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Flow-induced molecular orientation of amphiphile monolayers: Incorporation of hexatic elasticity
into Ericksen-Leslie theory
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By introducing the local lattice elasticity into the pure Ericksen-Leslie (EL) theory which only considers the
deformation of the director, we developed a more general theory for understanding the behaviors of hexatic
liquid crystal under flow. In the cases of amphiphilic monolayers in tilted phases (L, and L,), the exact
solutions of the new EL equation in two types of flow, pure extension and simple shear, explain well most of
the features of flow-induced tilt azimuth orientation observed by Fuller’s group [Science, 274, 233 (1996)] and
Schwartz’s group [Nature (London) 410, 348 (2001)]. In particular, the “shear band” domain generated by flow
discovered by the former is proved theoretically as the result of two-dimensional Wulf construction in L, and

L) phases.
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I. INTRODUCTION

Monolayers have been extensively investigated for more
than one century since Langmuir’s pioneering works [1]. In
the last several years, there has been remarkable progress in
understanding the phase transition of monolayers by applica-
tion of the synchrotron x-ray diffraction method into the ob-
servation of molecular packing structure [2,3]. Through tra-
ditional surface pressure-area isotherm measurements,
abundant phenomena of polymorphism and phase transitions
in monolayers of amphiphilic molecules have been revealed
by x-ray diffraction technology that have also attracted the
attention of many theoretical investigators. In a review ar-
ticle by Kaganer et al. [4], the evolution in the experimental
and theoretical understanding of structures and phase transi-
tions was summerized. Among the recognized phases, liquid
condensed phases L, and L, are extraordinarily interesting
because they happen at the meeting point of two- and three-
dimensional (2D and 3D) systems as well as solid (S) and
liquid crystal (LC) phases: The polar head groups of the
amphiphiles were found to form in average a distorted hex-
agonal lattice at air/water interface by x-ray diffraction [2,3],
and it was as predicted by theory [5] and shown schemati-
cally in Fig. 1. The long tails of the molecules are tilted
toward a nearest neighbor (NN) for the L, phase [i.e., the
case of ¢=0, schematically shown in Fig. 1(a)], while to the
next-nearest neighbor (NNN) for L) phase. There are two
possible cases for L) phases, ¢p=7/6 [as shown in Fig. 1(b)]
is one case and the other is ¢p=m/2, however, only the latter
has been observed in experiments [3]. Once tilt happens, the
symmetry of the hexagonal lattice will be broken and only
rectangle symmetry will be held. That means the rectangle
symmetry of two states of ¢=/2 for NNN phase and ¢
=0 for NN phase remain even when the monolayers enters
the solid phase (6#=0) as well confirmed in the x-ray diffrac-
tion experiment [3]. Very recently, the tilting phase transition
was studied as a distortion of the orthogonal hexagonal ori-
entation of molecules by a competition among the entropy of
both head position and molecular axes orientation distribu-
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tions, Lenard-Jones potential between two NN molecules,
and the work done by surface and bulk pressures [6,7]. The
theory predicts a physically reasoning phase portion in a
phase diagram between tilting and untilting phases and
shows quantitative agreement with the measurement in
monolayers of C;,—C,, acids [8].

The study of monolayers of amphiphilic molecules in L,
and L; phases has been extended from the equilibrium state
to the steady state with flow, and the experimental evidence
of the existence of a strong coupling between flow and mo-
lecular tilt azimuth orientation has been reported [9-13]. Us-
ing Brewster angle microscopy (BAM), Fuller’s group
[9-11] visualized the deformation and orientations of the
polydomain structures in two types of flow, pure extension
and simple shear (see Fig. 2), generated by a four-roll mill
[Fig. 2(a)] and a two-belt channel [Fig. 2(b)]. They specu-
lated that L} and S phases experience flow-induced reorien-
tation more obviously than the L, phase and the reorientation
process was accompanied by the sudden appearance of new
domains, called “shear bands,” at +45° to the extension axis
of both types. [e.g., see Fig. 5(H) in Ref. [10]]. It was also
revealed that the simple shear can fragment the domain
structure in L) (including the O, [4]) phase. With the same
BAM observation in simple shear flow, Schwartz’s group
found a different phenomenon [12,13]: The observed domain
was gradually skewed with a little distortion shape, and ac-
companied by a continuous rotation of the molecular orien-
tation that is faster than the domain rotation, regarded as
molecular precession (Fig. 2 in Ref. [13]). They also re-
vealed a remarkable discontinuous orientation jump (Fig. 4
in Ref. [13]). The Brewster measurements which show the
relation of molecular tilt relative to the flow direction, yet
one speculates about the liquid crystalline lattice. Of course,
this needs still to be determined independently with x-ray
diffraction.

On the theoretical side, a major challenge is to understand
the mechanism of the mentioned mysterious effects of flow
in monolayer and it has attracted many attempts. Very re-
cently, the shear bands in L) phase were modeled by Fuller’s
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FIG. 1. (a) Model structure for untilt orthorhombic hexagonal
phase and its distortion toward a nearest neighbor (NN) regarded as
L, phase. The structure of L; phase is tilted to the next-nearest
neighbor (NNN) and has been omitted in the figure. (b) The geom-
etry for a arbitrary tilting domain where (x,y) is the laboratory
frame, (x*,yM) is one set of (NN, NNN)-tilting directions also the
molecular system, and 72, denotes its tilt azimuthal direction of the
monolayer.

group by considering the shear-induced elastic distortion of
the hexatic lattice as the deformation twinning of crystals in
flow [11]. Employing the similar idea, the orientation jump
was explained by Schwartz’s group as a tight coupling of
molecular orientation to the local molecular hexatic lattice
(Fig. 5 in [13]) and a flow-induced orientation mechanism
different from LC tumbling [14] was argued. However, all
these treatments remain in a qualitative framework. Various
classical theoretical approaches were employed to clarify the
nonequilibrium state pattern formation in monolayers as
well. Among them are the theories based on Ginzburg-
Landau free energy describing the problem of coupled
herring-bone and hexatic degrees of freedom presented by
Bruinsma and Aeppli [15,16] and the Landau theory for the
pattern formation proposed by Selinger et al. [17], etc. These
phenomenological theoretical approaches all invoked a free
energy expressed as the function of order parameter W.
However, it is still not apparent in the relation between the
macroscopic physical quantities (such as shear, elasticity,
etc.) and the microscopic concepts (such as molecule lattice,
order parameter, etc.) from these phenomenological theories.
In the present paper, we aim at developing a continuum
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FIG. 2. (Color online) Two types of flow induced by a four-roll
mill used by Fuller’s group: (a) pure extension and (b) simple shear
(after Fig. 1 in Ref. [7])

theory for the quantitative understanding of the behaviors of
hexatic liquid crystal under flow. That is, by considering that
amphiphilic molecules in monolayers possess both the
lattice-structure property related to the positional ordering of
polar heads on the water surface and the liquid crystalline
property related to the orientational ordering of chains of
long tails of amphiphiles pointing towards air, we try to un-
derstand the behaviors of monolayers under flow. Especially,
we try to reveal the relation between the previous theories
applied in LC and monolayers and the experimental obser-
vations by Fuller’s group [9-11] and Schwartz’s group
[12,13]. Our approach not only follows both groups’ ideas to
emphasize the shear-induced elastic deformation of lattice,
but also assume that the flow affect the orientations of the
long chains of amphiphiles, i.e., a liquid crystal model. In
detail, instead of using a distorted “lattice” picture presented
by both groups, we use an exact geometrical expression of
tilt elastic energy for the hexatic LC phases derived in our
previous study (see below for details) [18], and as a key
issue, the treatment of flow-induced LC orientation by the
Ericksen-Leslie (EL) theory [14] is invoked in the present
work by viewing the tilt Cy axis of the hexatic lattice (the
average orientation of the long chains of amphiphiles) ap-
pearing in L, and L) phases as LC director m and incorpo-
rating the abovementioned tilt elastic energy into the Frank
elastic energy of LC. In other words, we introduced the elas-
tic energy of the local lattice deformation into the LC model.
Consequently, the EL theory is generalized for both nematic
and hexatic LCs. Based on the theory, the tilt equation of
director m of amphiphilic monolayers in L,,L} and S phases
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is derived exactly. By solving the equation analytically in the
aforementioned two types of flow, most of the features of
flow-induced tilt orientation observed by Fuller’s group and
Schwartz’s group are well explained. In particular, as an evi-
dence for the present theory, the precise expression of line
tension for a hexatic LC domain induced by both elastic and
viscous effects is obtained, by which the mentioned mysteri-
ous “shear band” domain is predicted as the exact result of
the 2D Wulf construction.

The arrangement of this paper is as follows. In Sec. II, we
build a generalized EL theory in which both the deformation
of director and the elasticity of the local lattice are con-
cerned. Particularly, in the cases of monolayers in the L, and
L5 phases, the free energy and its associated tilt equation are
derived exactly. In Sec. III, the solutions of the tilt equation
in two types of flow, pure extension and simple shear, are
extensively discussed in comparison with the experimental
observations of Fuller’s group [9-11] and Schwartz’s group
[12,13]. Section IV gives the discussion and conclusion.

II. THE GENERALIZED EL THEORY

To describe the flow-induced orientation of chains of am-
phiphiles, we now introduce a 2D flow field v(x,y) in the
discussed monolayer and the molecular chain orientation is
defined as m(x,y). By treating, m as LC director, its dynamic
equation by EL theory is expressed as [14]

d - -
IﬁnﬁzG+§+V-%’, (1)

where I is the inertia moment of director per volume (usually

neglected [14]), G is the external force (vanishing in our
discussed case), ¢ and 7 are the intrinsic body force and
surface stress, respectively, relating to the Ossen-Zocher-
Frank free energy [19]. They can be written as

>

it £ Viii— OF 1o+ Ny M + Nyt - d, 2)

-

7= m+ aF19(Vi), 3)

where the Lagrange multipliers 7 and E are the arbitrary
constant scale and vector, respectively, and can be deter-
mined by the relations 72-m=1 and given boundary condition
N =o— M3, A= s Ko (u,.¢ are the Leslie coefficients of
viscosity in LC), d is the symmetry part of Vo (v is the
velocity of flow), i.e., d,j—2(v,]+v i) with v;;=dv; , the

vector M is defined as

M= —ri—-m, (4)

i‘rl&

with w;;= z(v,j v;;) (the antisymmetry part of Vv), and F is
the free energy density.

In original EL theory in nematic LC, F takes the Ossen-
Zocher-Frank expression form, denote Fy [20], and serves
to describe the elastic energy for deformed director pattern
but takes no account of the elasticity of the hexatic lattice
deformation. As mentioned in Sec. I, the key step of this
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paper is to generalize EL theory to involve the effect of this
lattice deformation. we consider the free energy as the sum
of the energies of both chain orientation and lattice deforma-
tion, i.e., F=F|c+F, where F, is the elastic energy density
of the local lattice deformation and the LC free energy den-
sity Fjc describing the chain orientation deformation is
given by

1 SN 1 R R 1 . 2
Fic= Ek“(V -m)? + Ekn(m -V X m)?+ Ek33(m - Vm)?

—Ey - (eyitV - it + et - Viin), (5)

where k; are the LC elastic constants [20], ¢; and e; are

flexoelectric coefficients [21], EH= X ':py is the local elec-
tric field induced by the piezoelectric polarization py in
monolayers, and ¥ is the dielectric tensor of the LC. On the
other hand, the elastic energy density of the local lattice de-
formation F,(m) is generally written as

1
F,= > CikiSijSki> (6)

where c;j; and s;; are the elastic tensor and the strain tensor,
respectively (see detained definitions in Refs. [18,22]), and
can be rewritten in compact form F,=(1/2)c,,s,s, (u,v=1,
2,...,6) with abbreviation conventions (i,j)—u as 11
—1,22—2,33-3,23-4, 315, and 12—6 for ¢
uvsSij— 8, if i=j, and 2s;;—s,, if i # j. Hence, the total
free energy dens1ty Fis

—C

1 - 1 I
F=FLC+F6=Ek11(V ~m)2+5k22(m-V Xm)2

L. =, 2 ES I
+ 5k33(m -Vm)* = Ey - (e;mV - m + ey - Vi)

1
+ 2wy (7)

In order to theoretically understand the observations of
Fuller’s group and Schwartz’s group, we will discuss mono-
layers of amphiphilic molecules in hexatic phases in detail.
As mentioned above, the tilt Cq axis of the hexatic lattice is
viewed as LC director m. Fy¢ is thereby considered to be
zero because of the uniform director _pattern in monolayers
observed in the both groups, i.e., V. ri= 0, V X sii= 0 and
Vii=0. That means F =F, and only the hexagonal lattice
deformation energy will be calculated in what follows. Con-
sidering the symmetry of the hexatic phase, untilt monolayer
[Fig. 1(a), left side] or tiltmonolayer [Fig. 1(a), right side], it
can be concluded that the nonvanishing components of c;;y,
of the elastic constant matrix are (see the elastic constant
matrix of hexagonal crystal, Table 9 in Ref. [22])

C13=Co3, (8)

C11=C, C44=Css,

C33,  Cgps and Ci3- (9)

Thus, for the hexatic phases in monolayer, we have [18]
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Fo=cyi(s7+$9)/2 + €108182 + €13(5153 + 5283) + Cag(s3 +53)/2
+ CoeSel2 + C3355/2. (10)

Following the comment by Sirota [23] that in the con-
densed phases, a tilting completely determines the mono-
layer distortion. (i) A stretching of the projected lattice cell
along the tilting direction is induced with a ratio of 1/cos 6
[2,3]. (ii) A compression along surface normal happens with
a ratio of cos 6. (iii) The deformed hexagonal lattice is also
completely determined by 6 and ¢ (see Fig. 1). In other
words, the tilting-caused strain, then, the elastic energy as
well as the stress are obtained by tilting geometry. Accord-
ingly, the effect of lattice deformation due to tilting of direc-
tor m is described by the elastic energy F,, but not by
the Fjc induced by the deformed director pattern. The
strain  components s;;(i,j=1, 2, and 3), can be derived
as [18] sy,=5tan’0 cos’p,s1,=(13/2)tan’ 4 sin ¢ cos ¢, s,
=3tan’#sin’eh,s13=5tan>0 cos ¢, s,3=ytan @sin ¢, and s33
=0. Submitting these strain components and Eqs. (8) and (9)
to Eq. (10), we have exactly

1
F,= g(K + ptan® 0+ dcyytan’

+1<L2666)sin22¢tan40, (11)
4 4

where K=(c;;+c¢2)/2 and u=(c;;—c,)/2 are the plane (hy-
drostatic) compression modulus and shear modulus, respec-
tively [24], @ is the tilt angle to the surface normal 7, and ¢
is the azimuth from the NN direction defined at a molecular
system (xM,yM zM) with XM|INN direction when the tilt has
not happened (Fig. 1). It should be noted that the coefficient
—u+2cq6 appearing in the second term of Eq. (11) becomes
zero for the hexatic lattice with a tilt angle =0, whereas
nonzero for the deformed hexatic lattice with a tilt angle 6
#0 [see Fig. 1(a) and Table 9 in Ref. [22]].

In fact, in addition to Eq. (11), we could derive the stress
tensor o; in the laboratory system (x,y,z) by differentiating
F, with s;; using the relation of tensor transformation of o;;
=Rl~kRj,ojle/, where R,;=cos B,R;=—R,;=sin B,R,,
=cos 3,R33=1, others are zero, 3 is the angle between x and
xM, and the stress tensor ¢ is defined in the molecular sys-
tem (x,yM,z") [18]. The in-(x,y) plane elements of o;; are
found to be the functions of €, ¢, and B as

1
Oln= E[Ki wu(cos 2¢p cos 28 + 2 sin 2¢ cos 23) Jtan>,

(12)

u[2 sin 2¢ cos 23— cos 2¢ sin 2B]tan> 6.

(13)

Obviously, the expression shows o;; relating the molecular
tilt described by 6 and ¢. Here, ¢— ="y is the tilt-azimuthal
angle of m in laboratory frame (see Fig. 1) and, generally
speaking, ¢ and B must be the functions of (x,y). However,

N | =

O12=021=
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according to the experimental finding, the 2D domains such
as the “shear bands” in [10,11] and the “fished-shaped do-
main” in Ref. [13] are uniform of orientation, we consider
the case of ¢ and B being spatially uniform. In other words,

the elastic force associated with Frank free energy, V-7, is
then not concerned for the moment as mentioned above. On
the other hand, the force induced by F,,dF,/dm, represents
only one of elastic effect. To derive an apparent formula for

dF,/dm, the following geometric relations: sin*2¢
— A <in—d g M2, M2 M _ : M
=4 sin~*0my “my -, m| =mcos S—mysin B, and ny
=mysin B+mycos B are  invoked, where (m],m})

=(cos ¢ sin @,sin pcos M  and  (m,,m,)=(cos ysin 6,
sin ysin 6) are the in-plane components of m at molecular
and laboratory systems, respectively [Fig. 1(b)]. Using these
relations and 9F/dm,;=(JF/ am;”)(&mjw/ dm;) we have from

Eq. (11) the in-plane elastic force of director per unit area
oF -—p+2
—= <u>cos_1 6 tan’@sin 2¢ sin(p + B),
r?ml 4

(14)

ﬂ_(—#ﬂchsﬁ

)cos‘1 6 tan> 6 sin 2¢p cos(p+ B).
&mz 4

(15)

If the flow field v is given, substituting Egs. (14) and (15)
into Egs. (1)—(3), then it yields the equations to determine
¢,B (i.e., y=¢—p). Thus, the behaviors of monolayers of
amphiphilic molecules in hexagonal phase under flow can be
calculated theoretically.

III. PURE EXTENSION FLOW AND SIMPLE SHEAR
FLOW

First, we consider the case of pure extension [Fig. 2(a)].
The point initially at (xy,y,) moves according to (x,y)
=(xgexp(€ér),yoexp(—€r)) as assumed in Ref. [10], where ex-
tension rate € is constant. Thus, the pure extension is steady
fluid field v(x,y)=(dx/dt,dy/dt)=(éx,—é€y), and the nonva-
nishing components of d;; and w;; are only d;=-d,,=¢. This
simplifies Eq. (4) as

- 4. d
M=~ i = (= sin ysin 6,cos sin 0,0)d—;y. (16)

Substituting Egs. (14)—(16) into Eq. (1) with d;;=—d,,=¢€
(i.e., =0 and Vm=0 in the present case) and diminishing
the Lagrange multiplier », we have the tilt equation

—u+2c
(%)tanza cos2@sin 2¢ cos 2¢p= N 1)

—N\,€sin 27y, (17)

where y(t)=dy/dt and 7y is the tilt angle to the x axis. Eq.
(17) describes correct equilibrium condition of orientation.
When y=¢é=0, the equilibrium achieves at sin 2¢=0 in a
manner as predicted from the minimum of F,(¢) of Eq. (11),
we have thereby ¢=0 for NN tilt and ¢=7/2 for NNN tilt
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[4]. This is quite true in physics. Once tilt happens, the dis-
torted hexatic lattice has only rectangle symmetry and it re-
mains even the monolayer enters the S phase (#=0). The
x-ray experiment by Dutta and co-workers [2,3] confirmed
that the head groups remain arranged on the distorted hex-
agonal lattice at S phase. Given these, to discuss the exten-
sion flow-induced orientation, we can thereby accept the as-
sumption of ¢ locking at NN or NNN direction [13], i.e.,
flow-induced orientation is described by \;3(f)—\,€ésin 2y
=0, and its solution can be determined as

(1) = arctan[exp(2 €&\,/\ | )tan ], (18)

with y,=v(0). Equation (18) exactly predicts y()=0 for €
>0 and @/2>7y,>-m/2,m for €>0 and 37/2>v,
> /2, /2 for é<0 and 7> y,>0, and —7/2 for é<0 and
T<1vyy<2m because N,/A\;<0 is generally held in LC
[14,20]. Comparing with the solution of pure extension (x,y)
and its corresponding flow picture shown in Fig. 2(a) we can
further conclude that the pure-extension flow always reori-
ents the tilt to along extension direction regardless of its
initial 7. That is what reported by Fuller’s group in Ref.
[11].

On the other hand, the simple shear flow along the x axis
is described as (x,y)=(xy+étyg,yo) and the corresponding
velocity is shown as v=(€y,,0)=(éy,0). Therefore, the non-
vanishing elements of d;; and w;; are only d,,=d,;=€/2 and
wi,=—wy;=€/2. Using these and with the same derivation
process as the derivation of Eq. (17), we have the tilt equa-
tion for the simple shear flow. Under the same assumption of
¢-locking at NN or NNN direction the simple shear-induced
orientation equation is expressed as

. | LN
)\1|:’y(l‘)+56:| +5)\zecos 2y=0. (19)

From this equation one can find its asymptotic solution. (i) If
€>0,y()=v" for —y' < y(0)<m—7" and y()=7+7y" for
T—y < y0)<2m—7". (ii) If é€<0,y(®)=—7y" for -7+
<y0)<y" and y(e)=m—7v" for ¥ <y(0)<m+7v". Here,
¥ =arctan(\ w3/ uy) and 0< " < /4 because u, < uz <0 is
generally held [14], and the Parodi’s relation of u,+ u;
=pg— s is invoked as in LC theory [20]. This result seems
remnant of the Poiseulle flow-induced LC alignment because
the same asymptotic angle y" is revealed in LC [25]. Al-
though Schwartz’s group argued that the orientation mecha-
nism in monolayers is different in LC, the solution of Eq.
(19) is quite consistent with their observation [13]. In the
case of the solution of €>0 the solution of Eq. (19) for a
given initial value of $(0)=7v, with —y"<y,<7y" can be
written as

tan 7, + tan v tanh(gér)

(t) = arctan

. : ] (20)
1 + (tan yy/tan y )tanh(qér)

where ¢=\uus/ (3 — ). Figure 3(a) shows numerical ex-
amples of Y =20° for tan y,/tan y'=+0.5. The revealed
steep change of flow-orientation is quite similar to the obser-
vation on the steep change in the reflectivity of monolayers
by Schwartz’s group (Fig. 4 in Ref. [13]). Furthermore, if
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FIG. 3. (a) The steep change of simple-shear-induced orientation
calculated from Eq. (20) with y"=20° and tan y,/tan y'=0.5
[(curve (a)] and —0.5 [(curve (b)]. (b) Schematic illustration of
simple-shear-induced molecular precession. The fish-shaped do-
main clockwise skews as the effect of the pure rotation component
[Fig. 1(b)]. The arrow in the domain indicates the asymptotic tilt
orientation according to the theory, it rotates clockwise but with a
steep jump style of 180" at some location.

g=1 (which is not so far away from the measured values for
LC viscosity coefficients [14,20]), we find from Fig. 3(a) the
strain € (i.e., &) to induce the steep change of orientation is
about 4 that agrees nicely the value e=4~5 measured by
grey level observation (Fig. 3 in Ref. [13]). Such a beautiful
quantitative evidence shows the validity of the present
theory. Moreover, from above asymptotic solution, one can
find a small change of y(0) may induce a large reorientation
change of y with magnitude of , e.g., if €>0 and ¥(0)
changes from initial y* to y'—¢& with §=19" then y must
change from 9" to 7+7". This is the physical feature of
molecular precession found by Schwartz’s group (Fig. 2 in
Ref. [13]): Due to the shear-induced skew of the domain
v(0) can have such change as shown in Fig. 3(b).

In what follows we turn to discuss the domain formation
affected by flow. Fuller’s group revealed L, phase domain
deformed nearly reversible [9-11]. This can be understood
by the expression of stress tensor given by Egs. (12) and
(13). If surrounding domains are assumed isotropic, then o;
at the boundary of the L, domain can be seen as the aniso-
tropic line tension for the discussed domain. Since oj; is
proportional to tan?#, thus domains of L, phase possess more
significant line tension than L) phase. Therefore, the bound-
ary of L, domain is stronger than L phase. That is why the
domains in the L) phase deformed by flow do not relax back
to their original shapes and are easy fragmenting as reported
in Refs. [9-11]. Viewing o;; as line tension can be used to
discuss the domain shape in L) phase. For pure extension
flow, the orientation equation (18) predicts that orientation
must be along extension axis, i.e., y=0. Substituting it (to-
gether with the ¢ locking in /2 for NNN orientation) into
Eq. (13) yields oj,=0,;=0. Thus we have from Eq. (12) the
line tension for the domain boundary with normal 7,
=(cos ®,sin ®)
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(T(CI)) = 3:ﬁdﬁd =0 ]COSZ(I) + (Tzzsinzq) =dagy+ a,Cos 2(1),
(21)

where a,=(K/2)tan?6 and a,=(-u/2)tan’é. To find the op-
timal domain shape, which is a closed planar curve described
by ®(x,y), we must minimize the energy F,,
=$a(P(x,y))dl+\ [ dxdy with respect to P(x,y). Here the
first line integral is along the curve and N\ is the Lagrange
multiplier to keep the domain area constant. The variation
problem has been solved with a geometric method, the clas-
sic Wulff construction [26], and with an analytic method for
2D case [27]. For the latter, the minimum distance R(d)
between the tangent line through point (x,y) of the boundary
and the origin simply satisfies R(®)=c(®)/\. This gives a
natural role for an existed domain: o(®) must be positive. In
our case of Eq. (21) we must require K> u>0. However,
when the external flow is applied, the stress tensor o;; have
to be revised by adding the hydrodynamic (viscous) stress #;;
as treated in LC EL theory [14]. In details, the viscous stress
is expressed by

1= iy i + pomM ; + pam M+ pad;;
+ psmmydy; + pem mydy. (22)

With the same geometry of asymptotic orientation for L,
phase as derivation of a;;, we have t{i at pure extension as
t,=15,=0 and (], +13,)/2= & puysin® 0+ 3 (us+ p)sin®6] and
(t{l—t£2)/2=é[p,4+%(,u,5+,u,6)sin20]. In known data of u,_g
of LC [14,20], u4>0 and is the largest one in magnitude.
Moreover, 6 is generally smaller than 20° in L} phase [4].
Therefore, the influence of ti'j on o;; is mainly by the w, term.
With this approximation, the coefficient a, in Eq. (21) should
be revised as a,=—(u/2)tan’>0+ €éu,, and the request of K
> >0 becomes K> |—u+2u4écot>6]. In other words, when
|/ >|€"| with K=|—u+2us€ cot?6|, old domains will be bro-
ken and the only residual shapes of domains, according to
Wulff construction and Eq. (21), must be enveloped by
straight lines with normal of ®=+45°, where the é-induced
line tension change has no effect due to cos 2d=0. This is
nothing but the “shear bands” found by Fuller’s group
[9-11].

IV. DISCUSSION AND CONCLUSION

In summary, with above lengthy calculation we have
shown that the mysterious and rich phenomena on the flow-
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induced tilt orientation of amphiphile monolayers observed
by several laboratories in the past decade can be understood
by incorporation of hexatic elasticity into LC EL theory. It
evidently shows that the theoretical concept of soft matter
based on LC by de Gennes, Helfrich, Nelson, and many oth-
ers is capable of dealing with such a complex system. In
other words, the present work shows impact in relation to
previous theoretical and experimental work. The present
model also revealed that the NN (or NNN) locking orienta-
tion in microscopic molecular lattice plays important role.
The locking can be maintained even the monolayer is subject
to a constant shear rate (see the case of pure extension flow
in Sec. III) that is due to the monolayer being in LC state. In
LC, the molecules can move freely as in a usual liquid but
their orientation, the average direction of their long axes can
keep during the molecular flow. Therefore, the strain of LC
at extension or shear flow does not increase linearly as a
function of time as in a solid with the same shear deforma-
tion. In physics, the tilt reorientation is described in two
folds: Flow induces the reorientation of the tilt of the alkyl
chain’s tails and it subsequently causes the head groups re-
arranged on the distorted, hexagonal lattice to fulfill the NN
(or NNN) tilt locking. In our theoretical calculation [18], the
strains induced by the two fold reorientation has been taken
account of the mentioned properties of LC and the obtained
strain s;;, is only function of tilting direction and independent
of their flow status. Of course the present theory is still based
on a phenomenal treatment such as Frank elastic theory and
EL dynamic theory of LC, by taking account of the LC sym-
metry only. One may feel that a molecular theory of flow-
induced molecular orientation has to consider molecular in-
teraction potential that is periodic in the molecular distance
such that a distance deformation that moves one lattice con-
stant creates zero force. In a recent study on the toughness of
biocomposites by de Gennes and co-workers [28] has pro-
moted the similar issue. The treatment may implement the
coupling of the hexatic order to the tilt order. With such a
molecular-level inspection one can investigate how the ori-
entation acts back on the flow as have been carried out in
hexatic and smectic LC by Nelson and Halperin [5]. In fact,
as has been mentioned in Sec. I, we have invoked a Lenard-
Jones potential to discuss the tilting phase transition in
monolayers of C;,—C,, acids [8]. One would expect hexatic
elastic energy and the EL-dynamic theory to be capable of
treating the coupling of the hexatic order to the tilt order as
well to understand how the orientation acts back on the flow.
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