant. They determine, for ex-
ample, the contribution due to thermal elastic fluctuations in
the c director by invoking a pseudo-Casimir effect �22–24�.
Finding this to be weak, they then concentrate on the elec-
trostatic effect of thermal fluctuations, 	�l�x ,y�, in �l within
a layer. They calculate an interaction between layers arising
from the effective charge density produced by in-plane varia-
tion in 	�l�x ,y� and hence in the electric polarization, and
suggest that this may induce a tendency to anticlinic ordering
in distant layers. Their work was performed at a time when
the Ising model was favored as a description of ferroelectric
liquid crystals, and so they did not go on to suggest any
mechanism that could lead to more complex structures.

Our goal in the present paper is to present in detail a
physical model that can be shown to give rise to long-range
interlayer interactions, and from which the distorted clock
structure of the various phases can be derived �1�. The es-
sential ingredient is a mechanism that induces the c directors
in nonadjacent layers to align in a parallel or antiparallel
direction. The origin of the mechanism we propose is the
anisotropy in stiffness of a single layer of Sm-C* material
�25�. If a layer is bent by curving it around a cylinder whose
axis is along the c director, then the restoring force will be
related mostly to the strength of the splay elastic constant. If,
on the other hand, it is bent in the perpendicular direction
then the restoring force will depend on a mixture of splay
and bend elastic constants. The elastic properties of the as-
sembly of layers that forms the Sm-C* liquid crystal will
then be different for a system in which the c directors of all
the layers have some preferred alignment from the properties
of a liquid crystal with no preferred c director orientation.

We can give a physical picture of the free energy we
propose by making an analogy with a sheet of plywood,
which is made from alternating layers of wood veneer. For
maximum stiffness of the composite material, the grain of
the wood in each layer is arranged to be perpendicular to that
in its neighboring layers, as illustrated in Fig. 2. When sub-
ject to random oscillations, the amplitude of vibrations is
then minimized. In thermodynamic terms, the amount of
phase space occupied, and hence the entropy, is also mini-
mized by making the direction of the grain of the wood in
each layer perpendicular to that of its neighbor. Now suppose

FIG. 1. In the distorted clock model, structures with a periodic-
ity of three or four layers can each be defined by a single angle �
or �.
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that we lift the constraint on perpendicular orientation, and
allow the various layers to rotate in their own planes. In
order to maximize the entropy, the system will tend to move
towards the configuration where the average stiffness is least,
which will be when all layers have their grain direction par-
allel. In the case of a Sm-C* liquid crystal, an arrangement
where all the c directors are parallel or antiparallel will simi-
larly maximize the entropy, and will be the preferred ar-
rangement in the absence of other forces.

II. MODEL

In order to be capable of supporting a variety of commen-
surate and incommensurate phases, a model must have two
components. The first of these is a short-range interaction
that typically favors a particular relationship between nearest
neighbors. This is usually a tunable term whose nature varies
with some control parameter, such as temperature or pres-
sure. The second component is a longer-range interaction,
which favors a structure different from that preferred by the
short-range forces.

The short-range interaction Vsr acting between adjacent
layers is easy to visualize, as the molecules are in physical
contact. It is, however, difficult to calculate from first prin-
ciples. For this reason we shall make no attempt to derive
this term, but simply assume it to favor a particular value of
��, the angle between c directors in successive layers. As a
simple example, for layers of area L2 we initially choose the
simple form

Vsr = − vL2�
l

cos��l+1 − �l − �� , �3�

with the parameter v being an energy of interaction per unit
area. This term favors the formation of a helical ordering in
which �l=const+ l�. We assume that � varies with tempera-
ture T from a value near zero to a value near � as the tem-
perature is lowered through the range in which the multiple
smectic-C* phases are found.

There is no explicit microscopic model for this variation,
but its existence can be argued as plausible. It becomes clear
that it is not feasible to develop a microscopic model for the
form of ��T� when one considers some recent measurements
by Cady et al. �26� of the pitch of the helix in the incom-
mensurate Sm-C�

* phase. There it was found that the addition
of one extra CH2 group to the achiral alkyl chain of the large
molecule 10-OHFBBB1M7 had a dramatic effect on the

pitch of the helix. It not only changed the pitch by an order
of magnitude, but also changed the sign of its temperature
dependence. In terms of our model, the sign of d� /dT was
reversed. This makes it unlikely that any simple structural
model can lead to reliable predictions of ��T�. It is, however,
perfectly reasonable to imagine that the mutual contact of
molecules in adjacent layers should give rise to some well-
defined interaction Vsr, even if its form cannot be predicted.

The longer-range interaction is the more difficult to estab-
lish, as discussed in the previous section. The absence of
direct contact between distant layers requires the invocation
of an indirect interaction. The mechanism we propose is the
contribution to the free energy from the anisotropy in the
force required for the physical bending of a layer in a
smectic-C liquid crystal. This anisotropy causes the energy
of distortion of two neighboring layers to depend on the
extent to which their c directors are aligned. The spontane-
ous thermal fluctuations in shape of a layer give contribu-
tions to the entropy of the system that reflect the degree of
alignment. This effective long-range elastic interaction is
strong enough to induce commensurate ordering.

We define our model as consisting of N layers of thick-
ness d in a Sm-C* liquid crystal of density 
. In the absence
of thermal fluctuations, each layer lies in the x-y plane, as
shown in Fig. 3. The director in each layer is assumed to be
tilted away from the layer normal by a tilt angle � that is a
constant throughout the sample. The angle �l between the c
director of the lth layer and the x axis is initially assumed to
be uniform within each layer, and so does not depend on x or
y. Different layers, however, have different �’s. Thermal
fluctuations then cause a spatially varying displacement
ul�x ,y� of the lth layer in the z direction. The dynamic vari-
ables in terms of which the system is defined are then the N
angles �l and the N functions ul�x ,y�.

It is convenient to define a local coordinate system
aligned with the c director in which to write the expression
for the elastic energy of each layer. If xl is an axis in the
direction of the c director in the lth layer and yl is the per-
pendicular axis in the x-y plane, one can write the elastic
energy per unit area of this layer as �25,27�

f l =
1

2
A12� �2ul

�xl
2 �2

+
1

2
A21� �2ul

�yl
2 �2

+ A11� �2ul

�yl �xl
�2

�4�

where A12, A21, and A11 are the elastic constants for bending
the layer in different directions. By specifying a single angle
�l to define the orientation of the c director for an entire
layer we are implicitly making the assumption that local

FIG. 2. Plywood analogy for Sm-C* liquid crystals: The stiff-
ness of each individual layer is least along its c director, and the
average stiffness of the composite system of N layers is least when
all the c directors are parallel.

FIG. 3. In each smectic layer the c director lies in the x-y plane
at an angle �l to the x axis. The �l in different layers are coupled by
direct short-range interactions and indirect long-range interactions.

PHASE SEQUENCES AND LONG-RANGE INTERACTIONS… PHYSICAL REVIEW E 72, 021706 �2005�

021706-3



fluctuations in �l within a layer are unimportant. Such fluc-
tuations do occur, but are large only when the system is close
to making a transition from being a smectic-C material to
being smectic-A. We shall find that in this region the long-
range interactions are absent, causing the liquid crystal to
form an incommensurate helix, and making the in-layer fluc-
tuations irrelevant.

Because the displacements ul�x ,y� in the z direction differ
from layer to layer, we must include in the total elastic en-
ergy of the system a contribution due to the compression or
expansion of the thickness of a layer. We associate an elastic
constant k with this compression energy. When we also in-
clude the kinetic energy of layer motion, the total effective
Hamiltonian of the system is then of the form

H = Vsr + �
l=1

N 	 	 
 f l +
1

2
k�ul+1 − ul�2 +

1

2

d� �ul

�t
�2�dxl dyl.

�5�

Our approach now is to find the set of values of the mac-
roscopic variables �l that minimize the free energy of the
system. We can do this in two equivalent ways. The most
direct method is simply to evaluate the partition function for
this Hamiltonian, in which case the kinetic-energy term in
Eq. �5� is unimportant. The alternative approach is to analyze
the motion governed by the Hamiltonian into normal modes
of vibration of frequency �, and then attribute an entropy
−kB ln � to each mode. This latter approach has the great
advantage of giving a clear physical picture of the phenom-
enon. It also allows one to include the effects of the damping
of the normal modes of oscillation that arises from the vis-
cous nature of liquid crystals. The entropy of a damped har-
monic oscillator has been shown �28� to be the convolution
of −kB ln � with a function that represents the broadening of
the oscillator resonance. The partition-function approach
does not lend itself so readily to the inclusion of dissipative
effects. We accordingly first find the normal modes of exci-
tation of the microscopic variables ul�x ,y� for a given set of
fixed values for the �l. We then add the contribution to the
free energy from these thermal excitations to the short-range
potential energy, and minimize this total. Because the fre-
quencies of the normal modes themselves depend on the �l,
this is a self-consistent procedure.

The boundary conditions encountered in the most com-
mon experimental situations are quite complex. These range
from strong anchoring at a solid substrate to weak anchoring
at a liquid crystal-air interface in free-standing films. To
avoid these difficulties, we consider a system that is suffi-
ciently large that we do not introduce significant error by
assuming periodic boundary conditions. For a given set of
fixed values for the �l in a sample of thickness Nd and layer
area L2, we write

ul�x,y,t� = �
q

uq exp i�qxx + qyy + qzld� . �6�

Here qx=2�nx /L, qy =2�ny /L, and qz=2�nz /Nd. This trans-
formation diagonalizes the Hamiltonian for wave-number
components lying in the x-y plane, but leaves interactions
between modes of different qz, so that

H = Vsr +
1

2
NL2
d�

q

�uq

�t

�u−q

�t

+
1

2
NL2k�

q
2�1 − cos qzd�uqu−q

+
1

2
L2�

q,qz�

uqx,qy,qz
u−qx,−qy,−qz��

l

�A12qxl

4 + 2A11qxl

2 qyl

2

+ A21qyl

4 �

�exp�ild�qz − qz��� �7�

where

qxl
= qx cos �l + qy sin �l and qyl

= − qx sin �l + qy cos �l.

�8�

This may be simplified by introducing the angle � between
the x axis and the component of q in the x-y plane, whose
magnitude we write as q�, and in terms of which

qx = q� cos � and qy = q� sin � . �9�

The sum over l in Eq. �7� then becomes

�
l

q�
4 �Ā +

1

2
�A1 cos�2�l − 2��

+
1

4
�A2 cos�4�l − 4���exp�ild�qz − qz��� , �10�

with Ā� 1
8 �3�A12+A21�+2A11�, �A1�A12−A21, and �A2

��A12+A21� /2−A11.
The dominant terms in this sum will be the diagonal ones,

for which qz=qz�, and which have their origin in the nonoscil-

latory factor Ā. The off-diagonal terms arise when the factors
cos�2�l−2�� and cos�4�l−4�� exhibit the same spatial pe-
riodicity as the exponential factor. For example, for a purely
helical structure, for which �l would be just l�, scattering
terms would exist whenever qz−qz�=2�m�±�� /d. Here m is
an integer for which a nonzero value corresponds to so-
called umklapp scattering, in which conservation of wave
number occurs only when a reciprocal lattice vector is in-
cluded in the equation. The effect of such terms is to intro-
duce gaps into the dispersion relation for the normal mode
frequency �q as a function of qz. If � were equal to 2� /3,
for example, which would correspond to a three-layer repeat
in the undistorted clock model, then band gaps would open at
qz= ±� /3d and qz= ±2� /3d.

The off-diagonal terms can be treated using the standard
methods of the theory of solids �29�, but for detailed calcu-
lations of specific systems it is in practice more convenient
to take a numerical rather than an analytical approach, and
revert to a real-space formulation for dealing with these
terms. This has the advantage of being more flexible, in that
it can handle systems like free-standing films, for which the
boundary conditions must be modified. It also yields a more
direct physical picture of the range of the interlayer interac-
tions.
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For the purposes of illustrating the effects of the interlayer
interactions, however, we make a mean-field approximation
by using the wave-number-space formalism and retaining
only the diagonal terms. We bear in mind that this approxi-
mation significantly overestimates the effect of the interac-
tions, as it includes a self-energy term related to the aniso-
tropy of a single layer and also includes nearest-neighbor
interactions, whose inclusion is equivalent to a modification
of Vsr. We follow this path in order to develop the broad
picture of the commensurate-incommensurate transition,
which is not so easily visualized in the real-space formula-
tion.

With this decision to retain only the diagonal terms, the
sum in Eq. �10� reduces to

�
l

q�
4 �Ā +

1

2
�A1 cos�2�l − 2�� +

1

4
�A2 cos�4�l − 4��� .

�11�

The sums over cos�2�l−2�� and cos�4�l−4�� will vanish
unless the symmetry of the helical arrangement of the �l is
broken. It is easy to see how the sum over cos�2�l−2��
could be nonvanishing, as each layer has an axis of easy
bending and an axis along which bending requires greater
energy. If there is some tendency to mutual alignment of the
easy axes of all the layers, then the greater amplitude of
thermal bending that this permits will reduce the free energy
of the system, and the tendency to alignment will be self-
sustaining if the coefficient �A1 is sufficiently large.

It is less clear how a nonvanishing sum over cos�4�l

−4�� could arise. This would require a fourfold axis of easy
bending of each layer, and a correlation between layer orien-
tations that would retain this property in the whole sample.
While this is not forbidden by any general symmetry require-
ment, it would represent an unusual mechanical property for
a single layer. One would expect to find an axis of easy
bending either along the c director or perpendicular to it, and
not at some angle approaching ±45° from it. We can visual-
ize this unusual situation by plotting contours of constant �
at qz=0 in the qx

2-qy
2 plane. The lowest-order curve would be

an ellipse, as shown in Fig. 4�a�, and this would arise if A11
were the geometric mean of A12 and A21. The coefficient �A2
vanishes when A11 is the arithmetic mean of A12 and A21, and
since the difference between A12 and A21 is comparatively
small the geometric and arithmetic means will almost coin-
cide, making �A2 very small. To obtain a significant value
for �A2 would require a large distortion of the contour of
constant � to something resembling Fig. 4�b�. There are no
direct measurements of this coefficient, but some related ex-

perimental results �30� suggest that A12
A11
A21, which
implies that �A2 is significantly smaller than �A1, and would
exclude a situation such as that shown in Fig. 4�b�. We will
consequently assume this term to be too weak to reach the
threshold for symmetry breaking, and will ignore this contri-
bution in the following calculations.

This leaves us with the term in cos�2�l−2�� as the com-
ponent of the Hamiltonian relevant for long-range interlayer
interactions. At this point it is convenient to choose our co-
ordinate system so that the symmetry is broken in such a way
that the distribution of the �l is symmetric about the x axis,
causing sums like �l sin 2�l to vanish. The order parameter
for the symmetry breaking is then

J � N−1�
l

cos 2�l. �12�

This quantity will vanish for the helical distribution of the �l
characteristic of the pure clock model, but will be nonzero in
the distorted clock arrangement. In terms of this parameter
the Hamiltonian is

H = Vsr +
1

2
NL2�

q
�
d

�uq

�t

�u−q

�t
+ �2k�1 − cos qzd�

+ q�
4 Ā�1 + �J cos 2���uqu−q� . �13�

Here we have introduced the layer anisotropy parameter �

��A1 /2Ā. The dispersion relation of the normal-mode fre-
quencies is then

�
d/k��q
2 = 4 sin2�qzd/2� + �q�d�4g��,J� , �14�

where g�� ,J��c�1+�J cos 2�� with c� Ā /kd4. Because the
low-frequency modes are dominant, a Debye-like approxi-
mation can be made in which sin qzd can be replaced by qzd,
and

�
d/k��q
2 = �qzd�2 + �q�d�4g��,J� . �15�

III. FREE ENERGY

We are now in a position to form an expression for the
free energy of the system as a function of the �l. The con-
tribution from the normal modes in the absence of damping
will be

F� = kBT�
q

ln �q

=
NdL2kBT

8�3 	
0

�/d

dqz	
0

�/d

q�dq�	
0

2�

d� ln �q
2 . �16�

The upper limit for the integration over q� is chosen to be
about the reciprocal of the layer thickness, since distinct
modes will not exist when the wavelength approaches mo-
lecular dimensions. Inclusion of damping increases the en-
tropy slightly, and hence reduces the free-energy contribution
�28�.

Our interest in this expression centers on its dependence
on the order parameter J, and so we drop unimportant con-

FIG. 4. Increasing the term �A2 modifies the contour of con-
stant frequency � from an ellipse �a� to a higher-order curve �b�.
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stant terms and integrate over qz and q� to find

F� =
NL2kBT

16d2 	
0

2�

d�
 1

��g��,J�
arctan���g��,J��

+ ln�1 + �2g��,J��

+ ��g��,J� arctan� 1

��g��,J�
�� . �17�

Since the anisotropy parameter � is small, F� can be ex-
panded as a power series in �. To lowest order, this part of
the free energy has the form

F� = −
�

32

NL2kBT

d2 �2J2f���c� �18�

with

f�x� =
3

4
�1 −

1

x
arctan x� +

1

4
x arctan�1

x
� . �19�

The total free energy per unit volume can then be written as

F =
Vsr + F�

L2Nd
= −

v
Nd

�
l

�cos��l+1 − �l − �� + �J2� �20�

with �=�kBT�2f���c� /32d2v, and with J as defined in Eq.
�12�.

This expression may be put in a more familiar form if we
substitute for just one of the two factors of J to write

F = −
v

Nd
�

l

�cos��l+1 − �l − �� + �J cos 2�l� . �21�

If we were to consider J as a constant in this expression, then
we would have a variant of the well-known Frenkel-
Kontorova problem �31�. In this system, the first term favors
an incommensurate helix while the second favors a commen-
surate periodic structure in which the values of �l repeat
exactly after l has increased by some integer known as the
order of commensurability. A procedure for finding the val-
ues of �l that minimize F has been developed �32,33�. One
differentiates Eq. �21� to find a set of relations that are trans-
formed into two sets of coupled nonlinear difference equa-
tions by a procedure analogous to the area-preserving Taylor-
Chirikov mapping �34�. It was found that for large values of
�J the system is always commensurate; a plot of the average

��� against �J would then be the series of discontinuous
horizontal lines known as a complete devil’s staircase. For
small �J the system was sometimes incommensurate, mak-
ing the devil’s staircase incomplete.

The problem presented by Eq. �21� is more complicated
than the case where J was constant, since in our case J must
be self-consistently determined. The distortion of the clock
model must be sufficiently large that the resulting distorting
field represented by the order parameter J should be self-
sustained. If no nonzero value of J can be found, then the
system reverts to the pure incommensurate helix in which
��=�. For any given value of �, the crucial control factor is
thus the quantity � that describes the relative strengths of the
long-range and short-range interactions between layers.

There will be a critical value �c���, of order of unity, below
which the structure is always incommensurate and above
which it will be commensurate.

This can be illustrated for the special case where � is
close to � /2 by using expression �20� to examine the J de-
pendence of the free energy of the four-layer-repeat struc-
ture. We put �=� /2+� and write the angle � defined in Fig.
1 for the periodicity-4 structure as �=� /2+	. Then

F = −
v
d

�cos 	 cos � + �J2� . �22�

Since in this case J=sin 	�	, and cos 	�1−	2 /2 while
cos ��1, we find

F � −
v
d

1 + �� −

1

2
�J2� . �23�

When �
1/2, a nonzero value of J will lower the free en-
ergy, and the commensurate four-layer-repeat structure will
form. If ��1/2, on the other hand, then J will vanish, and
the incommensurate structure having �l+1−�l=� /2+� will
be stable.

This leads us to the crucial question of whether the pro-
posed long-range interaction is sufficiently strong to give rise
to commensurate phases. We have now seen that this is
equivalent to asking whether or not � can be of order unity.
We return to the definition �=�kBT�2f���c� /32d2v, and
note that c�1, since it is a ratio of elastic constants. Conse-
quently, f���c� will also be of order unity. We estimate the
anisotropy parameter � by noting that if the tilt angle � could
approach � /2, then the director would lie in the layer plane
along the axis xl. Consequently A21 would vanish, A11 would
be small, and we would have ��1. If we suppose � to vary
as sin2 �, then for a typical tilt angle of 18° we would have
��0.1. This means that we require kBT /d2v to be of order
1000 to have ��1.

We can estimate the magnitude of the energy d2v by con-
sidering the electric field strength E0 necessary to switch a
material of dipole moment per unit volume P0 between
phases. At this transition, the electrostatic energy per unit
volume, P0E0, will be of the order of v /d. The switching
field is of the order of 0.3�106 V/m �35�, and the dipole
moment per unit volume is probably around 7�10−4 C/m2

�36�. We then deduce that for a layer thickness d of 3 nm, the
energy d2v will be around P0E0d3, or about 5�10−24 J, mak-
ing kBT /d2v about 1000 and ��1. The magnitudes thus ap-
pear to be in the appropriate range for the proposed mecha-
nism to be important.

IV. PHASE DIAGRAM

To have a complete picture of the phase structure of the
smectic liquid crystal we need two pieces of information.
The first of these is the map that identifies whether a system
of given � and � is commensurate or incommensurate, and,
if commensurate, its order of commensurability. This is ob-
tained by a minimization of the free energy given in Eq. �20�.
The second piece of information is the form of the functions
��T� and ��T� that characterize the short-range and long-
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range interlayer interactions, respectively. From these one
may form the function ���� that traces the path of the system
through the phases as the temperature is raised or lowered.

Solutions for the system defined by Eq. �20� were found
by using a combination of analytical and numerical methods
for all � and �. These results are shown in Fig. 5 for the case
where the number N of layers is infinite, thereby eliminating
the effects of the sample boundaries. Calculations were also
performed for N=50 and with free boundary conditions in
order to simulate the free-standing films used in many ex-
periments. The results for free-standing films were found to
be very similar to those for the infinite system when � is of
order unity or larger. For small � the phase diagram is some-
what distorted, but the topology, and hence the predicted
phase sequences, remains unchanged.

The first point one notices in Fig. 5 is that only a few
commensurate phases exist in this model. This is in sharp
distinction to the Frenkel-Kontorova model, in which J is a
fixed parameter in Eq. �21�. In that case there is an infinite
number of commensurate phases, even when � is very small.
In our model, in which J is a self-consistently determined
mean field, there are no stable phases of order of commen-
surability higher than six. The six-layer periodicity, also pre-
dicted by Dolganov et al. �17,18�, has not yet been observed
experimentally.

In order to convert the phase diagram into a prediction of
the sequence in which the different phases appear as the
temperature is raised, we require knowledge of the function
����, which can be obtained from ��T� and ��T� if these are
available. The main dependence of the long-range-
interaction parameter � on T will come from its proportion-
ality to �2, since the anisotropy parameter � will vanish at
the temperature of the transition to the Sm-A phase. As dis-
cussed previously, the dependence of � on T appears to be
very sensitive to small details of the molecular structure, and

so cannot be predicted. We expect the most common behav-
ior to be a steady reduction from a value near � to a value
near zero as the temperature is raised. The most common
form of ���� would then be a curve connecting the lower left
of Fig. 5 to the upper right of the figure. The particular path
followed then determines the phase sequence.

The dashed line shows one possibility for the form of
����. As we move down the curve we pass from the antifer-
roelectric Sm-CA

* phase, which has a two-layer repeat, to the
intermediate Sm-CFI1

* phase, which has a three-layer repeat.
Raising the temperature further takes us into the second in-
termediate Sm-CFI2

* phase, with its four-layer repeat. We then
pass into the incommensurate Sm-C�

* phase, in which � is
too small to sustain the long-range interaction. Finally we
reach the Sm-A phase represented by the vertical axis, along
which �=0. This particular phase sequence has been ob-
served in several materials, including the compound known
as MHPBC �37,38�. Similar lines can be drawn to trace
the path of the phase sequence Sm-CA

* –Sm-C�
* –Sm-A

�compounds MHPOCBC �39� and TFMHPBC �40�� and
Sm-CA

* –Sm-A �compound EHPOCBC �6��.
Some experimentally observed phase sequences, however,

cannot be accommodated by the phase diagram shown in
Fig. 5. For example, some compounds exhibit a direct tran-
sition between the three-layer-repeat Sm-CFI1

* phase and the
ferroelectric Sm-C* phase �4�. The fact that the four- and
six-layer structures extend to infinite � in Fig. 5 clearly for-
bids this behavior. We accordingly need to ask which aspects
of this figure are an artifact of the choice of Vsr and which are
of a more general origin.

A noticeable feature of the phase diagram shown in Fig. 5
is that it is symmetric in � about � /2. As a consequence,
there is a phase with a six-layer repeat in addition to the
expected three-layer- and four-layer-repeat structures. This
arises as a result of the unrealistically simple and symmetric
form chosen in Eqs. �3� and �20� for the short-range interac-
tion Vsr. The choice of a more realistic short-range potential
causes qualitative changes in the form of the phase diagram.
For example, strengthening Vsr for large � distorts the dia-
gram while maintaining its topology, while modifying the
dependence of Vsr on �l+1−�l can radically change the to-
pology. One choice eliminates the four- and six-layer repeats
for certain ranges of �, and allows phase sequences in which
one passes from the antiferroelectric Sm-CA

* phase through
the three-layer Sm-CFI1

* phase to the ferroelectric Sm-C*

phase, as is observed in several reported compounds �4�. An-
other choice eliminates the three- and six-layer repeats for all
but a small range of �. If we put

Vsr = − vL2�1 − cos ���
l

�cos��l+1 − �l − ��

+ a cos 3��l+1 − �l − ��� , �24�

then, for a=0.03, we find the result shown in Fig. 6�a�. The
areas representing three- and six-layer repeats are barely vis-
ible on this phase diagram, so a magnified detail of this dia-
gram is shown in Fig. 6�b�. The dashed line represents the
interesting phase sequence Sm-CA

* –Sm-CFI1
* –Sm-CFI2

* –

FIG. 5. This diagram shows the stable phases in a simple model
as a function of the helix angle � �in radians� favored by nearest-
neighbor interlayer interactions and of the dimensionless strength �
of the mean-field long-range interaction. The Roman numerals la-
beling commensurate phases indicate the number of layers per re-
peat unit. The dashed line shows an experimentally observed phase
sequence.
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Sm-C*–Sm-C�
* –Sm-A, which has been experimentally ob-

served in some materials �4�.
We also note that a material can exhibit different phase

sequences depending on its optical purity. The effect of enan-
tiomeric excess on the phase diagram of ferroelectric liquid
crystals has been theoretically discussed by Čepič and Žekš
�9�, and experimentally observed in the compound
MHPOBC �20�. At high optical purities, this material passes
through the phase sequence shown in Fig. 6. When the opti-
cal purity is decreased, however, the intermediate phases dis-
appear and the direct transition between ferro- and antiferro-
electric phases is observed. Despite the fact that the long-
range interaction discussed in this paper does not depend on
such parameters as optical purity and chirality, our mean-
field model is capable of producing phase diagrams that de-
pend on such parameters through their effect on the nearest-
layer interaction Vsr. If, for example, the coefficient a in Eq.
�24� is increased to 0.3, then the intermediate phases disap-
pear as shown in Fig. 7, and the phase sequence
Sm-CA

* –Sm-C*–Sm-A is possible.

The principal success of the theory presented above lies in
the predicted order in which the phases occur. While the
possible choices of Vsr are many and arbitrary, the resulting
phase sequences are restricted to those that can be traced in a
single monotonic line passing across the plot of � as a func-
tion of �. No material has been reported, for example, in
which a four-layer repeat occurs at a lower temperature than
the three-layer repeat, nor has one been found in which the
ferroelectric phase occurs at a lower temperature than the
four-layer repeat.

V. CONCLUSIONS

We have explored the consequences of including in the
free energy of a Sm-C* liquid crystal the entropy due to
thermal fluctuations in the shape of the smectic layers. The
anisotropy in the bending elastic constant of a layer leads in
a mean-field approximation to a tendency for the c directors
in all layers to align in either a parallel or an antiparallel
sense. This can be interpreted as an effective long-range in-
teraction between c directors in distant layers. A more exact
numerical treatment of the model leads to similar conclu-
sions, but with a reduced strength and range of interaction.
The magnitude of the contribution of this effect appears suf-
ficient to induce a variety of commensurate phases. The ob-
served sequences of phases in some recently studied materi-
als are consistent with the sequences permitted by a simple
version of the model.
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FIG. 6. �a� The phase diagram obtained using the modified
short-range interaction suggested in Eq. �24�. The dashed line
shows the experimentally observed phase sequence for one set of
materials. �b� Part of the same diagram enlarged to show details.
Here � is in radians.

FIG. 7. This figure shows the phase diagram when the parameter
a in Eq. �24� is equal to 0.3. This makes possible the direct transi-
tion between ferro- and antiferroelectric phases observed in some
materials. Here � is in radians.
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