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The revised Enskog approximation for a fluid of hard spheres which lose energy upon collision is discussed
for the case that the energy is lost from the normal component of the velocity at collision but is otherwise
arbitrary. Granular fluids with a velocity-dependent coefficient of restitution are an important special case
covered by this model. A normal solution to the Enskog equation is developed using the Chapman-Enskog
expansion. The lowest order solution describes the general homogeneous cooling state and a generating func-
tion formalism is introduced for the determination of the distribution function. The first order solution, evalu-
ated in the lowest Sonine approximation, provides estimates for the transport coefficients for the Navier-Stokes
hydrodynamic description. All calculations are performed in an arbitrary number of dimensions.
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I. INTRODUCTION

Hydrodynamics is important because it provides a con-
nection between microscopic models of particle interactions
and experimentally observable behavior. Its experimental
significance is due to the fact that hydrodynamics describes
the evolution of fundamental quantities, including local
mass, momentum and energy density which are important in
a variety of applications from microfluids to cosmology. At a
microscopic level, these quantities are ”slow” variables
which evolve on a time scale which is well separated from
faster, microscopic variables so that the effect of the latter
can be adequately encapsulated in the various transport co-
efficients appearing in the hydrodynamic description. Re-
cently, much interest has centered on the hydrodynamics of
granular media which are characterized by a loss of energy
during collisions between the grains �1–3�. The simplest mi-
croscopic model of granular materials consists of hard-
sphere grains which lose a fixed fraction � of the part of the
kinetic energy associated with the longitudinal, or normal,
component of the velocities at the moment of collision while
the transverse components of the velocities of the colliding
particles are unchanged. The transport properties of this
model system, which will be referred to as a ”simple granu-
lar gas” below, have been worked out in some detail for the
D-dimensional low-density fluid �4,5�, the dense single-
component �6� and low-density binary �7� fluids. However,
there is interest in more complex models in which the frac-
tional energy loss � is itself a function of the normal kinetic
energy as such models are apparently more realistic �8–10�.
Furthermore, there are a wealth of phenomena, such as en-
dothermic and exothermic chemical reactions, in which ki-
netic energy gets converted to some other form and thus
couples, e.g., chemical reactions and hydrodynamics. A good
example is sonoluminescence �11,12� where classical hydro-
dynamics is often used, with some success �13�, to try to
understand the complex processes taking place under ex-

treme conditions. Recently, the possible scattering laws for
dissipative collisions consistent with conservation of mo-
mentum and angular momentum has been discussed and for-
mally exact expressions for the balance equations of mass,
momentum, energy and species have been formulated and
the Enskog approximation discussed �14�. The purpose of the
present work is to show that the Chapman-Enskog expansion
�15� can be applied to that kinetic theory for the case of a
one-component fluid in D dimensions with an arbitrary
model for the normal energy loss and reduced to a relatively
simple form thereby providing convenient expressions for
the transport coefficients covering this entire class of models.
These results will therefore include as special cases the
known results for elastic hard spheres in two and three di-
mensions �16,15� and for the simple granular gas in three
dimensions �6� as well as such interesting models as those
with velocity-dependent coefficient of restitution �8–10� for
which the Enskog equation has not previously been solved.

The emphasis on instantaneous interactions is due to their
unique properties. Instantaneous hard-core interactions can
be described in the Enskog approximation which is a finite
density approximation known to give reasonable results for
moderately dense fluids �15� and which can even describe
hard-core solids �17�. For most other interactions, only the
Boltzmann description, a low density approximation, is
available. The fact that the Enskog kinetic model is appli-
cable to solids means that there is scope for application to
dense granular systems, which might involve jamming, as
well as to extreme conditions such as occur during sonolu-
minescence. Thus, despite its artificial nature, the hard-core
model is an important tool in understanding the real world.

Although the work presented below is intended to be ap-
plicable to a variety of phyically interesting systems, it is
certainly true that the most important example of nonconser-
vative, hard-core collision models is as a model of granular
fluids. In this case, there has long been a debate as to the
applicability of Enskog-type kinetic theory and the hydrody-
namics that results from it �see, e.g., Ref. �18��. Support for
these concerns comes from studies, e.g., the work of Soto
and Mareschal �19� and Pagonabarraga et al. �20�, showing
the existence of velocity correlations of a type explicitly ig-*Electronic address: jlutsko@ulb.ac.be
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nored in the derivation of the Enskog equation �21�. How-
ever, this must be balanced by the fact that these correlations
are not particular to granular systems, but are a generic fea-
ture of non-equilibrium fluids in general �22� and in all cases
�granular fluids, sheared elastic fluids, etc.� are expected to
increase with importance with increasing density and in-
creasing distance from equilibrium. Nevertheless, the success
of Enskog-level kinetic theory, and of the hydrodynamics
derived from it, in describing the properties of low and mod-
erately dense nonequilibrium fluids has long been recog-
nized. For example, good agreement has been demonstrated
between the predictions of Enskog theory and the results of
computer simulation for the shear-rate dependent shear vis-
cosity and viscoelastic functions of both sheared elastic flu-
ids �23,24� and granular fluids �including polydisperse
granular fluids� �25�. Similar comparisons of time-dependent
phenomena also support this conclusion �26� and the techni-
cal question of the existence of hydrodynamics modes has
been addressed for low-density systems �27�. Further evi-
dence for the applicability of the Enskog description comes
from the recent experimental investigations of Yang et al.
�28� and Huan et al. �29� which show that observed profiles
of density and temperature in vibrated granular systems are
well described by hydrodynamics derived from Enskog
theory. All of this, together with older studies of the same
questions concerning nonequilibrium elastic hard-sphere sys-
tems, see, e.g., Refs. �30,31�, lend support to they belief that
Enskog-level kinetic theory and the hydrodynamics derived
from it provide a useful description of fluidized nonconser-
vative hard-core systems up to moderate densities.

In Sec. II of this paper, the possible scattering laws, exact
balance laws and consequent Enskog equations are reviewed.
The general form of the Chapman-Enskog expansion is also
discussed. The zeroth-order Chapman-Enskog result is just
the exact description of a spatially homogeneous system and
is discussed in Sec. III. For an equilibrium system, this is the
Maxwell distribution but when there is energy loss, the fluid
cools and the resulting homogeneous but nonstationary state
is known as the homogeneous cooling state �HCS�. Section
III formulates the description of the HCS in terms of a gen-
erating function formalism and gives all information needed
to calculate the simplest corrections to the Maxwell distribu-
tion for arbitrary energy-loss models. In Sec. IV, the
Chapman-Enskog expansion is extended to first order which
is sufficient to get the Navier-Stokes transport properties.
The general formalism is illustrated by application to the
simple granular gas in D dimensions. The paper concludes
with a discussion of the approximations made and compari-
son to more complete calculations.

II. THEORETICAL BACKGROUND

A. Kinetic theory with energy loss

We consider a collection of particles having mass m and
hard sphere diameter � which interact via instantaneous col-
lisions. The position and velocity of the ith particle will be
denoted by q� i and v� i, respectively, and the combined phase
variable �q� i ,v� i� will sometimes be denoted as xi. The only
scattering law allowing for energy loss that is still consistent

with conservation of total momentum and angular momen-
tum �14� is that two particles having relative velocity v�12
=v�1−v�2 prior to collision must have relative velocity

v�12� = v�12 − q̂12�v�12 · q̂12 + sgn�v�12 · q̂12���v�12 · q̂12�2 −
4

m
�E�

�1�

after the collision, where q̂12 is a unit vector pointing from
the center of the first atom to the center of the second atom.
The energy loss is �E which we allow in general to be a
function of the normal relative velocity

�E = ��v�12 · q̂� �2�

and the center of mass velocity V� 12=v�1+v�2 is unchanged. It
is easy to confirm that the change of energy upon collision is

1
2mv1�

2 + 1
2mv2�

2 = 1
2mv1

2 + 1
2mv2

2 − �E . �3�

The simple granular fluid model is based on the energy loss
function

��x� = �1 − �2�
m

4
x2, �4�

where the constant � is the coefficient of restitution. More
complex models involve a velocity dependent � while other
choices of energy loss function, involving, e.g., a thresholds
for energy loss, would be appropriate for chemical reactions.
In the following, it is convenient to introduce the momentum

transfer operator b̂ defined for any function of the velocities
g�v�1 ,v�2 ; t� by

b̂g�v�1,v�2;t� = g�v�1�,v�2�;t� . �5�

In some applications, the energy loss may not occur for all
collisions but rather might be a random occurrence. We will
therefore also consider throughout a somewhat generalized
model in which for any particular collision, the energy loss
function is randomly chosen from a set of possible functions
��a�x�	 with probability Ka�q̂12·v�12� which may itself, as in-
dicated by the notation, depend on the dynamic variable
q̂12·v�12. A simple case would be that a fixed fraction K1=1
− p of collisions are elastic with energy loss function �1�x�
=0 while the remainder occur with probability K2= p are
inelastic with energy loss �2�x��0. In any case, it is as-
sumed that 
aKa�x�=1 for all x. The momentum transfer

operator for the type a collisions will be written as b̂a.
The kinetic theory, Liouville equation and the Enskog ap-

proximation, for arbitrary energy loss function has been dis-
cussed in Ref. �14�. The one-body distribution function
f�q�1 ,v�1 ; t�, giving the probability to find a particle at position
q�1 with velocity v�1 at time t, satisfies, in the Enskog approxi-
mation, the kinetic equation

� �

�t
+ v�1 ·

�

�q�1
� f�x1;t� = J�f , f� , �6�

where the shorthand notation x1= �q�1 ,v�1� is used. The colli-
sion operator is
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J�f , f� = −� dx2T̄−�12���q�1,q�2;�n��f�q�1,v�1;t�f�q�2,v�2;t� ,

where ��q�1 ,q�2 ; �n�� is the local equilibrium pair distribution
function which is in general a functional of the local density.

The binary collision operator T̄−�12� is

T̄−�12� = �

a

Ja�v�1,v�2��b̂a�−1Ka�q̂12 · v�12� − 1�
�	�− v�12 · q�12���q12 − ��v�12 · q̂12, �7�

where 	�x� is the step function, �b̂a�−1 is the inverse of the
momentum exchange operator and Ja is the Jacobian of the
inverse collision

Ja�v�1,v�2� = � ��b̂av�1, b̂av�2�
��v�1,v�2�

�−1

. �8�

It will not be necessary to work much with this complicated
operator as most calculations can make use of its simpler
adjoint T+�12� defined for arbitrary functions of the phase
variables A�x1 ,x2� and B�x1 ,x2� by

� dx1dx2A�x1,x2�T̄−�12�B�x1,x2�

= −� dx1dx2B�x1,x2�T+�12�A�x1,x2� �9�

so that

T+�12� = 	�− v�12 · q�12���q12 − ���− v�12 · q̂12�

��

a

Ka�q̂12 · v�12�b̂a − 1� . �10�

B. Hydrodynamic fields and balance equations

The hydrodynamic fields are the local mass density

�r� , t�, the local velocity field u��r� , t�, and the local tempera-
ture field T�r� , t�. They are defined in terms of the distribution
by


�r�,t� = mn�r�,t� = m� dv�1f�r�,v�1;t� ,


�r�,t�u��r�,t� = m� dv�1v�1f�r�,v�1;t� ,

D

2
n�r�,t�kBT�r�,t� =

1

2
m� dv�1V1

2f�r�,v�1;t� , �11�

where n�r� , t� is the local number density and D is the number

of dimensions. In the third equation V� 1=v�1−u��r� , t�. Their
time evolution follows from that of the distribution and is
given by �14�

�

�t
n + �� · �u�n� = 0,

�

�t

u� + �� · �
u�u�� + �� · PJ = 0,

� �

�t
+ u� · �� �T +

2

DnkB
�PJ:�� u� + �� · q�� = � . �12�

The pressure tensor is the sum of two contributions PJ= PJK

+ PJC with the kinetic part being

PJK�r�,t� = m� dv�1f l�r�,v�1,t�V� 1V� 1, �13�

and the collisional contribution being

PJC�r�,t� = −
m

4V
�


a
� dx1dx2q̂12q̂12�q̂12 · v�12���q12 − ��	�− q̂12v�12���q�1,q�2;�n��f�x1;t�f�x2;t�Ka�q̂12 · v�12�

��
0

1

dy�„r� − yq�1 − �1 − y�q�2…�− v�12 · q̂12 − sgn�v�12 · q̂12���v�12 · q̂12�2 −
4

m
�a�q̂12 · v�12�� . �14�

Similarly, the heat flux has a kinetic contribution

q�K�r�,t� = 1
2m� dv�1f�r�,v�1,t�V� 1V1

2 �15�

and a collisional contribution
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q�C�r�,t� = −
m

4V
�


a
� dx1dx2q̂12�q̂12 · v�12���q12 − ��	�− q̂12 · v�12���q�1,q�2;�n��f�x1;t�f�x2;t�Ka�q̂12 · v�12�

��
0

1

dx�„r� − xq�1 − �1 − x�q�2…
1

2
�V� 1 + V� 2� · q̂12�− v�12 · q̂12 − sgn�v�12 · q̂12���v�12 · q̂12�2 −

4

m
�a�q̂12 · v�12�� . �16�

Finally, because of the possibility of energy loss, the equa-
tion for the temperature includes a source term given by

��r�,t� =
1

2V



a
� dx1dx2�q̂12 · v�12���q12 − ��	�− q̂12 · v�12�

� Ka�q̂12 · v�12��a�q̂12 · v�12���q�1,q�2;�n��

�f�x1;t�f�x2;t�Ka�x12���r� − q�1� . �17�

All of these expressions are exact, given the Enskog approxi-
mation, and show that the hydrodynamics of the system is
completely specified once the one-body distribution is
known.

C. Chapman-Enskog expansion

The Chapman-Enskog expansion is basically a gradient
expansion of the kinetic equation assuming a particular form
for the solution. Specifically, one attempts to construct a so-
called normal solution in which all space and time depen-
dence occurs through the hydrodynamic fields

f�r�,v� ;t� = f�v� 
r�,�t� , �18�

where the compact notation for the set of hydrodynamic
fields �t�r��= �n�r� , t� ,T�r� , t� ,u��r� , t�	 has been introduced and
the notation indicates that the distribution is a functional of
the hydrodynamic fields at time t. This means that time de-
rivatives will be evaluated as

�

�t
f�r�,v� ;t� = 


i
� dr��

��t,i�r���
�t

�

��t,i�r���
f�r�,v� ;t� . �19�

To order the terms in the gradient expansion, we introduce a

uniformity parameter 
 and replace �� with 
�� and order
terms in 
. Since the space and time derivatives are related
by the balance equations, we also introduce an expansion of
the time derivative � /�t=�t

�0�+
�t
�1�+¯ as well as of the dis-

tribution itself

f�q�1,v�1,t� = f0�v�1
q�1,�t� + 
f1�v�1
q�1,�t� + ¯ . �20�

Finally, in the Enskog approximation the collision operator is
nonlocal and so must also be expanded �see Appendix A� as
J�f , f�=J0�f , f�+
J1�f , f�+¯. Substituting these expansions
into the Enskog equation and equating terms order by order
in 
 gives a set of equations for the distribution, the first two
of which are

�t
�0�f0�x1;t� = J0�f0, f0� ,

��t
�1� + v�1 ·

�

�q�1
� f0�x1;t� + �t

�0�f1�x1;t�

= J0�f0, f1� + J0�f1, f0� + J1�f0, f0� . �21�

Since all time and space dependence of the distribution oc-
curs via the hydrodynamic fields, the balance equations must
also be expanded giving at zeroth order

�t
�0�n = 0,

�t
�0�nu� = 0,

�t
�0�T =

2

DnkB
��0� �22�

and at first order

�t
�1�
 + �� · �u�
� = 0,

�t
�1�
u� + �� · �
u�u�� + �� · PJ�0� = 0,

��t
�1� + u� · �� �T +

2

DnkB
�PJ�0�:�� u� + �� · q� �0�� =

2

DnkB
��1�

�23�

where, as noted, the fluxes and sources must also be ex-
panded accordingly �see Appendix B�. The logic of the nor-
mal solution is that these balance equations define the mean-
ing of the time derivatives so that the time derivatives in Eq.
�21� are evaluated using Eq. �23� and Eq. �19�. Together with
the expressions for the fluxes, Eqs. �13�–�17� suitably ex-
panded, this gives a closed set of integrodifferential equa-
tions for the distribution function.

III. CHAPMAN-ENSKOG AT ZEROTH ORDER:
THE HOMOGENEOUS COOLING STATE

A. Expansion of the zeroth-order distribution

At zeroth order in the gradient expansion, the distribution
f0�x1 ; t� must be a local function of the hydrodynamic fields
so Eqs. �21� and �22� give

� 2

DnkB
��0�� �

�T
f0�x1;t� = J0�f0, f0� �24�

with
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��0��r�,t� =
1

2

a
� dv�1dv�2dq̂�q̂ · v�12�	�− q̂ · v�12�

�Ka��q̂ · v�12��a��q� ,v�12�

� �0„�;n�r��…f0�r�,v�1;t�f0�r�,v�2;t� , �25�

where �0�� ;n� is the pair distribution function for a uniform
equilibrium fluid of density n. Notice that this is not only the
zeroth order component of the Chapman-Enskog expansion,
but that it is also an exact �within the Enskog approximation�
equation for the distribution of a spatially homogeneous sys-
tem. If there is no energy loss, the solution will simply be the
Maxwell distribution. When energy is lost in collisions, and
in the absence of external forcings, the system cools and this
is commonly known as the homogeneous cooling solution
�HCS�.

To solve for the HCS, we expand the velocity dependence
about an equilibrium distribution by writing it as

f0�x1� = fM�v1;�t�

i

ci��t�Si� m

2kBT
v1

2� , �26�

where the Maxwellian distribution

fM�v1;�t� = n�−D/2�2kBT

m
�−D/2

exp�−
m

2kBT
v1

2�
and it is important to note that this depends on the exact local
fields �t�r��. The functions �Si�x�	i=0

� comprise a complete set
of polynomials which are orthogonal under a Gaussian mea-
sure so that

� dv� fM�v1;�t�Si� m

2kBT
v1

2�Si� m

2kBT
v1

2� = Ai�ij , �27�

where Ai is a normalization constant. In fact, these can be
written in terms of the Sonine, or associated Laguerre, poly-
nomials

Lk
��x� = 


m=0

k
��� + k + 1��− x�m

��� + m + 1��k − m�!m!
�28�

which satisfy

�
0

�

dxx�Lk�x�Lm
��x�exp�− x� =

��� + k + 1�
��k + 1�

�mk, �29�

so that in D dimensions

Sk�x� = Lk
�D−2�/2�x� �30�

and

Ak =
�� 1

2D + k�
�� 1

2D���k + 1�
. �31�

Substituting Eq. �26� into the differential equation, Eq. �24�,
multiplying through by Lk

�D−2�/2��m /2kBT�v1
2� and integrating

gives

� 2

DnkBT
��0���t���T

�

�T
ck��t� + k�ck��t� − ck−1��t���

= 

rs

Ik,rs��t�cr��t�cs��t� �32�

with

Ik,rs��t� = − n−1Ak
−1� dv�1d2Lk

�D−2�/2� m

2kBT
v1

2�T̄−�12�

��2kBT

m
�−D

fM�v1;�t�fM�v2;�t�

�Lr
�D−2�/2� m

2kBT
v1

2�Ls
�D−2�/2� m

2kBT
v1

2� . �33�

Notice that since ��0��n2 and Ik,rs�n, the coefficients ck
can only depend on temperature so ck��t�=ck�T�t��. Further-
more, it must be the case that c0=1 and c1=0 in order to
satisfy the definitions of the hydrodynamic fields. It is easy
to show that Irs

0 =0 so that the k=0 equation is trivial. Sup-
pressing the dependence on �t, the k=1 equation gives

−
2

DnkB
��0� = 


rs

I1,rscrcs �34�

and it may be confirmed that this is consistent with Eq. �25�.
The first nontrivial approximation is to take ck=0 for k�2
and to use the k=2 equation to get

−
2

DnkBT
��0� = I1,00 + �I1,20 + I1,02�c2,

� 2

DnkBT
��0���T

�

�T
c2 + 2c2� = I2,00 + �I2,20 + I2,02�c2,

�35�

where terms involving c2
2 on both sides of the equation are

typically neglected as they are of similar structure to the
neglected c4 terms. For a simple granular fluid, there is no
quantity with the units of energy except for the temperature,
so the coefficients of the expansion, which are dimension-
less, are temperature independent. For systems with addi-
tional energy scales, the coefficients must be determined by
solving the resultant ordinary differential equations with ap-
propriate boundary conditions. For example, if the energy
loss were bounded, then at high temperatures it should be
insignificant and one would expect limT→�ck�T�=�k0 to be
the boundary condition.

B. Generating function formalism

The calculation of the integrals which define the coeffi-
cients on the right-hand side in Eq. �32� can be formulated in
terms of a generating function. Specifically, it is shown in
Appendix C that
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Ik,rs��t� = − n*
�� 1

2D���k + 1�

�� 1
2D + k� �2kBT

m�2 �1/2 1

r!s!k!
lim
z1→0

lim
z2→0

lim
x→0

�r

�z1
r

�s

�z2
s

�k

�xk�

a

Ga��t
�a� − G0� , �36�

where n*=n�D. The generating functions are

Ga��t
�a� = −
1

2
�−1/2SD�1 − z1x�−�1/2�D� 1 − z1x

2 − x − z2 − z1 + xz1z2
�1/2�

0

�

duKa
*��u�exp� �2 − z2 − z1�x

2 − x − z2 − z1 + xz1z2

1

2
�a

*��u��
� exp�−

1 − z2x

2 − x − z2 − z1 + xz1z2
u�exp�−

1

2

�z2 − z1�x
2 − x − z2 − z1 + xz1z2

�u − �u�u − 2�a
*��u� �� �37�

and

G0 = − 1
2�−1/2SD�1 − z1x�−�D+1�/2�2 − x − z2 − z1 + xz1z2�1/2

�38�

with SD the area of the D-dimensional unit hard sphere,

SD =
2�D/2

��D/2�
�39�

which is, e.g., 4� in three dimensions and 2� for D=2. The
scaled probabilities and energy loss functions are

K*�x� = K�x� 2

m�
� ,

�*�x� = ���x� 2

m�
� . �40�

In general, K*�x� and �*�x� are functions of temperature and,
hence, time but in order to keep the resulting expressions
below from becoming too cumbersome, these arguments will
be suppressed. The utility of this generating function, which
is admittedly complex, is that the limits and derivatives
needed to evaluate Eq. �36� are easily programmed using
symbolic manipulation packages.

To complete the description of the uniform fluid, this pa-
per gives the quantities necessary to calculate the lowest or-
der correction. These are written conveniently as

Ik,rs = n*�
SD

2D�D + 2���
� kBT

m�2�1/2

Ik,rs
* ,

Ik,rs
* = Ik,rs

*E + 

a
�

0

�

Ka
*��u�Ik,rs

*I e−1/2udu , �41�

where I02,2
*E + I20,2

*E =−8�D−1� and all other elastic contribu-
tions are zero, and the inelastic kernals are

I1,00
*I = �D + 2��*��u� ,

I2,00
*I = ��*��u� + 3 − u��*��u� ,

I1,02
*I + I1,20

*I =
D + 2

16
�u2 − 6u + 3��*��u� ,

I02,2
*I + I20,2

*I = 1
16��*��u���*��u��u2 − 6u + 3� − u3 + 9u2

− �8D + 49�u + 8D + 37�

+ 16�D − 1��u − �u��u − 2�*���u� �	 . �42�

The pressure can similarly be expressed in the generating
function formalism, but here we just give for later use the
expression for the pressure �see Appendix B� including the
lowest order corrections to the Gaussian distribution

p�0�

nkBT
= 1 + n*�

SD

2D
+ nkBTn*�

SD

2D

1
�2�

�

a
�

0

�

vKa
*�− v�g„v,�a

*�− v�…

��1 +
D

16
c2�v4 − 6v2 + 3��exp�−

1

2
v2�dv ,

�43�

where the function g�v ,�� is defined as

g�v,�� = sgn�v��v2 − 2� − v . �44�

C. The simple granular fluid in D dimensions

For a simple granular fluid with constant coefficient of
restitution one has �*�v�=���v�2kBT /m�= �1−�2� 1

2v2 and
K*�x�=1 giving

G��t
�� → − �−1/2SD�1 − z1x�−�1/2�D�1 − z1x�1/2

��2 − x − z2 − z1 + xz1z2�1/2

� �− 1
2 �2 − z2 − z1�x�1 − �2�

+ 2 − 2z2x + �z2 − z1�x�1 − ���−1 �45�

and

I1,00
* = 2�D + 2��1 − �2� ,

I2,00
* = 2�1 − 2�2��1 − �2� ,

I1,02
* + I1,20

* =
3�D + 2�

8
�1 − �2� ,
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I2,02
* + I2,20

* = − 8�D − 1� + 1
8 �� − 1��30�3 + 30�2 + 24D�

+ 105� + 137 − 8D�

= 1
8 �� + 1��30�3 − 30�2 + 24D� + 105�

− 56D − 73� , �46�

so that the lowest order correction to the Gaussian is

c2 =
I2,00

− 2I1,00 − �I2,20 + I2,02�

=
16�1 − 2�2��1 − ��

24D + 9 − �41 − 8D�� + 30�2�1 − ��
. �47�

The cooling rate is

��0� = − �1 − �2�n*�
SD

2��
� kBT

m�2�1/2

nkBT�1 +
3

16
c2�

�48�

and for a simple granular fluid, g(v ,�*�−v�)=v��−1� gives

p�0� = nkBT�1 + n*�
SD

4D
�1 + ��� , �49�

so it is seen that the second order terms do not contribute.
Equations �47� and �48� agree with the results previously
given for the simple granular gas by van Noije and Ernst
�32�.

This completes the discussion of the zeroth order
Chapman-Enskog solution which is also the HCS. The sim-
plest approximation is to take the distribution to be Maxwell-
ian with the temperature obeying Eq. �22�. The usual ap-
proximation is to keep c2 while neglecting terms of order c2

2

and ck for k�2 resulting in Eq. �35� with coefficients that
depend on the energy loss model.

IV. CHAPMAN-ENSKOG AT FIRST ORDER:
THE NAVIER-STOKES EQUATIONS

The first order equation can be written as

�t
�0�f1 − L0�f1� = J1�f0, f0� − ��t

�1� + v� · �� �f0, �50�

where L0�f1�= �J0�f1 , f0�+J0�f0 , f1�� is the linearized Boltz-
mann operator. The first order balance equations are used to
eliminate the time derivative on the right-hand side. It is
convenient to divide the first order heat source into two parts

�1 = �0�f1� + �1�f0� , �51�

where the first term on the right-hand side is, as indicated, a
linear operator acting on the first order distribution and the
second is of first order in the gradients and depends solely on
the zeroth order distribution. Furthermore, since it is a scalar,
�1�f0� must be proportional to the only scalar gradient,

namely �� ·u� so that we will write �1�f0�=�1
�� u�f0��� ·u� �see

Appendix B for more details�. Then, the first order equation
becomes

�t
�0�f1 +

2

DnkBT
�0�f1��T

�

�T
f0� − L0�f1�

= J1�f0, f0� −
2

DnkBT
�1

�� u�f0���� · u���T
�

�T
f0�

− 

�



i

Bi
��V� ;�f0���i�t,� �52�

with

Bi
n = �n−1f0 +

1

nkBT

�p�0�

�n
� �

�z1
f0�

T
�V1i,

Bi
T = � 1

nkBT

�p�0�

�T
� �

�z1
f0�

T
+

�

�T
f0�V1i,

Bi
uj =

2

DnkB
�− p�0� �

�T
f0 −

mnV1
2

2T
� �

�z1
f0�

T
−

DnkB

2
f0��ij

+
m

2kBT
�V1iV1j −

1

D
V1

2�ij��−
�

�z1
f0�

T
, �53�

where the variable z= �m /2kBT�V2.
It is shown in Appendix A that J1�f0 , f0� can be written as

J1�f0, f0� = 

�,i

��i�t,��r����Ji
�0�� f0,

�

���

f0�
+

1

2
��n

� ln �

�n
Ji

�0��f0, f0�� , �54�

where the detailed form of the operator Ji
�0� is given in Ap-

pendix A. The right-hand side of Eq. �52� is therefore ex-
pressed entirely in terms of the gradients of the hydrody-
namic fields so that the first order correction to the
distribution must also be proportional to the gradients. Since

the only vector available is V� and the only tensors are the
unit tensor and the symmetric traceless tensor ViVj
− �1/D��ijV

2, the first order distribution must take the form

f1 = f0�x1��A�n��V� 1�V1i�in + A�T��V� 1�V1i�iT + A��� u��V� 1��� · u�

+� D

D − 1
A��u��V� 1��V1iV1j −

1

D
�ijV

2�
���iuj + � jui −

2

D
�ij�� · u��� . �55�

Then, both sides of the kinetic equation are expressed in
terms of the gradients of the hydrodynamic fields and since
those gradients can vary independently, their coefficients
must vanish individually giving

�I�

� �V� 1�� 2

DnkBT
�0�f0�

�

�T
f0A��� + 


�

K�
��A�����

− L0�f0A����I�

� �

= �I�

� �f0, f0� − C��V� 
f0��I�

� �V� 1� , �56�
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where greek indices range over the four values n, T, �� u, and
�u. In this equation, the capitalized index, I�, is a superindex
corresponding to a set of Cartesian indices as illustrated by
the definition

�I�

� �V� � = �Vi,Vi,1,� D

D − 1
�ViVj −

1

D
V2�ij�� . �57�

The linear functional K�
� encapsulates contributions coming

from the action of the functional derivative on the nonlocal

term �� T as well as terms coming from ��0��f1� and is given
by

K�
��A���� = A�T�f0���n

�

�n
+ ��T

�

�T
�� 2

DnkBT
�0�f0��

− ���� u
1

DnkBT
�0�f0��f0A��� u��

�

�T
f0. �58�

The source terms on the right-hand side are, after some ma-
nipulation, given by

Cn�V� 
f0� = n−1f0 +
1

nkBT

�p�0�

�n
� �

�z
f0�

T
,

CT�V� 
f0� =
1

nkBT

�p�0�

�T
� �

�z
f0�

T
+

�

�T
f0,

C�� u�V� 
f0� =
2

DnkB
��1

�� u − p�c��
�f0

�T
−

2

D
T

�cj

�T

�f0

�cj
,

C�u�V� 
f0� = −
m

2kBT
� �

�z
f0�

T
�59�

and

�i
n�f0, f0� =

1

2

� ln n2�

�n
Ji

�0��f0, f0� ,

�i
T�f0, f0� = Ji

�0�� f0,
�

�T
f0� ,

��� u�f0, f0� =
1

D



i

Ji
�0�� f0,

�

�ui
f0� ,

�ij
�u�f0, f0� =

1

4�Jj
�0�� f0,

�

�ui
f0� + Ji

�0�� f0,
�

�uj
f0�

−
2

D
�ij


l

Jl
�0�� f0,

�

�ul
f0�� . �60�

We conclude the discussion of the first order approxima-
tion with some general remarks concerning the solution of
Eqs. �56�–�60�. First, the hydrodynamic fields are defined by
Eq. �11� which can be written as

�t,i�r�� =� �̂i�V� �f�r�,V� ;t�dV� �61�

with the array of velocity moments �̂�V� �= (1, �m /2�V2 ,V� ).
However, from the definition Eq. �26�, it is clear that the
zeroth order distribution satisfies

�t,i�r�� =� �̂i�V� �f0�r�,V� ;t�dV� �62�

so that it must be the case that all higher order contributions
to the distribution give

0 =� �̂i�V� �f j�r�,V� ;t�dV� �63�

for all i and j. Since the gradients of the hydrodynamic fields
are arbitrary, this means that in the case of the first order
distribution, the coefficients of the gradients must be or-
thogonal to the first three velocity moments under the mea-

sure f0�V� � or

0 =� �̂i�V� �A����V� �f0�r�,V� ;t�dV� . �64�

Second, it is clear that Eq. �56� is a linear equation in the

coefficients A����V� � so that the conditions for the existence of
a solution follows the usual theory of linear operators. In

particular, defining a Hilbert space with measure f0�V� � the
Fredholm alternative, which states that for linear operator L
and source term B, the equation LV=B has a solution if and
only if B is orthogonal to the null space of L. We expect that

�̂�V� � is in the null space of the operator defined by the left-
hand side of Eq. �56�. In fact, it is clear that multiplying by

�̂i�V� 1� and integrating over velocities gives, on the left-hand
side,

− ���� u
1

DnkBT
�0�f0A��� u��

�

�T
� dV� 1�̂i�V� ��I�

� �V� 1�f0

−� dV� 1�̂i�V� 1�L0�f0A����I�

� � . �65�

Now, the L0 term vanishes for �̂i=1 and V� due to the con-
servation of particle number and total momentum, respec-

tively. For the last choice, �̂i= �m /2�V2, it is only nonzero for

�=�� u due to rotational symmetry �for other choices of �,
�I�

� is a vector or traceless tensor�. Thus the only nonvanish-

ing element of this system of equations is that for �=�� u and

�̂i= �m /2�V2 which becomes

−
1

2T
�0�f0A��� u�� −� dV� 1

m

2
V2L0�f0A��� u�� �66�

and which is seen to vanish from the definition of �0�g�, Eq.

�B23� and L0�g�. Thus, �̂ is indeed in the null space of the
linear operator and a necessary condition for the existence of

a solution is that the right-hand side is orthogonal to �̂ as
well. That this is indeed the case is easily verified.
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A. Approximate solution of the integral equations

The integral equations summarized by Eqs. �56�–�60� will
be solved by expanding the unknown functions A��� in asso-
ciated Laguerre polynomials as

A����V� � = 

s

as
���Ls

���D−2/2��+��	� m

2kBT
V2� , �67�

where the coefficients are in general functions of the hydro-
dynamic fields, as

���=as
�����t� although, for clarity, this de-

pendence will be suppressed below. It is interesting to note
that for a simple granular gas, Garzo and Dufty �6� wrote the
first order distribution as in Eq. �55� but with f0 replaced by
the Maxwellian fM�v1 ;�t�. The use of f0 here is motivated by
the fact that the source term in the first order equations, Eq.
�56�, is proportional to f0 so that it seems appropriate to use
this in the definition of the first order correction but this is
not necessary. Of course, if the various expansions are con-
vergent, then they must be equivalent and one clearly has
that

f0�V� �A����V� � = f0�V� �

s

as
���Ls

��D−2�/2+���� m

2kBT
V2�

= fM�V;�t�

s

ās
���Ls

��D−2�/2+���� m

2kBT
V2�

�68�

for coefficients ās
��� which are linear combinations of the as

���

and in particular, if as0

��� is the first nonvanishing coefficient

in the sum, then as0

���= ās0

���. This seems to suggest that the
ordering of the polynomial expansion of f0, given in Eq. �26�
and that of the functions A��� introduced here are not inde-
pendent since terms of order c2 in f0 are compensated for by
terms of order as0+2

��� in Eq. �68�. If we think of these expan-

sions of f0�V� � in Eq. �26� as being perturbative expansions in
a fictitous parameter 
 so that cn�
n then this seems to im-
ply that we should consider the terms in Eq. �67� above to be
ordered by the same parameter so that as

����
s+s� for some
constant s�. Regardless of the actual value of s�, this implies
that terms of order as

���c2 are of higher order in 
 than are
terms of order as

��� and should be treated accordingly in the
perturbative expansion. In particular, at lowest order in 
,
terms of order as0

���c2 should therefore be neglected. One con-
sequence of this is that the exact property alluded to above,
namely that as0

���= ās0

���, is automatically preserved by the per-
turbative expansions. In the development to follow, the usual
approximation will be made wherein we work to lowest or-
der in perturbation theory so that only the lowest nonvanish-
ing coefficient is retained �the ”lowest Sonine approxima-
tion”�. Based on the present discussion, all terms of order
as0

���c2 will be neglected �as well as terms of order c2
2 ,as0

���as0

���,
etc.�. In the Conclusions, the present approximation is evalu-
ated for the special case of a simple granular fluid in three
dimensions by comparison to expressions given in Ref. �6�
where all dependence on c2 is retained.

In order to solve the integral equations, the expansions
Eq. �67� are substituted into Eq. �56� and the �th equation is

multiplied by �I�

� �V� 1�Lk
��D−2�/2+�����m /2kBT�V1

2� and tensorial

indices contracted and V� 1 integrated. The left-hand side of
these equations is found to be simplified by the choices �n
=�T=1, ��u=0, and ��u=2 which are made henceforth. The
result after some simplification can be written as

2

DkB
�0

��D

2
+ �� + k�

��D/2���k + 1�
�2kBT

m
���� �

�T
ak

��� +
1

T
��� + k�ak

���

−
1

T
kak−1

��� � + 

l

Ikl
�al

��� − 

l

Kkl
���al

���� = �k
� + �k

�,

�69�

where the contributions from the Boltzmann operator are

Ikl
� = − 


I�

� dV� 1�I�

� �V� 1�Lk
��D−2�/2+���� m

2kBT
V1

2�
�L0�Ll

��D−2�/2+���� m

2kBT
V2��I�

� �V� �� , �70�

and the last coefficient on the left-hand side is

Kkl
��� =� dV� 1�I�

�V� 1�Lk
��D−2�/2+���� m

2kBT
V1

2�
�K��

� ��I��
�V� 1�Ll

��D−2�/2+����� m

2kBT
V2�� . �71�

The source terms on the right-hand side are

�k
� = −� dV� 1�I�

�V� 1�Lk
��D−2�/2+���� m

2kBT
V1

2�C��V� 
f0��I�
�V� 1�

�72�

and

�k
� =� dV� 1�I�

�V� 1�Lk
��D−2�/2+���� m

2kBT
V1

2��i
��f0, f0� .

�73�

A straightforward evaluation using the orthogonality and
standard recursion relations of the associated Laguerre poly-
nomials �33� gives

Kkl
��� =

�� 1
2D + k + 1�

�� 1
2D���k + 1�

n�2kBT

m
����T�kl

����n
�

�n
+ ��T

�

�T
� 2

DnkB
�0 + �k1���� u����� u

�
1

2nkBT
��0�� f0Ll

��D−2�/2�� m

2kBT
V2��� 1

T
�n �74�

and
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�k
� =

��D − 2

2
+ k + 1�

��D

2
���k + 1� �

2kBT

m
�1

2
D + k�� 1

kBT

�p�0�C

�n
ck + ck+1�

−
n

T

2kBT

m
�1

2
D + k���−

1

nkBT
T

�p�0�

�T
+ 2k + 1�ck − �k + 1�ck+1 − kck−1 +

�ck

�T
−

�ck+1

�T
�

2

DnkBT
��1

�u�f0� − p�0�c�k�ck−1 − ck� −
2

DnkBT
��1

�� u�f0� − p�0��T
�ck

�T

2nkBT

m
�D − 1

D

�D + k��D + k + 2�
4

�ck+1 − ck�
� . �75�

Finally, it is useful to note that the lowest order coefficients
are related to the kinetic parts of the transport coefficients
�see Appendix B�. Specifically, the first order contribution to
the pressure tensor takes the usual form

Pij
�1� = − ���iuj + � jui −

2

D
�ij��� · u��� − ��ij��� · u�� , �76�

where the shear viscosity, �, has a kinetic contribution given
by

�K = − 2nkBT� kBT

m
�� D

D − 1
a0

�u, �77�

and the bulk viscosity � has no kinetic contribution. The first
order contribution to heat flux vector is

q� �1��r�,t� = − ��� 
 − ��� T , �78�

where � is the coefficient of thermal conductivity and � is a
transport coefficient characterizing the way in which density
gradients can cause heat flow due to differential cooling
rates. It vanishes in the elastic limit. The kinetic parts of
these transport coefficients are given by

�K = �nkBT� kBT

m
�D + 2

2
�a1


,

�K = �nkBT� kBT

m
�D + 2

2
�a1

T. �79�

These expressions are exact if f0 is replaced by a Gaussian in
Eq. �55� but if the first order correction is written in terms of
f0 then there are terms in c2 which would contribute �as
discussed in Appendix B� in principle but which would in
any case be dropped here since they are of order c2as0

���. The
collisional contributions will be discussed below.

B. Lowest order approximations

The simplest nontrivial approximation is to keep only the
lowest order nonzero coefficient in each expansion in Eq.

�67�. This means a1
�n�, a1

�T�, a2
��� u�, and a0

��u�. Since the transport
coefficients are more interesting than the distribution itself,
we write these equations in terms of the kinetic parts of the
transport coefficients giving

�0�D + 2�
1

m
T

��K

�T
+ I11

n �K − �0�D + 2�
1

m
T� � ln n�0

�n
��K

= �nkBT� kBT

m
�D + 2

2
���1

n +
kBT

m

D�D + 2�
2

c2� ,

�0�D + 2�
1

m
�T

��K

�T
+ �T

�

�T
ln �0��K� + I11

T �K

= mn� kBT

m
�2D + 2

2
��1

T +
n

T

kBT

m

D�D + 2�
2

��1 + 2c2 +
�c2

�T
�� ,

1

4
�0

D + 2

kBT
�T

�

�T
a2

��� u� + 2a2
��� u�� + I22

�� ua2
��� u�

= �2
�� u −

D + 2

2kBT
��1

�� u�f0� − p�0�c�c2

−
D + 2

4kBT
��1

�� u�f0� − p�0��T
�c2

�T
,

�0
D + 2

m
�2kBT

m
�T

��K

�T
+ I00

�u�K

= mn� kBT

m
�2�n� kBT

m
�D�D + 2� − 2� D

D − 1
�0

�u� .

�80�

The Boltzmann integrals and the source terms are evalu-
ated in a straightforward manner and the present evaluations
were performed as described in Appendix D, making fre-
quent use of symbolic manipulation. Using the definitions of
the functions g�v� �Eq. �44�� and Ka

*�v� and �a
*�v� given in

Eq. �40�, the results can be written as

Irs
� = Irs

�E�1 + 

a
�

0

�

Ka
*�− v�e−1/2v2

v��a
*�− v�Srs

� �v�

+
1

4
vg„v,�a

*�− v�…�dv� ,
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�rs
� = �rs

�E + �n2�DSD
1

�2�



a
�

0

�

Ka
*�− v�

�e−1/2v2
v�Trs

� �v� + Urs
� �v�c2 + Vrs

� �v�
dc2

dT
�dv ,

�81�

with the elastic contributions

I11
nE = I11

TE = n2�D−1SD�� kBT

m
�3/22�D − 1�

��
,

I22
�� uE = n2�D−1SD�� kBT

m
�1/2 �D − 1�

2��
,

I00
�uE = �n2�D−1SD� kBT

m
�5/2 4D

��
�82�

and the inelastic kernals

S11
n �v� = S11

T �v� =
D + 8

16�D − 1�
�v2 − 1� ,

S22
�� u�v� =

1

64�D − 1�
�v6 − 9v4 + �8D + 49�v2 − 37 − 8D�

−
1

64�D − 1�
�v4 − 6v2 + 3��*�v� ,

S00
�u�v� =

1

4D
�v2 − 1� . �83�

The elastic contributions to the sources are

�1
nE =

1

2

�n2�

�n
�DSD� kBT

m
�D + 5

4
c2,

�1
TE = n2�D�SD

kBT

m

1

T

3

4
�1 + 2c2 +

dc2

dT
� ,

�1
�� uE = n2�D�SD

D − 7

8D
c2,

�1
�uE = − n2�D�SD

kBT

m

1

2
�D − 1

D
, �84�

and the inelastic kernals are

T11
n �v� =

1

2

� ln n2�

�n
� kBT

m
�1

4
��v2 − 3�g�v,�a

*�− v���

− 2�a
*�v��g„v,�a

*�− v�…�+ v�� ,

T11
T �v� =

kB

16m
��v4 − 4v2 + 9�g„v,�a

*�− v�…

− 2�a
*�− v���v2 − 1�g„v,�a

*�− v�… + v3 + 5v�	 ,

T22
�� u�v� =

1

8D
��2�a

*�v� + 3 − v2�g„v,�a
*�− v�…

+ v�a
*�− v��v2 − 1 − �a

*�− v��	 ,

T00
�u�v� =

1

2
�D − 1

D
� kBT

m
��v�a

*�− v� − g„v,�a
*�− v�…� ,

�85�

and

U11
n �v� =

1

2

� ln n2�

�n
� kBT

m
� 1

64
�v6 − 9v4 + �49 + 8D�v2 − 37

− 8D�g„v,�a
*�− v�… +

1

2

� ln n2�

�n
� kBT

m
� 1

32
�a

*�− v�

��− v4 + 6v2 − 3��g„v,�a
*�− v�… + v� ,

U11
T �v� = −

kB

m

1

256
�− v8 + 14v6 + �− 8D − 88�v4

+ �126 + 48D�v2 − 24D + 33�g„v,�a
*�− v�…

−
kB

m

1

128
�a

*�− v���v6 − 11v4 + 21v2 − 3�

�g„v,�a
*�− v�… + v�v6 − 5v4 + 9v2 − 57�� ,

U22
�� u�v� =

1

128D
v�a

*�− v���a
*�− v��− v4 + 10v2 − 15� + v6

− 11v4 + v2�61 + 8D� − 123 − 24D�

+
1

128D
g„v,�a

*�− v�…�2�a
*�− v��v4 − 6v2 + 3�

− v6 + 9v4 + �8D − 65�v2 − 8D + 53� ,

U00
�u�v� =�D − 1

D
� kBT

m
� 1

32
�v�a

*�v4 − 10v2 + 15�

− g„v,�a
*�− v�…�v4 − 6v2 + 3�� . �86�

The only nonvanishing coefficient of the temperature deriva-
tive is

V11
T �v� = − 1

128g„v,�a
*�− v�…�− v6 + 9v4 − 57v2 + 45�

− 1
64�a

*�− v���v4 − 6v2 + 3�g„v,�a
*�− v�…

+ �v4 + 6v2 − 33�v� . �87�

The collisional contributions to the shear and bulk viscosity
are, in this approximation,

�C =
2

3
��K +

D

D + 2
�1,

� = �1 − �nkBT�a2
�� u SDn*�

32D�2�



a
�

0

�

Ka
*�− v�

�e−1/2v2
v�3 − 6v2 + v4�g„v,�a

*�− v�…dv ,
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�C = ��K,

�C = ��K +
D

2

kB

m
�1 − m�n2�D+1� kBT

m
�3/2

�
1

4T��

SD

D
c2�1 +

1

4

a
�

0

�

Ka
*�− v�v2

�e−�1/2�v2
�v2 − 3�g„v,�a

*�− v�…dv� �88�

with

�1 = m�n� kBT

m
�1/2SDn*�

D2��

� �1 −
1

16
c2 +

1

4

a
�

0

�

Ka
*�− v�e−�1/2�v2

v2g„v,�a
*�− v�…

��1 +
1

16
c2�v4 − 10v2 + 15��dv� ,

� =
3SD

2D�D + 2�
n*��1 +

1

2�2�



a
�

0

�

Ka
*�− v�v

�e−�1/2�v2
�v2 − 1�g„v,�a

*�− v�…dv� . �89�

Finally, the first order corrections to the heat source are

�0�f1� = − ��� · u��a2
�� un2�D�SD� kBT

m�2�1/2 kBT

32��



a
�

0

�

Ka
*�− v�ve−�1/2�v2

�a
*�− v��v4 − 6v2 + 3�dv ,

�1�f0� = ��� · u��n2�D�SD
kBT

2�2�D



a
�

0

�

Ka
*�− v��a

*�− v�v2e−�1/2�v2
dv + c2��� · u��n2�D�SD

kBT

32D�2�

�

a
�

0

�

Ka
*�− v��a

*�− v�e−�1/2�v2
�15 − 10v2 + v4�v2dv . �90�

Equations �80�–�90� are the primary results of this paper.
They give a prescription for the evaluation of the transport
properties for an arbitrary model of energy dissipation at the
Navier-Stokes level and in the usual, lowest Sonine approxi-
mation. In the next section, these are illustrated by using
them to give the transport properties of a simple granular
fluid.

C. Application: Transport in simple granular fluids

For the simple granular fluid, recall that �*�v�= �1
−�2� 1

2v2 and g�v ,��=v��−1�. Since there is no other energy
scale, the coefficients of the first order solution must scale
with temperature as

a1
�n� � T−1/2,

a1
�T� � T−3/2,

a2
��u� � T−1/2,

a0
��u� � T−3/2,

�0 � T3/2, �91�

giving

��0�D + 2�
3

2m
+ I11

n ��K + �0�D + 2�
1

m
T� � ln n�0

�n
��K

= �nkBT� kBT

m
�D + 2

2
���1

n +
D�D + 2�

2

kBT

m
c2� ,

��0�D + 2�
2

m
+ I11

T ��K = mn� kBT

m
�2D + 2

2
�1

T +
1

T
mn2� kBT

m
�3

�
D�D + 2�2

4
�1 + 2c2� ,

�3

8
�0

D + 2

kBT
+ I22

�� u�a2
��� u� = �2

�� u −
D + 2

2kBT
��1

�� u�f0� − p�0�c�c2,

��0
D + 2

m
� kBT

m
� + I00

�u��K

= mn� kBT

m
�2�n� kBT

m
�D�D + 2� − 2� D

D − 1
�0

�u� .

�92�

From the zeroth order solution, one has
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�0�f0� = − �1 − �2�n*�
SD

2��
� kBT

m�2�1/2

nkBT . �93�

Equations �81� are easily evaluated giving the Boltzmann
integrals

I11
n = I11

T = − n2�D−1SD�� kBT

m
�3/2 1

8��
�� + 1�

��3��D + 8� − 11D − 16� ,

I22
�� u = − n2�D−1SD�� kBT

m
�1/2 1

128��
�� + 1��30�3 − 30�2

+ 105� + 24�D − 56D − 73� ,

I00
�u = n2�D−1SD�� kBT

m
�5/2 1

��
�1 + ���3 − 3� + 2D� ,

�94�

and sources

�1
n =

1

2

�n2�

�n
�DSD� kBT

m
��3

8
�− 1 + �2��

+
1

16
c2�1 + ���3�2 − 3� + 2D + 10�� ,

�1
T =

3

16
n2�D�SD

kB

m
�� + 1�2�2� − 1 + �� + 1�c2� ,

�2
�� u =

3

64D
n2�D�SD�1 + ����5� − 1��1 − ���1 + ��

−
1

6
c2�15�3 − 3�2 + 3�4D + 15�� − �20D + 1��� ,

�0
�u = −

1

8
n2�D�SDkBT��D − 1

D
��� + 1�

3� − 1

m
. �95�

The low density �Boltzmann� transport coefficients in the
elastic ��=1� limit can be read off and are

�0 = kB� kBT

m
�1/2 ��

8�D−1SD

D�D + 2�2

D − 1
,

�0 =�mkBT

�

�D + 2��
4SD

�1−D,

�0 = �0 = 0. �96�

To facilitate comparison of the finite density transport coef-
ficients to those of Ref. �6�, it is useful to introduce dimen-
sionless quantities

�T
* = �

D − 1

2D
�� + 1��1 +

3�D + 8��1 − ��
8�D − 1� � ,

��
* = ��1 −

1

4D
�1 − ���2D − 3� − 3�� ,

��
* = −

1

48
��� + 1

2
��30�3 − 30�2 + 105� + 24�D

− 56D − 73� ,

�* =
D + 2

4D
��1 − �2� , �97�

so that

I11
n = I11

T =
2D
��

SDnn*� kBT

m
�� kBT

m�2�1/2

�T
* ,

I00
�u =

4D
��

SDnn*� kBT

m
�2� kBT

m�2�1/2

��
* ,

I22
�� u =

3

4��
SDnn*� kBT

m�2�1/2

��
* ,

1

m
��0� = −

2D
���D + 2�

SDnn*kBT

m
� kBT

m�2�1/2

�*�1 +
3

16
c2� ,

�98�

and then

�K = �0
D − 1

D
��T

* − 2�*�−1�1 + 2c2 +
3

8D�D + 2�
n*�SD��

+ 1�2�2� − 1 + �� + 1�c2�� ,

�K = 2�0
T

n
�2�T

* − 3�*�−1�n� � ln n�0

�n
��K*�*�1 +

3

16
c2�

+
D − 1

D
c2 +

�n*2�

�n* SD
3�D − 1�

8D2�D + 2�
�1 + ���− ��1 − ��

+
1

6
�3�2 − 3� + 10 + 2D�c2�� ,

�K = �0���
* −

1

2
�*�−1�1 +

SD

4D�D + 2�
n*��� + 1��3� − 1�� ,

a2
�� u =

�0

nkBT

1

4D�D + 2�
���

* − D�*�−1, �99�

where �K*=�K /�0 and

�* = �1 + ����5� − 1��1 − ���1 + ��

− 1
6c2�15�3 − 3�2 + 3�4D + 15�� − �20D + 1��	 .

�100�

�Note that the factor of c2 coming from ��0� is, in accord with
the present approximations, retained in the numerators but
not the denominators in these expressions.� Before proceed-
ing, it is worth remarking that the transport coefficients de-
rived from the Boltzmann equation �which are only appli-
cable at low density� correspond to the kinetic contributions
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given in Eq. �99� provided that all explicit factors of � are set
to zero and the implict factors that occur in the definition of
the quantities ��

* ,�T
* ,��

*, and �* are set to one. Then, up to the
systematically neglected terms of c2 in the denominators of
these expressions, Eq. �99� agree with the previous results of
Brey and Cubero �4� obtained directly from the Boltzmann
equation.

The collisional parts of the transport coefficients are

�C = �K SD

D�D + 2�
n*��1 + �

2
� +

D

D + 2
� ,

� = �0
4SD

2

��D + 2�D2�1 + �

2
�n*2��1 −

1

16
c2� ,

�C =
3SD

2D�D + 2�
n*��1 + �

2
��K,

�C =
3SD

2D�D + 2�
n*��1 + �

2
��K

+ �0�1 + ��
2SD

2 �D − 1�
�D2�D + 2�2n*2��1 −

7

16
c2� , �101�

and the first order correction to the cooling rate is

��1� = �0�f1� + �1�f0� ,

�0�f1� = − a2
�� u��� · u���3

2
nkBT�nkBT

�0

D + 2

64
�1 − �2�� ,

�1�f0� = ��� · u���3

2
nkBT� SD

4D
n*��1 − �2� . �102�

Taking into account that the quantities �=−�2/3nkBT��, c*

=2c2, and cD= 1
2a2

�� u are used in Ref. �6�, it is easy to verify
that the present expressions agree for the special case of D
=3 with those of Ref. �6� up to terms of order c*as0

���. To

confirm the expression for a2
�� u requires that one note that �*

of Ref. �6� is related to the quantities here by

32

3
�n*��* = �n*SD�* − 2

16D�D + 2�
nkBT

p�0�c�1

3
− ��c2

= �n*SD�1 + ����5� − 1��1 − ���1 + ��

−
1

6
c2�15�3 − 3�2 − 3��12D + 17� − 4D + 31�� ,

�103�

so that the present result can be written as

a2
�� u = 2

�0

nkBT
�1

2
��

* −
D

2
�*�−1� 2

3D�D + 2�
�n*��*

+
1

nkBT
p�0�c�1

3
− ��c2� . �104�

Aside from the terms explicitly neglected here, this differs

from Ref. �6� in three ways, the coefficient of �* in the de-
nominator, the value of ��

* and the coefficient of c2 in the
numerator are all different from those given in Ref. �6�. It
has been confirmed �34� that the expressions given here are
correct.

V. CONCLUSIONS

A normal solution to the Enskog approximation for a
hard-sphere gas with energy loss has been determined using
the Chapman-Enskog procedure to first order in the gradi-
ents, and the transport properties given to second order thus
specifying the Navier-Stokes hydrodynamic description. The
zeroth order distribution function, which describes the homo-
geneous cooling state, was expanded about equilibrium, Eq.
�26�, and the equations for the coefficients given. The re-
quired collision integrals were expressed in terms of a gen-
erating function allowing for evaluation using symbolic
mathematical packages and the explicit form of the required
integrals needed to determine the first correction to the
Gaussian approximation were given explicitly in the form of
one-dimensional integrals. The expressions for the transport
properties have similarly been reduced to simple quadratures
for the standard lowest-Sonine approximation. The Navier-
Stokes equations for such a system thus take the form

�

�t
n + �� · �u�n� = 0,

�

�t
u� + u� · �� u� +

1



�� · PJ = 0,

� �

�t
+ u� · �� �T +

2

DnkB
�PJ:�� u� + �� · q�� = �0 + �1�� · u� ,

�105�

with pressure tensor

Pij = p�0��ij − ���iuj + � jui −
2

D
�ij��� · u��� − ��ij��� · u��

�106�

and heat-flux vector

q��r�,t� = − ��� 
 − ��� T , �107�

where � represents a transport coefficient not present when
the collision conserve energy. Equations �80�–�85� determine
the kinetic parts of the transport coefficients and Eqs. �88�
and �89� determine their collisional parts. The pressure, p�0�,
is given in Eq. �43� and the source term in the temperature
equation, which accounts for the cooling, is given by Eq.
�48� and Eq. �90�. Finally, as a simple application, the trans-
port properties for a granular fluid in D dimensions were
given and previous results for low density fluids and for
dense fluids in the limit D=3 recovered.

It was argued that the polynomial expansions used to
solve the various linear integral equations should not be
treated as independent and that this implied the systematic
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neglect, at lowest order, of mixed terms coming from the two
expansions �i.e., that for f0 and that for the coefficients in the
expression of f1�. One question which has been left unan-
swered is whether we can judge the effect of this approxima-
tion compared to what would happen if all such terms were
included. To answer this, we show in Fig. 1 the four transport
coefficients for a simple granular fluid in three dimensions at
a moderately high density of n�3=0.5. The values are calcu-
lated based on the expressions of Ref. �6� which include all
contributions in c2, those given in the preceding section and
the results of the Gaussian approximation, c2=0. All three
approximations are in agreement for the shear and bulk vis-
cosity, but the Gaussian approximation gives quantitatively
poor results for thermal conductivity and the transport coef-
ficient µ. On the other hand, the expressions given here are in
good agreement with the full expressions for the entire range
of the coefficient of restitution thus giving some justification
for the ordering of terms used here.
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APPENDIX A: EXPANSION OF THE COLLISION
OPERATOR

The collision operator is

J�f , f� = −� dx2T̄−�12���q�1,q�2;�n��f�q�1,v�1;t�f�q�2,v�2;t� ,

�A1�

where ��q�1 ,q�2 ; �n�� is the local equilibrium pair distribution
function which is in general a functional of the local density

and we write binary collision operator T̄−�12� as

T̄−�12� = ��q12 − ��T̄−��12� ,

T̄−��12� = �

a

Ja�v�1,v�2��b̂a�−1Ka�q̂12 · v�12� − 1�
�	�− v�12 · q̂12���q12 − ��v�12 · q̂12. �A2�

Integrating over the argument of the delta function gives

J�f , f� = − �D−1� dv�2dq̂12T̄−��12���q�1,q�1 − �q̂12;�n��

�f�q�1,v�1;t�f�q�1 − �q̂12,v�2;t� . �A3�

A gradient expansion of the nonlocal terms requires first an
expansion of the one-body distribution,

f�q�1 − �q̂12,v�2;t� = f�q�1,v�2;t� − �q̂12 · �� 1f�q�1,v�2;t� + ¯ .

�A4�

For a normal solution, this becomes

f�q�1 − �q̂12,v�2;t� = f�q�1,v�2;t� − �q̂12

i

��� 1�i�q�1��

�
�

��i�q�1�
f�q�1,v�2;t� + ¯ �A5�

and of the nonlocal dependence on the density of the pair
distribution function

��q�1,q�1 − �q̂12;�n��

= �0„�;n�q�1�… +� dr��n�r�� − n�q�1��

�� �

�n�r��
��q�1,q�1 − �q̂12;�n���

n�q�1�
+ ¯

= �0„�;n�q�1�… + ��� 1n�q�1�� � dr��r� − q�1�

�� �

�n�r��
��q�1,q�1 − �q̂12;�n���

n�q�1�
+ ¯ �A6�

which is accurate up to first order in the gradients. For a
single-component system, it can be shown �35� that the sec-
ond term reduces to a simple derivative giving

��q�1,q�1 − �q̂12;�n�� = �0„�;n�q�1�… −
1

2
��q̂12 · �� 1n�q�1��

�� ��0��;n�
�n

�
n�q�1�

+ ¯ . �A7�

Using these results, we can write

J�f , f� = J0�f , f� + J1�f , f� + ¯ �A8�

with

J0�f , f� = − �0„�;n�q�1�…� dx2T̄−�12�f�q�1,v�1;t�f�q�1,v�2;t�

�A9�

which is, aside from the prefactor of �0(� ;n�q�1�), the Bolt-
zmann collision operator. The second order term is

FIG. 1. The four transport coefficients for a simple granular
fluid in three dimensions at reduced density n�3=0.5. The transport
coefficients are shown in dimensionless form as indicated by the
labeling of each figure. The lines are the results of Ref. �6�, the
circles are the results of this paper and the broken line is the Gauss-
ian approximation.
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J1�f , f� = 

i

��� 1�i�q�1�� · �D�0„�;n�q�1�…

�� dv�2dq̂12q̂12T̄−��12�f�q�1,v�1;t�
�

��i�q�1�
f�q�1,v�2;t�

+ ��� 1n�q�1��
1

2
�D��0„�;n�q�1�…

�n�q�1�

�� dv�2dq̂12q̂12T̄−��12�f�q�1,v�1;t�f�q�1,v�2;t� �A10�

which we write more compactly as

J1�f , f� = 

i

��� 1�i�q�1���J�1� f ,
�

��i�q�1�
f�

+ �in
� ln �0„�;n�q�1�…

�n�q�1�
J�1�f , f�� �A11�

with

J�1�f ,g� =� dv�2dq̂12q̂12T̄−��12�f�q�1,v�1;t�g�q�1,v�2;t� .

�A12�

APPENDIX B: EXPANSION OF THE FLUXES
AND SOURCES

The expansion of the fluxes and sources is very similar to
that of the collision operator described in Appendix A so
only a few details will be given here.

1. Pressure tensor

The exact expression for the pressure tensor is

PJ= PJK+ PJC with

PJK�r�,t
f� = m� dv�1f�r�,v�1,t�V� 1V� 1, �B1�

and the collisional contribution which can be written as

PJC�r�,t
f� = −
m

4
�D


a
� dv�1dv�2dq̂q̂q̂�q̂ · v�12�	�− q̂ · v�12�Ka�q̂ · v�12��

0

1

dy�„r� + �1 − y��q̂,r� − y�q̂;�n�…

�f„r� + �1 − y��q̂,v�1;t…f�r� − y�q̂,v�2;t��− v�12 · q̂ − sgn�v�12 · q̂���v�12 · q̂�2 −
4

m
�a�q̂ · v�12�� . �B2�

Clearly, the expansion of kinetic part is simply due to the expansion of the distribution function itself

PJK�r�,t
f� = 

i=0


iPJK�i��r�,t� �B3�

with

PJK�i��r�,t� = PJK�r�,t
f i� .

The zeroth order contribution is based on f0 which is homogeneous so

Pij
K�0��r�,t
f� = m

1

D
�ij� dV� f0�V� 
�t�V2 = nkBT�ij �B4�

from the definition of the temperature. The first order contribution is

Pij
K�1��r�,t
f� = m� dV� f1�V� 
�t�ViVj �B5�

and comparison to the definition of the first order term Eq. �55� shows that the only contribution is due to the shear term

Pij
K�1��r�,t
f� = m� dV� f0�x1��� D

D − 1
A��u��V� ��VlVk −

1

D
�lkV

2���luk + �luk −
2

D
�lk�� · u���ViVj

= m� D

D − 1
��luk + �luk −

2

D
�lk�� · u�� 1

D�D + 2�
��il� jk + �ik� jl� � dV� f0�x1�A��u��V� �V4 �B6�

and using the expansion of A��u� in associated Laguerre polynomials and their orthogonality relation gives
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Pij
K�1��r�,t
f� = mnSD� D

D − 1
��iuj + � jui −

2

D
�ij�� · u�� 1

D�D + 2�
ij ai
�ucj�2kBT

m
�2

�−D/2

��
0

�

exp�− x�Li
�D+2�/2�x�Lj

�D−2�/2�x�x�D+2�/2dx

= mnSD�−D/2� D

D − 1
��iuj + � jui −

2

D
�ij�� · u�� 1

D�D + 2�
ij
��D

2
+ i + 2�

��i + 1�
ai

�u�2kBT

m
�2

�ci − 2ci+1 + ci+2�

= nkBT�2a0
�u� kBT

m
��1 + c2�� D

D − 1
���iuj + � jui −

2

D
�ij�� · u�� �B7�

and in the present approximation, we drop the term c2.
The collisional part of the stress tensor will have terms arising from the expansion of the distribution as well as gradient

terms arising from its nonlocality. The former gives a first order contribution of

PJC�11��r�,t
f� = −
m

4
�D�0„�;n�r��…


a
� dv�1dv�2dq̂q̂q̂�q̂ · v�12�	�− q̂ · v�12�Ka�q̂12 · v�12��f0�r�,v�1;t�f1�r�,v�2;t� + f1�r�,v�1;t�f0�r�,v�2;t��

� �− v�12 · q̂12 − sgn�v�12 · q̂12���v�12 · q̂12�2 −
4

m
�a�q̂12 · v�12�� �B8�

while, using the results of Appendix A, the latter gives two terms

PJC�12��r�,t� = −
m

4
�D+1�0„�;n�r���


a
� dv�1dv�2dq̂q̂q̂�q̂ · v�12�	�− q̂ · v�12�Ka�q̂ · v�12�

1

2
q̂ · ���� f0�r�,v�1;t��f0�r�,v�2;t� − f0�r�,v�1;t�

���� f0�r�,v�2;t��	�− v�12 · q̂ − sgn�v�12 · q̂���v�12 · q̂�2 −
4

m
�a�q̂ · v�12�� �B9�

and

PJC�13��r�,t� =
m

4

1

2
�D+1��0„�;n�r��…

�n�r��
��� 1n�r��� · 


a
� dv�1dv�2dq̂q̂q̂q̂�q̂ · v�12�	�− q̂ · v�12�Ka�q̂ · v�12�f0�r�,v�1;t�f0�r�,v�2;t�

��− v�12 · q̂ − sgn�v�12 · q̂���v�12 · q̂�2 −
4

m
�a�q̂ · v�12�� �B10�

so that PJC�1�= PJC�11�+ PJC�12�+ PJC�13�. However, it is seen that PJC�13��r� , t 
 f�=0 because of the integral is a vector but there are no

zero-order vectors available from which to construct it. For similar reasons, PJC�12��r� , t� can be simplified to

PJC�12��r�,t� = −
m

8
�D+1�0„�;n�r��…��iuj�


a
� dv�1dv�2dq̂q̂q̂�q̂ · v�12�	�− q̂ · v�12�Ka�q̂ · v�12�q̂j

m

kBT
�V1i

�

�z1
f0�r�,v�1;t�f0�r�,v�2;t�

− f0�r�,v�1;t�V2i
�

�z2
f0�r�,v�2;t���− v�12 · q̂ − sgn�v�12 · q̂���v�12 · q̂�2 −

4

m
�a�q̂ · v�12�� . �B11�

where z��m /2kBT�V2.

2. Heat flux vector

The expansion of the kinetic part of the heat flux vector is treated analogous to that of the pressure tensor. It is given by

qi
K�r�,t
f� =

1

2
m� dv� f�r�,v� ,t�ViV

2, �B12�

and the zeroth order contribution vanishes by rotational symmetry. The first order contribution is
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qi
K�1��r�,t
f� =

1

2
m� dv� f1�r�,v� ,t�ViV

2 =
1

2
m� dv� f0�r�,v� ,t��A�n��V� �Vj� jn + A�T��V� �Vj� jT�ViV

2

=
1

2D
m� dv� f0�r�,v� ,t��A�n��V� �V4�in + A�T��V� �V4�iT� , �B13�

where the vanishing contributions have been dropped. For both the density and temperature couplings, the important integral
is

1

2D
m� dv� f0�r�,v� ,t�A����V� �V4

=
1

2
SD

1

2D
mn�2kBT

m
�2



ij

ai
���cj�

−D/2�
0

�

e−xLi
D/2�x�Lj

�D−2�/2�x�x�D+2�/2dx

=
1

2
SD

1

2D
mn�2kBT

m
�2



ij

ai
���cj�

−D/2�
0

�

e−x�Li
�D+2�/2�x� − Li−1

�D+2�/2�x���Lj
�D+2�/2�x� − 2Lj−1

�D+2�/2�x� + Lj−2
�D+2�/2�x��x�D+2�/2dx

=
1

2D
mn�2kBT

m
�2



k

ak
���

��D

2
+ k + 1�

��k + 1���D/2���1

2
D + 1 + 3k�ck − 2�1

2
D + 1 +

3

2
k�ck+1 + �1

2
D + 1 + k�ck+2 − kck−1�

= nkBT� kBT

m
�D + 2

2
a1

����− 1 − �D + 5�c2 +
D + 4

2
c3� + ¯ . �B14�

So

�K = �nkBT� kBT

m
�D + 2

2
�a1


�1 + �D + 5�c2 −
D + 4

2
c3� ,

�K = �nkBT� kBT

m
�D + 2

2
�a1

T�1 + �D + 5�c2 −
D + 4

2
c3� �B15�

which gives the expressions in the text if the terms c2 and c3 are neglected.
The collisional part is

q�C�r�,t� = −
m

4V
�D


a
� dv�1dv�2dq̂q̂�q̂ · v�12�	�− q̂ · v�12�Ka�q̂ · v�12��

0

1

dy�„r� + �1 − y��q̂,r� − y�q̂;�n�…f„r� + �1 − y��q̂,v�1;t…

�f�r� − y�q̂,v�2;t�
1

2
�V� 1 + V� 2� · q̂�− v�12 · q̂ − sgn�v�12 · q̂���v�12 · q̂�2 −

4

m
�a�q̂ · v�12�� �B16�

which gives at zeroth order

q�C�0��r�,t� = −
m

4V
�D�0„�;n�r��…


a
� dv�1dv�2dq̂q̂�q̂ · v�12�	�− q̂ · v�12�Ka�q̂ · v�12�f0�r�,v�1;t�f0�r�,v�2;t�

�
1

2
�V� 1 + V� 2� · q̂�− v�12 · q̂ − sgn�v�12 · q̂���v�12 · q̂�2 −

4

m
�a�q̂ · v�12�� , �B17�

and at first order three contributions analogous to those of the pressure tensor

q�C�11��r�,t� = −
m

4V
�D�0„�;n�r��…


a
� dv�1dv�2dq̂q̂�q̂ · v�12�	�− q̂ · v�12�Ka�q̂ · v�12��f0�r�,v�1;t�f1�r�,v�2;t� + f1�r�,v�1;t�f0�r�,v�2;t��

�
1

2
�V� 1 + V� 2� · q̂�− v�12 · q̂ − sgn�v�12 · q̂���v�12 · q̂�2 −

4

m
�a�q̂ · v�12�� , �B18�

and
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q�C�12��r�,t� = −
m

4V
�D+1�0„�;n�r��…


a
� dv�1dv�2dq̂q̂�q̂ · v�12�	�− q̂ · v�12�Ka�q̂ · v�12�

1

2
q̂���� f0�r�,v�1;t��f0�r�,v�2;t� − f0�r�,v�1;t�

���� f0�r�,v�2;t��	
1

2
�V� 1 + V� 2� · q̂�− v�12 · q̂ − sgn�v�12 · q̂���v�12 · q̂�2 −

4

m
�a�q̂ · v�12�� �B19�

and

q�C�13��r�,t� =
m

4V

1

2
�D+1��0„�;n�r��…

�n�r��
��� n�r���


a
� dv�1dv�2dq̂q̂q̂�q̂ · v�12�	�− q̂ · v�12�Ka�q̂ · v�12�f0�r�,v�1;t�f0�r�,v�2;t�

�
1

2
�V� 1 + V� 2� · q̂�− v�12 · q̂ − sgn�v�12 · q̂���v�12 · q̂�2 −

4

m
�a�q̂ · v�12�� . �B20�

Now, the zeroth order heat flux vector vanishes by
rotational symmetry of the homogeneous system. Only

the vector parts of f1, i.e., those proportional to �� n

and �� T, can contribute to the first order contribution
q�C�11�. Similarly, the second term q�C�12� can only depend
on those gradients but obviously the contribution

proportional to �� n vanishes. Finally, the third contribution
vanishes as the integrand is odd in the total
momentum.

3. Heat source

The heat source is

��r�,t� =
1

2
�D−1


a
� dv�1dv�2dq̂�q̂ · v�12�

�	�− q̂ · v�12�Ka�q̂ · v�12��a�q̂ · v�12���q�1,q�2;�n��

�f�r�,v�1;t�f�r� − �q̂,v�2;t� �B21�

so at zeroth order

�0�r�,t� =
1

2
�D−1�0„�;n�r��…


a
� dv�1dv�2dq̂�q̂ · v�12�

�	�− q̂ · v�12�Ka�q̂ · v�12��a�q̂ · v�12�

�f0�r�,v�1;t�f0�r�,v�2;t� . �B22�

There are, as usual, three first order contributions but as in
the main text, we separate these into �1�r� , t�=�0�f1�
+�11�r� , t� with

�0�g� =
1

2
�D−1�0„�;n�r��…


a
� dv�1dv�2dq̂�q̂ · v�12�	�− q̂ · v�12�

� Ka�q̂ · v�12��a�q̂ · v�12��f0�r�,v�1;t�g�r�,v�2;t�

+ g�r�,v�1;t�f0�r�,v�2;t�� �B23�

and

�11�r�,t� = −
1

2
�D�� j�i�


a
� dv�1dv�2dq̂q̂j�q̂ · v�12�	�− q̂ · v�12�

� Ka�q̂ · v�12��a�q̂ · v�12���q�1,q�2;�n��f0�r�,v�1;t�

�
�

��i
f0�r�,v�2;t� , �B24�

and note that the coefficient of ��0(� ;n�r��) /�n�r�) vanishes
by spherical symmetry. The only nonzero contribution to �11
comes from �i=u� and the integral must be proportional to

the unit tensor so we can write �11�r� , t�=�1
�� u�r� , t��� ·u� with

�1
�� u�r�,t� = −

1

2
�D


a
� dv�1dv�2dq̂�q̂ · v�12�	�− q̂ · v�12�

� Ka�q̂ · v�12��a�q̂ · v�12���q�1,q�2;�n��f0�r�,v�1;t�q̂j

�
�

�uj
f0�r�,v�2;t� . �B25�

APPENDIX C: GENERATING FUNCTION FOR THE
HCS

The definition of the couplings is

Irs,k = − n−1Ak
−1� dv�1d2Lk

�D−2�/2� m

2kBT
v1

2�T̄−�12�

��2kBT

m
�−D

fM�v�1�fM�v�2�

�Lr
�D−2�/2� m

2kBT
v1

2�Ls
�D−2�/2� m

2kBT
v1

2� �C1�

which is equivalent to
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Irs,k = n−1Ak
−1� dv�1d2�2kBT

m
�−D

fM�v�1�fM�v�2�

�Lr
�D−2�/2� m

2kBT
v1

2�Ls
�D−2�/2� m

2kBT
v1

2�T+�12�

�Lk
�D−2�/2� m

2kBT
v1

2� . �C2�

The associated Laguerre polynomials are generated by

Ln
��x� =

1

n!
lim
z→0

�n

�zn

1

�1 − z��+1 exp�−
xz

1 − z
� �C3�

so that we have

Irs,k = − nAk
−1� m

2kBT
�−1/2

�D−1 1

r!s!k!
lim
z1→0

lim
z2→0

lim
x→0

�r

�z1
r

�s

�z2
s

�
�k

�xk�

a

Ga��a� − G0�

with

G0 =
1

�1 − z1�D/2

1

�1 − z2�D/2

1

�1 − x�D/2�−D� dv�1dv�2dq̂

�exp�−
1

1 − z1
v1

2 −
1

1 − z2
v2

2��q̂ · v�12�	�− q̂ · v�12�

�exp�−
x

1 − x
v1

2� ,

Ga��� =
1

�1 − z1�D/2

1

�1 − z2�D/2

1

�1 − x�D/2�−D

�� dv�1dv�2dq̂Ka
*�q̂ · v�12�

� exp�−
1

1 − z1
v1

2 −
1

1 − z2
v2

2��q̂ · v�12�

�	�− q̂ · v�12�b̂a exp�−
x

1 − x
v1

2� . �C4�

To evaluate the second quantity, note that

v1�
2 = V2 + V� · v� − V� · q̂„v� · q̂ + sgn�v� · q̂�

���v� · q̂�2 − 2���v� · q̂�… +
1

4
v2 −

�

2
��v� · q̂� .

�C5�

A tedious calculation to complete the square in V gives

Ga =
1

�1 − z1�D/2

1

�1 − z2�D/2

1

�1 − x�D/2�−D� dV� dv�dq̂�q̂ · v��	�− q̂ · v��Ka
*�q̂ · v�12�exp� �2 − z2 − z1�x

2 − x − z2 − z1 + xz1z2

1

2
�a

*�v� · q̂��
�exp�− � 1

1 − z1
+

1

1 − z2
+

x

1 − x
�V2�exp�−

1 − z1x

2 − x − z2 − z1 + xz1z2
v2�

�exp�1

2

�z2 − z1�x
2 − x − z2 − z1 + xz1z2

��v� · q̂�2 + v� · q̂ sgn�v� · q̂���v� · q̂�2 − 2�a
*�v� · q̂��� . �C6�

Performing the V integration and the D−1 v integrations in directions perpendicular to q̂ and finally the q̂ integral leave the
final result

Ga = −
1

2
�−1/2SD�1 − z1x�−�1/2�D� 1 − z1x

2 − x − z2 − z1 + xz1z2
�1/2�

0

�

duKa
*��u�exp� �2 − z2 − z1�x

2 − x − z2 − z1 + xz1z2

1

2
�a

*��u��
� exp�−

1

2
� 2 − z2x − z1x

2 − x − z2 − z1 + xz1z2
u��exp�1

2

�z2 − z1�x
2 − x − z2 − z1 + xz1z2

�u�u − 2�a
*��u�� . �C7�

We will also need the generating function for the case that no collision occurs,

G0 =
1

�1 − z1�D/2

1

�1 − z2�D/2

1

�1 − x�D/2�−D� dv�1dv�2dq̂ exp�−
1

1 − z1
v1

2 −
1

1 − z2
v2

2�q̂ · v�12	�− q̂ · v�12�exp�−
x

1 − x
v1

2� .

�C8�

Completing the square and performing the simple Gaussian integrals gives

G0 = − 1
2�−1/2SD�1 − z1x�−�D+1�/2�2 − x − z2 − z1 + xz1z2�1/2. �C9�
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APPENDIX D: EVALUATION OF INTEGRALS

To illustrate the method used to evaluate the many integrals required in this work, consider the quantity q�C�12��r� , t� defined
in Eq. �B19� and for convenience repeated here,

q�C�12��r�,t� = −
m

4
�D+1�0„�;n�r��…


a
� dv�1dv�2dq̂q̂�q̂ · v�12�	�− q̂ · v�12�Ka�q̂ · v�12�

1

2
q̂���� f0�r�,v�1;t��f0�r�,v�2;t� − f0�r�,v�1;t�

���� f0�r�,v�2;t��	
1

2
�V� 1 + V� 2� · q̂�− v�12 · q̂ − sgn�v�12 · q̂���v�12 · q̂�2 −

4

m
�a�q̂ · v�12�� . �D1�

As stated previously, the only nonzero contribution comes through the temperature so we replace

�� f0 → ��� T�
�

�T
f0. �D2�

Keeping terms up to linear order in c2 and defining the quantities

zi =
m

2kBT
Vi

2, V� =� m

2kBT
�v�1 + v�2� , v� =� m

2kBT
�v�1 − v�2� , �D3�

we find that

� �

�T
f �0��r�,v�1;t�� f �0��r�,v�2;t� − f �0��r�,v�1;t�

�

�T
f �0��r�,v�2;t�

= −
1

T
��z1

�

�z1
f �0��r�,v�1;t�� f �0��r�,v�2;t� − f �0��r�,v�1;t�z2

�

�z2
f �0��r�,v�2;t��

= −
1

T
��− z1 + z2��1 + c2��1

4
D2 +

1

2
D� − �D + 2��V2 +

1

4
v2� + �V4 +

1

2
V2v2 +

1

16
v4 + �V� · v��2���

+ z1c2�−
1

2
�D + 2� + z1� − z2c2�−

1

2
�D + 2� + z2�� fM�r�,v�1;t�fM�r�,v�2;t�

=
1

T
2V� · v��1 + c2�1

4
�D + 2�2 − �D + 4��V2 +

1

4
v2� + �V4 +

1

2
V2v2 +

1

16
v4 + �V� · v��2��� fM�r�,v�1;t�fM�r�,v�2;t� . �D4�

Substituting into the original expression and changing integration variables gives

qi
C�12��r�,t� = −

m

4
n2�D+1�0„�;n�r��…�� jT��2kBT

m
�3/2

�−D

a
� dV� dvdq̂q̂iq̂j�q̂ · v��	�− q̂ · v��

�Ka��2kBT

m
q̂ · v��1

2

1

T
2V� · v��1 + c2�1

4
�D + 2�2 − �D + 4��V2 +

1

4
v2�

+ �V4 +
1

2
V2v2 +

1

16
v4 + �V� · v��2���e−2V2−�1/2�v2

�
1

2
�V� · q̂��− v� · q̂ − sgn�v� · q̂���v� · q̂�2 − 2�a

*�q̂ · v��� . �D5�

Taking v̂ to be the x direction for the V integral, this becomes

qi
C�12��r�,t� = −

m

8
n2�D+1�0„�;n�r��…�� jT��2kBT

m
�3/2 1

T
�−D


a
� dV� dv�dq̂q̂iq̂j�q̂ · v��2	�− q̂ · v��Ka

*�q̂ · v��Vx
2�1 + c2�1

4
�D + 2�2

− �D + 4��V2 +
1

4
v2� + �V4 +

1

2
V2v2 +

1

16
v4 + Vx

2v2���e−2V2−�1/2�v2
�− v� · q̂ − sgn�v� · q̂���v� · q̂�2 − 2�a

*�q̂ · v��� .

�D6�

The method now is to take q̂ to be the x direction in the v integrals and to make the following substitutions:

V2 → Vx
2 + V�

2 , v2 → vx
2 + v�

2 , �D7�

and to integrate over Vx, V�, and v�. These integrals are performed by using symbolic manipulation to expand the kernal and
to make the replacement
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�−DVx
l V�

mv�
n →

1
�2�

�2−�l+1�/2� 2

�
�� l + 1

2
���2−m/2

��D − 1 + m

2
�

��D − 1

2
� ��2n/2
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We can isolate the contribution due to �a
*�vx��0 by subtracting the �a

*�vx�=0 term and using 
aKa
*�vx�=1 to get
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4
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The only further complication is that some integrals involve kernals of the form h�V2��V� · q̂�2�V� ·v��2. These can be handled
by using the substitution

h�V2�ViVjVkVl → h�V2�V4 1

D2 + 2D
��ij�lm + �il� jm + �im� jl� . �D11�
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