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Instabilities in a free granular fluid described by the Enskog equation
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A linear stability analysis of the hydrodynamic equations with respect to the homogeneous cooling state is
carried out to identify the conditions for stability as functions of the wave vector, the dissipation, and the
density. In contrast to previous studies, this description is based on the results derived from the Enskog
equation for inelastic hard spheres [V. Garzé and J. W. Dufty, Phys. Rev. E 59, 5895 (1999)], which takes into
account the dependence of the transport coefficients on dissipation. As expected, linear stability shows two
transversal (shear) modes and a longitudinal (“heat”) mode to be unstable with respect to long enough wave-
length excitations. Comparison with previous results (which neglect the influence of dissipation on transport)

shows quantitative discrepancies for strong dissipation.
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I. INTRODUCTION

A simple way of capturing the dynamics of granular me-
dia under rapid flow conditions is through an idealized fluid
of smooth, inelastic hard spheres. The inelasticity of colli-
sions is only accounted for by a (constant) coefficient of
normal restitution 0 < @< 1 that only affects the translational
degrees of freedom of grains. Despite the simplicity of the
model, it has been widely used as a prototype to understand
some of the physical mechanisms involved in granular flows,
especially those related to the inelasticity of granular colli-
sions. In particular, one of the most characteristic features of
granular fluids, as compared with normal fluids, is the spon-
taneous formation of velocity vortices and density clusters
when evolving freely. This clustering instability can be well
described through a linear stability analysis of the hydrody-
namic equations and follows from the presence of a dissipa-
tion term in the equation for the balance of energy. An im-
portant feature of this instability is that it is confined to long
wavelengths (small wave numbers) and so it can be avoided
for small enough systems. Detected by Goldhirsch and
Zanetti [1] and McNamara [2], the clustering problem has
attracted much attention in the past few years, especially
from a computational point of view [3].

In the case of a low-density gas, accurate predictions for
the unstable hydrodynamic modes have been made from the
(inelastic) Boltzmann equation [4—6]. In particular, a critical
length L. is identified, so that the system becomes unstable
when its linear size is larger than L.. The dependence of L,
on the coefficient of restitution « predicted by kinetic theory
compares quite well with numerical results obtained by using
the direct simulation Monte Carlo method [7].

For finite higher densities, these instabilities have been
studied by several authors using macroscopic or kinetic
equations [1,2,8]. A careful study of the dispersion relations
has been recently carried out by van Noije and Ernst [9] from
the Enskog kinetic theory but neglecting any dependence of
the pressure and of the transport coefficients on inelasticity.
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Specifically, they assume that the expressions for the hydro-
static pressure, the shear viscosity, the bulk viscosity, and the
thermal conductivity are the same as those for the elastic gas
[10], except that the temperature still depends explicitly on
time to account for the homogenous cooling. However, given
that the effect of inelasticity on dense fluid transport is quite
important in the undriven case [11,12] (see for instance, Fig.
1 below) the assumptions made in Ref. [9] could be only
justified for very small dissipation (say for instance, «
~0.99).

Although the predictions made by van Noije and Ernst [9]
compares reasonably well with molecular dynamics simula-
tion results, it is worth to assess to what extent the previous
results [9] are indicative of what happens when the improved
expressions for the inelastic transport coefficients are consid-
ered [11]. For this reason, in this paper I revisit the (unstable)
hydrodynamic-mode problem of a granular fluid described
by the inelastic Enskog kinetic theory [13]. In spite of the
explicit knowledge of the Enskog transport coefficients [11],
I am not aware of any previous solution of the linearized
hydrodynamic equations for a moderately dense granular
gas.

The Enskog kinetic equation can be considered as the
extension of the Boltzmann equation to finite densities. As
happens for elastic collisions, the inelastic Enskog equation
provides a semiquantitative description of the hard sphere
system that neglects the effects of correlations between the
velocities of the two particles that are about to collide (mo-
lecular chaos assumption). The Enskog approximation is ex-
pected to be valid for short times since as the system evolves
corrections to the Enskog equation due to multiparticle col-
lisions, including recollision events (“ring” collisions) should
be incorporated. The latter are expected to be stronger for
fluids with inelastic collisions where the colliding pairs tend
to be more focused. Therefore some deviations from molecu-
lar chaos have been observed in molecular dynamics (MD)
simulations [14] of granular fluids as the density increases.
Although the existence of these correlations restricts the
range of validity of the Enskog equation, the latter can be
still considered as a good approximation especially at the
level of macroscopic properties (such as transport coeffi-
cients). In particular, the Enskog results presents quite a good
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FIG. 1. Plot of %" (a, )/ 7" (1,¢), k" (e, p)/ (1, ), " (e, P),
and {(a, ¢) versus the coefficient of restitution « for three differ-
ent values of the solid volume fraction ¢: (a) ¢=0, (b) ¢=0.1, and
(c) ¢=0.2. Note that £;=0 at ¢$=0.

agreement with MD simulations and even with real experi-
ments. In the case of computer simulations, comparison be-
tween the Enskog theory and MD simulations in the case of
the self-diffusion coefficient [15] and kinetic temperatures in
a granular mixture [16] have shown good agreement for all «
at n*=no>=<0.25 and for all densities at «=0.9. Here, n is
the number density and o is the diameter of spheres. More
recent agreement has been found in the case of granular mix-
tures under shear flow [17]. The Enskog transport coeffi-
cients [11] have also been tested against real NMR experi-
ments of a system of mustard seeds vibrated vertically
[18,19]. The averaged value of the coefficient of restitution
of the grains used in this experiment is @=0.87, which lies
outside of the quasielastic limit (a=0.99). Comparison be-
tween theory and experiments (see for instance, Figs. 10-13
of Ref. [19]) shows that the Enskog kinetic theory [11] suc-
cessfully models the density and granular temperature pro-
files away from the vibrating container bottom and quantita-
tively explains the temperature inversion observed in
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experiments. All these results clearly show the applicability
of the Enskog theory for densities outside the Boltzmann
limit (n"— 0) and values of dissipation beyond the quasielas-
tic limit. In this context, one can conclude that the Enskog
equation provides a unique basis for the description of dy-
namics across a wide range of densities, length scales, and
degrees of dissipation. No other theory with such generality
exists.

The explicit knowledge of the Navier-Stokes transport co-
efficients as well as of the cooling rate for inelastic hard
spheres [11] allows one to solve the linearized hydrodynamic
equations around the homogeneous cooling state (HCS) and
identify the conditions for stability as functions of the wave
vector, the dissipation, and the density. In the low-density
limit, previous results derived from the Boltzmann equation
are recovered [4]. Linear stability analysis shows two trans-
versal (shear) modes and a longitudinal (“heat”) mode to be
unstable with respect to long wavelength excitations. The
corresponding critical values for the shear and heat modes
are also determined, showing that the clustering instability is
mainly driven by the transversal shear mode, except for quite
large dissipation. As expected, these results agree qualita-
tively well with those previously derived in Ref. [9]. On the
other hand, at a quantitative level, the comparison carried out
here shows significant differences between both descriptions
as the collisions become more inelastic.

The plan of the paper is as follows. In Sec. II, the basis of
the hydrodynamic equations for a dense gas as derived from
the (inelastic) Enskog equation is described. The explicit de-
pendence of the transport coefficients and the cooling rate on
dissipation is also illustrated for some values of density to
show that the influence of inelasticity on transport is in gen-
eral quite significant. Section III is devoted to the linear sta-
bility analysis around the HCS and presents the main results
of this paper. The paper is closed in Sec. IV with some con-
cluding remarks.

II. HYDRODYNAMIC DESCRIPTION

We consider a granular fluid composed of smooth inelas-
tic hard spheres of mass m and diameter o. Collisions are
characterized by a (constant) coefficient of normal restitution
0<a=1. At a kinetic level, all the relevant information on
the system is given through the one-particle velocity distri-
bution function, which is assumed to obey the (inelastic)
Enskog equation [13]. From it one can easily get the (mac-
roscopic) hydrodynamic equations for the number density
n(r,1), the flow velocity u(r,7), and the local temperature
T(r,r) [11]:

Dn+nV -u=0, (1)
pDu+VP =0, )
2

DT+ 3—(V -q+P:Vu)=-(T. (3)
n

In the above equations, D,=d,+u-V is the material deriva-
tive, p=nm is the mass density, P is the pressure tensor, q is
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the heat flux, and ¢ is the cooling rate due to the energy
dissipated in collisions. The practical usefulness of the bal-
ance equations (1)—(3) is limited unless the fluxes and the
cooling rate are further specified in terms of the hydrody-
namic fields and their gradients. The detailed form of the
constitutive equations and the transport coefficients appear-
ing in them have been obtained by applying the Chapman-
Enskog method [10] to the Enskog equation. To first order in
the gradients, the corresponding constitutive equations are

[11]

2
Pij=pd;- n(vjui"'viuj_géijv -u) -y5;V -u, (4)

q=-«VT-uVn, (5)

{=6H+4V - (6)

Here, p is the hydrostatic pressure, # is the shear viscosity, y
is the bulk viscosity, k is the thermal conductivity, and u is a
new transport coefficient not present in the elastic case. The
expressions for the pressure, the transport coefficients and
the cooling rate can be written in the forms

p=nTp’(a,d), n=mnn (. d), y=mny(ad), (7)

* T s T .
K= KOK'(a9¢)7 M= ﬁIu“ (as ¢)’ g(): n_g()(a’ d))’
n o

(8)

where 7,=5(mT)"?/165°7"> and ky=157,/4m are the low-
density values of the shear viscosity and the thermal conduc-
tivity in the elastic limit, respectively. The quantities
pn Y K 1w, ¢, and ¢, are dimensionless functions of
the coefficient of restitution « and the solid volume fraction
¢=mnao/6. Their explicit expressions are given in the Ap-
pendix, and more details can be found in Ref. [11]. For elas-
tic collisions (a=1), u"(1,¢),%y(1,¢)", and £,(1, ¢) vanish,
while the expressions of 7' (1, ),y (1,¢), and «*(1, ) co-
incide with those obtained for a dense gas of elastic hard
spheres [10]. In the low-density limit (¢=0), ¥'(a,0)
=/,(a,0)=0 and the results derived for a dilute granular gas
are recovered [4]. As pointed out before, the new transport
coefficient u is not present for elastic collisions and may
play an important role to accurately describe some situations
of real granular materials, such as a “temperature inversion”
observed in vibrofludized systems [19].

The reduced quantities 7 (a,¢)/ 7" (1,¢),k (a,P)/
K'(1,¢), 1" (a, @), and {,(a, p) are plotted in Fig. 1 as func-
tions of the coefficient of restitution for three different values
of the solid volume fraction ¢. As said in the Introduction,
these quantities, along with the pressure, were assumed to be
the same as in the elastic case in the stability analysis carried
out in Ref. [9], ie., pia,d)—p'(1,¢), 7 (a, )
—7(1,9), «(a,¢)—=«(1,4), and p'(a,)=¢(a,¢)
— 0. Figure 1 shows that in general the influence of dissipa-
tion on the transport coefficients and the cooling rate is quite
significant and so their functional form differs appreciably
from their elastic form. This means that the predictions made
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in Ref. [9] might quantitatively differ from those obtained
here as the rate of dissipation increases. This will be con-
firmed later. We also see that, for a given value of
a, ' (a,d)/ 7 (1,¢) and k" (a,d)/"(1,¢p) decrease as the
density increases, while the opposite happens in the cases of
(e, @) and |£)(cr, ).

When the expressions of the pressure tensor, the heat flux
and the cooling rate are substituted into the balance equa-
tions (1)—(3) one gets the corresponding Navier-Stokes
(closed) hydrodynamic equations for n,u, and T. They are
given by

Dn+nV -u=0, )
-1 -1 2
D[Mi + (nm) le = (nm) V] n Vlu] + V]Ml - 5511 V-.u

+7v8;V -u], (10)

2 2
(D +6)T+—pV -u=—V - (kVT+uVn)
3n 3n

2 2

+75,-jV-u]—T§1V-u. (11)

Note that consistency would require to consider up to second
order in the gradients in the expression (6) for the cooling
rate, since this is the order of the terms in Eq. (11) coming
from the pressure tensor and the heat flux. However, it has
been shown for a dilute gas that the contributions from the
cooling rate of second order are negligible as compared with
the corresponding contributions from Egs. (4)—(6) [4]. It is
assumed here that the same holds in the dense case.

The form of the Navier-Stokes equations (9)—(11) is the
same as for a normal fluid, except for the presence of the
contributions to the cooling rate ; and {; and the new trans-
port coefficient u in the energy balance equation. Of course,
as Fig. 1 clearly illustrates, the values of the transport coef-
ficients are quite different, depending on the value of the
coefficient of restitution a.

III. LINEAR STABILITY ANALYSIS

The hydrodynamic equations (1)—(3) admit a simple solu-
tion which corresponds to the so-called homogeneous cool-
ing state (HCS). It describes a uniform state with vanishing
flow field and a temperature decreasing monotonically in
time, i.e.,

1(0)

T oy

(12)
Nevertheless, computer simulations [1,20,21] have shown
that the HCS is unstable with respect to long enough wave-
length perturbations. To analyze this problem, it is adequate
to perform a stability analysis of the nonlinear hydrodynamic
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FIG. 2. Dispersion relations for a granular fluid with @=0.8 and
¢=0.2. From top to bottom the curves correspond to the two de-
generate shear (transversal) modes and the remaining three longitu-
dinal modes. The dashed lines correspond to the results obtained for
the shear (s ) and heat (s3) modes from the approximations made
in Ref. [9]. Only the real parts of the eigenvalues is plotted.

equations (9)—(11) with respect to the homogeneous state for
small initial excitations. The linearization of Egs. (9)—(11)
about the homogenous solution yields partial differential
equations with coefficients that are independent of space but
depend on time since the reference (homogeneous) state is
cooling. This time dependence can be eliminated through a
change in the time and space variables and a scaling of the
hydrodynamic fields.

We assume that the deviations 8y, (r,)=y,(r,1)—yg. 1)
are small, where, &y,(r,?) denotes the deviation of {n,u,T,}
from their values in the homogeneous state, the latter being
denoted by the subscript H. The quantities in the HCS verify

VnHZ VTHZO, uHZO, ﬁ,ln TH=_§0H- (13)

To recover the results found in the dilute gas case when ¢
— 0, I consider the same time and space variables as those
used in Ref. [4], namely,

1 vy(2)

1 t
== tdt', €=- ,
! 2fo it 2 UH(f)r

(14)

where VH(Z)=15—671H0'27T”2UH(I) is an effective collision fre-
quency and  vy()=y\Ty(t)/m. Note that vy(r)
=nyTy/ 7y(1,0) is an effective collision frequency associ-
ated with the elastic (a=1) shear viscosity of a dilute gas
(¢=0). The dimensionless time scale 7 is the time integral of
the average collision frequency and thus is a measure of the
average number of collisions per particle in the time interval
between O and ¢. The unit length vy(f)/ vy(t) introduced in
the second equality of Eq. (14) is proportional to the time-
independent mean free path of gas particles.

A set of Fourier transformed dimensionless variables are
then introduced by

5nk(7')

px(7) = ) Sl
ny

vp(7) '

ST(7)
TH(T) '
(15)

wi(7) = bi(7) =

where 8yy,={dn, wi(7), 6 (7)} is defined as
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FIG. 3. Plot of the the critical wave numbers k(a,¢) and
ky(a, @) as functions of the coefficient of restitution « for two val-
ues of the solid volume fraction ¢: (a) ¢=0 and (b) ¢$=0.2.

5yka(7')=fd€ e sy (€,7). (16)

Note that in Eq. (16) the wave vector k is dimensionless. In
terms of the above variables, the transverse velocity compo-

nents wy,, =wy— (wy-k)k (orthogonal to the wave vector k)
decouple from the other three modes and hence can be ob-
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FIG. 4. Plot of the ratios k,/k(, and k;/kg;, as functions of the
coefficient of restitution « for three values of the solid volume
fraction ¢: (a) ¢=0, (b) ¢=0.1, and (c) ¢$=0.2. Here, ko, and kg,
are the critical wave numbers obtained from the approximations
made in Ref. [9].
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tained more easily. Their evolution equation is
( J
aT

where it is understood that {; and %" are evaluated in the
HCS. The solution to Eq. (17) is

go*‘z”l kz)wkj_=0’ (17)

Wi (K, 7) = wi (0)exp[s (k) 7], (18)

where

Si(k)=§o_§77 K. (19)
This identifies two shear (transversal) modes analogous to
the elastic ones. According to Eq. (19), there exists a critical
wave number k, given by

0

M=

- ikp*Cp

As before, it is understood that p*, 77*, 7*,K*,M*,§;, and {;
are evaluated in the HCS. In addition, the quantities g(¢) and
C,(a,¢) are given by

d
g(p)=1+ d>;l)ln x(¢), (23)
_ p*(aa ¢) -1

Cp(a’ ¢) - 1 + g(¢) p*(a’ ¢)
_ 8(¢)
=D e &Y

where in the last equality use has been made of the explicit
expression of p* given by Eq. (Al). In Egs. (23) and (24),
x(¢) is the pair correlation function at contact. In kinetic
theory calculations, the value of y for the pre-collisional dis-
tribution is used, which is well approximated by local equi-
librium. There are nonequilibrium corrections that can be
calculated from the ring collision operator [22]. However,
these corrections are very hard to calculate and so for sim-
plicity I take here the Carnahan-Starling approximation [23]:

_2-¢
2(1-¢)*
In the limit ¢—0, p'=g=C,=1, y={;=0 and Egs.

(17)—(21) reduce to those previously derived for a dilute gas

[4].

x(¢) = (25)

s 5 %10 s
—2§Og—Z,U~k -4-
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2 #\ 172
k5:< f) .
i

This critical value separates two regimes: shear modes with
k> k, always decay while those with k<<k; grow exponen-
tially.

The remaining (longitudinal) modes correspond to py, 6,
and the longitudinal velocity component of the velocity field,

(20)

wk”=wk'f( (parallel to k). These modes are coupled and obey
the equation

d 5yka( T)

aT @D

=M ,36yip(7),

where yy,(7) denotes now the set {py, O, wy} and M is the
square matrix,

0 ik
é *kZ gk( ‘+§§>
4" 3P T (22)
2 1,
_ik % B *kz__ >.<k2
ikp Lo 37 7Y

The longitudinal three modes have the form exp[s,(k)7]
for n=1, 2, 3, where s,(k) are the eigenvalues of the matrix
M, namely, they are the solutions of the cubic equation

3+5< *+2 4+ s *>k22+ k* *<5 *+5 )
N —| K - —_ S K\~ -
A\ 75T s 6" 87

+K7|p p+37]§o+2')’§0+3p(17+ &) 4K§o

- goz}s +p |:Z(K C,—u VK + §Q(CP—2g)}k2= 0.
(26)

As happens for a dilute gas [4], for given values of a and ¢
the analysis of Eq. (26) shows that at very small & all modes
are real, while at larger k two modes become a complex
conjugate pair of propagating modes. Thus the physical
meaning of the longitudinal modes is different from that in
the elastic fluids, even when a—1 [4].

The solution to Eq. (26) can be obtained for small k by a
perturbation expansion as

5,0k) = 0 4 kstD 4 k25D 4 - (27)

Substituting this expansion into Eq. (26) yields sﬁo)zo, s(zo)
=_§0, 5(30)= g(),

sV=0, (28)
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p*
sP==(C,-2¢). (29)
%o
20 +3(L +2 5.,
e (30)
o
20 +3(4,-29)+6C, 2, 1,
sP=—p ' E——m-=y. (31

64, 37 2

In the case of a dilute gas (¢—0), the eigenvalues s,(k)
behave as

s1(k) — - %kz, (32)
0
$5(k) — = o+ <3—§* — K )kz, (33)
0
(1 2.
53(k) — - <3§< + 57] )kz. (34)
0

Since the Navier-Stokes hydrodynamic equations are valid to
second order in k, the solutions (27)—(31) are relevant to the
same order.

As said in the Introduction, although the limitations of the
Enskog theory are greater than for elastic systems, compari-
son with MD simulations [15,16] indicate that it is still ac-
curate for ¢ up to about 0.15 and for « greater than about
0.5. For higher densities the a range is more limited, but
even then it captures the relevant qualitative features. For
this reason, to illustrate the influence of both density and
dissipation on instabilities, densities in the interval 0= ¢
=<0.2 for 0.5=a=<1 will be considered.

The dispersion relations s, (k) for a fluid with «=0.8 and
¢=0.2, as obtained from Eq. (20) and the solutions of the
cubic equation (26), are plotted in Fig. 2. Only the real part
(propagating modes) of the solutions to Eq. (26) is repre-
sented. For comparison, the results for the shear (s, ) and the
longitudinal heat (s;) modes from the approximations made
by van Noije and Ernst [9] are also plotted. These curves can
be formally obtained from the results derived in this paper
when one takes u"=¢,=0, and p*, %", y", and k" are replaced
by their values in the elastic limit [Egs. (A18)-(A20)]. We
observe that the agreement between both sets of results is in
general good, the heat mode showing more quantitative dis-
crepancies. Figure 2 also shows that the heat mode is un-
stable for k<kj,, where k;, can be obtained from Eq. (26)
when s=0. The result is

_|45(2¢-C,)
ky= SCC,— )’ (35)

The dependence of the critical values k, and k;, on dissipation
is illustrated in Fig. 3 for two values of ¢. For a given value
of the coefficient of restitution «, in general the correspond-
ing critical values decrease with increasing density. How-
ever, there is a small region of values of «=0.82 where the
opposite happens in the case of k. All the above trends are
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FIG. 5. Ratio k/k; versus the coefficient of restitution a for
three values of the solid volume fraction ¢: (a) ¢=0, (b) ¢=0.1,
and (c) ¢=0.2.

also captured by the results obtained in Ref. [9], although
quantitative discrepancies between both descriptions appear
as the dissipation increases. To illustrate such differences, the
ratios k,/ky, and k;,/k,, are plotted versus « in Fig. 4 for
different values of ¢. Here, k(, and kg, are the critical wave
numbers obtained from the approximations made in Ref. [9].
Significant differences between both analyses are clearly
shown in Fig. 4, especially for strong dissipation and mod-
erate densities. Thus, for instance, for ¢¢=0.2 and @=0.8 the
discrepancies between both approaches for k, and k; are
about 5% and 17%, respectively, while for ¢=0.2 and «
=0.5 the discrepancies are about 12% and 48%, respectively.
A more significant qualitative difference between our results
and those obtained in Ref. [9] appears in the case of the ratio
k¢/ k. This quantity measures the separation between both
critical modes. According to Egs. (20) and (35), this ratio is
independent of o when one neglects the influence of dissipa-
tion on the pressure and the transport coefficients. However,
the present results predict a complex dependence of k,/k; on
a. To illustrate it, the ratio k,/k, is plotted versus the coeffi-
cient of restitution « in Fig. 5 for different values of density.
It is apparent that in general both critical values k, and k;, are
well separated, especially for small inelasticity. The results
also show that the influence of dissipation on the ratio k,/k,,
is less significant as the system becomes denser. In addition,
for a given value of ¢, there exists a value of the coefficient
of restitution ay(¢) for which k, >k, for values of a<ay.
The dependence of a; on the solid volume fraction ¢ is
plotted in Fig. 6. It is apparent that the value of ¢ decreases
with increasing density. However, given that the values of «;

0.5

04r
k>k,
S 031

02+
K>k

0.1r

0.0 : : .
0.0 0.1 0.2 0.3 0.4

¢

FIG. 6. Dependence of ¢ on the solid volume fraction ¢. Points
above (below) the curve correspond to systems where the instability
is driven by the shear (heat) mode.
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0.5 0.6 0.7 0.8 0.9

FIG. 7. The critical size L. in units of the mean free path A\, as
a function of the coefficient of restitution « for three different val-
ues of the solid volume fraction ¢: (a) ¢=0, (b) $=0.1, and (¢)
¢=0.2. In each case, the system is linearly stable for points below
the corresponding curve.

are quite small, one can conclude that in practice («
=0.375) the instability of the system is driven by the trans-
versal shear mode since k> k;, for a> o).

According to these results, for not quite extreme values of
dissipation (a=0.375), three different regions can be identi-
fied. For k>k, all modes are negative and the system is
linearly stable with respect to initial perturbations with wave
number in this range (short wavelength region). For k, <k
<k, the shear mode is unstable while the heat mode is lin-
early stable. In this range the density (coupled to the heat
mode) is also stable and so, density inhomogeneities can
only be created due to the nonlinear coupling with the un-
stable shear mode [21]. Finally, if k<k, first vortices and
then clusters are developed and the final state of the system
is strongly inhomogeneous. A more detailed analysis of the
evolution of the granular gas can be found in Ref. [3].

In a system with periodic boundary conditions, the small-
est allowed wave number is 27/L, where L is the largest
system length. Hence, for given values of inelasticity and
density, we can identify a critical length L. so that the system
becomes unstable when L>L. The value of L. is deter-
mined by equating

2
Tr=makob) L

-y (36)
ZUH

c

In Fig. 7 we show L./\y as a function of « for different
values of the solid volume fraction ¢. Here, \g
=(\2mno?x) ™' =(5\2mx/16) vyl vy is the mean free path
of a hard-sphere dense gas. In all of these systems, k,>k,
and so

5 — n
L.=—mVmx\| —\o. (37)
4 %o

For a given value of «, we see that the critical size (in units
of the mean free path) increases with density. As a conse-
quence, larger systems are required to observe the shearing
instability as the fluid becomes denser.
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IV. CONCLUDING REMARKS

A well-known feature of rapid granular flows is the insta-
bility of the homogeneous cooling state against long wave-
length spatial perturbations, leading to cluster and vortex for-
mation. Although the origin of this instability has been
widely explored by using computational tools, prior analyti-
cal work on this subject has been limited to weak inelasticity
or very dilute regime. In order to gain some insight into the
influence of both density and dissipation on the stability of
the HCS, a kinetic theory description has been adopted. For
moderate densities, the inelastic Enskog equation [13] can be
considered as a valuable tool for granular media. As in the
case of elastic collisions, the Enskog equation takes into ac-
count spatial correlations through the pair correlation func-
tion but neglects the velocity correlations between the par-
ticles that are about to collide (molecular chaos). The latter
assumption has been clearly shown to fail for inelastic colli-
sions as the density increases [14], so that the limitations of
the Enskog description are greater than for elastic collisions.
Due to this molecular chaos breakdown, some authors con-
clude that the Enskog equation can be insufficient to com-
pute average properties of inelastic fluids, except for very
weak dissipation. Nevertheless, this conclusion contrasts
with previous comparisons made with MD simulations
[15-17] and with real experiments [ 18] where, at least for the
problems studied there, velocity correlations do not seem to
play an important role and the Enskog equation provides
quite good estimates for the transport properties of the sys-
tem. It is remarkable that its accuracy is not restricted to the
quasielastic limit since it covers values of moderate density
(0=<¢=0.15) and large values of dissipation (0.5 a<1).
It is possible that for situations more complex than those
analyzed in Refs. [15-19], velocity correlations become im-
portant and the Enskog theory does not give reliable predic-
tions. In this case, new kinetic theories incorporating the
effect of velocity correlations are needed to describe granular
flows. However, so far there is no alternative to the Enskog
theory for finite density systems at this point. Hence it is the
most accurate theory to describe systems of interest in simu-
lations and experiments.

In this paper I have used the inelastic Enskog kinetic
theory to perform a linear stability analysis of the hydrody-
namic equations and identify the conditions for stability in
terms of dissipation and density. The analysis is based on a
previous derivation [11] of the expressions of the Enskog
transport coefficients and the cooling rate that, a priori, is
not limited to small dissipation. This is the main different
ingredient of this work since previous studies [9] on linear
stability analysis for dense granular gases considered weakly
inelastic systems and so, thermodynamic and transport prop-
erties were assumed to be the same as those of elastic hard
sphere fluids. However, this assumption is expected to fail as
dissipation increases since the form of the inelastic transport
coefficients clearly differs from their elastic counterparts, as
shown for instance in Fig. 1.

The study reported here extends to higher densities a pre-
vious linear stability analysis performed for a dilute gas [4].
In general, the findings agree qualitatively well with previous
results [9], showing that the effect of dissipation on transport
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coefficients do not significantly modify the qualitative form
of the dispersion relations. Specifically, linear stability analy-
sis shows two unstable modes: a transversal shear mode and
a longitudinal heat mode. The instability of both modes is a
long wavelength instability. The analysis of the dependence
of the corresponding critical shear wave number k; [defined
in Eq. (20)] and heat wave number k,, [defined in Eq. (35)]
shows that, except for extreme values of dissipation, the in-
stability is driven by the transversal shear mode. The range
of values of the coefficient of restitution a for which &,
>k, is shortened as the gas becomes denser. Thus, for ¢
=0.389, k,>k;, for any value of a.

On the other hand, as expected, quantitative discrepancies
between our results and those given in Ref. [9] become sig-
nificant as the dissipation increases. In particular, at a given
value of density, the critical wave numbers k; and k;, are in
general underestimated (except in the case of k, for a low-
density gas) when one neglects the influence of inelasticity
on transport [9] while the ratio k,/k;, (which is independent
of the coefficient of restitution « in Ref. [9]) presents a com-
plex dependence on the rate of dissipation, as is illustrated in
Fig. 5. Therefore although the description made by van Noije
and Ernst [9] predicts reasonably well the dispersion rela-
tions as well as the long-range structure, one expects that the
results reported here improve such predictions when one
considers values of the coefficient of restitution « for which
transport properties are clearly affected by the rate of dissi-
pation.

As said in the Introduction, in the case of a dilute gas
(¢=0) comparison with direct Monte Carlo simulation of the
Boltzmann equation has shown the accuracy of the stability
analysis performed in Ref. [4]. Given that the results re-
ported here extends the above description to high densities,
comparison with MD simulations becomes practical. In this
context, it is hoped that the description reported here stimu-
lates the performance of such computer simulations to char-
acterize the onset and evolution of the clustering instability.
As in the Boltzmann case [7,24], one expects that the Enskog
results describes accurately the first stages of evolution.

Finally, it must noted that all the results obtained in this
paper has been made in the context of a very simple collision
model where the coefficient of restitution is constant. Recent
results [25] derived with an impact-velocity-dependent coef-
ficient of restitution shows that structure formation occurs in
free granular gases only as a transient phenomenon, whose
duration increases with the system size.
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APPENDIX

In this Appendix, the expressions for the hydrostatic pres-
sure, the transport coefficients and the cooling rate used in
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Egs. (4)—(8) are given. The reduced hydrostatic pressure p” is
p*=1+2(1+a)¢X, (Al)

The reduced transport coefficients %",y , k", and u" defined
through the relations (7) and (8) are given, respectively, by

. 4 3.,

Y] =77k{1+§¢>x(1+a)}+§7, (A2)
«_ 128 , _ <

Yy = 5W¢X(1+a)<1 32), (A3)

| 1+ o+ @ |+ 2 gy )(1 - )
= +Z + + + + ,
KR TP T AT X TN T 3¢

(A4)

. % 6
M'=Mk[l+g¢x(l+a)]. (AS)

Here, the superscript k denotes the contributions to the trans-
port coefficients coming from the kinetic parts of the fluxes
[11]. These kinetic contributions are

s

* # A 2
17k=<1/7]—%§0) |:1_g(1+a)(1_3a)¢)(:|’ (A6)

KZ‘:%(V’;—zgf;)‘l{l+[1+(1+a)¢X]C+§¢X(1+“)2
{ <l+a 5 ) ]}
X|2a-1+ - “l(

2 3(1+ )

* * N | *
e =22v,.—3¢) l{(1 + pdyln x) oKy + gp

(A7)

X(1+ ¢¢9¢lnp*)c— §¢X(1 + a)(l + %¢&¢ln )()

1{4
X{a(l - a)+ Z(§+a(1 - a))c}}.

In these expressions, ¢, {, v, and v, are functions of « and
¢ given by

(A8)

32(1 - a)(1 -2a?)

- , A9
T 81— 17a+302%(1 - a) (A9)
P 3
=—x(1-a?)|1+— Al
o 12)(( a)( +320>, (A10)
ot (1 i) (A11)
S e 64)°
L1 33 19-3
VK=§X(1+a)|:1+R(1—a)+ 1024%] (A12)

Furthermore, in three dimensions the Carnahan-Starling ap-
proximation [23] for the the pair correlation function at con-
tact x(¢) is given by
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2-¢
x(d)=-—"=.
2(1- )
The coefficient {; appearing in the expression (6) for the
cooling rate ¢ is

(A13)

5 3
=| =|1+—clc,—2 1-a? Al4
4 [32<+64c>q }dv(( @),  (Al4)
where [26]
4 1
—)\+(1+a)<——a>c
15 3
= s 3\ 5¢f 3 ’
Vz——(1—a2)<1+—c)+—<1+—c>(1—a2)
8 327 64 64
(A15)
« l+a ) 3 C
vp=T— 241 - 177a+30a” - 30a” + —
192 64
X (30a® - 30a’ + 2001 a — 1873)) (A16)
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A= %(1 + a)((l )5 +4a-1)+ 16—2

><(159a+3a2—19—15a3)). (A17)

For elastic collisions (a=1), c=§$=,u*=§1=0 and

. 256
p(Lp)=1+4xp, v(1,¢)= ;X‘f’z, (A18)

; 8 23,
77(1,¢)=X_1(1+EX¢> il (A19)
) 12 \2 2.,
K(1,¢)=X‘1<1+gx¢> i (A20)

These expressions coincide with well-know results derived
for normal hard-sphere fluids [10].
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