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One-dimensional “sonic vacuum” type phononic crystals were assembled from a chain of polytetrafluoro-
ethylene �PTFE,Teflon� spheres with different diameters in a Teflon holder. It was demonstrated that this
polymer-based sonic vacuum, with exceptionally low elastic modulus of particles, supports propagation of
strongly nonlinear solitary waves with a very low speed. These solitary waves can be described using the
classical nonlinear Hertz law despite the viscoelastic nature of the polymer and high strain rate deformation of
the contact area. The experimentally measured speeds of solitary waves at high amplitudes are close to the
theoretically estimated values with a Young’s modulus of 1.46 GPa obtained from shock wave experiments.
This is significantly higher than the Young’s modulus of PTFE from ultrasonic measurements. Trains of
strongly nonlinear solitary waves excited by an impact were investigated experimentally and were found to be
in reasonable agreement with numerical calculations based on Hertz interaction law though exhibiting a
significant dissipation.
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I. INTRODUCTION

The study of strongly nonlinear wave propagation in one-
dimensional chains of spherical beads representing the sim-
plest model of granular materials has received much atten-
tion in recent years �1–32�. One of the distinguishing
properties of these materials is the existence of a qualita-
tively different solitary wave with a finite width that is inde-
pendent of the solitary wave amplitude. This solitary wave
was discovered, in 1983 analytically and numerically �1� and
later in 1985 it was observed in experiments �2�. Strongly
nonlinear wave dynamics is a natural extension of the weakly
nonlinear wave dynamics described by the Korteweg–de
Vries �KdV� equation �4,18�. Initially strongly precom-
pressed, strongly nonlinear granular chains may behave as
weakly nonlinear systems similar to the one considered in
the Fermi-Pasta-Ulam paper �33�. In contrast to weakly non-
linear systems, the behavior of strongly nonlinear uncom-
pressed granular chains exhibits qualitatively different fea-
tures �4,17,18,23,27,30–32�. Further applications might arise
from understanding the basic physics of these one-
dimensional �1D� systems. Sound focusing devices �tunable
acoustic lenses and delay lines�, sound absorption layers, and
sound scramblers are among the most promising engineering
applications.

Nonclassical, strongly nonlinear wave behavior appears if
the granular material is weakly compressed �1,2,18�. In this
case, the amplitude in a wave is significantly higher than the
forces caused by initial precompression. The anharmonic ap-
proximation based on the small parameter �ratio of wave
amplitude to initial precompression� is not valid. The princi-
pal difference between the strongly nonlinear case and the
strongly compressed weakly nonlinear chain is due to the
lack of a small parameter with respect to the wave amplitude
in the former case. The long wave equation for particle dis-
placement u in this case is �1,18�

utt = − c2��− ux�3/2 +
a2

10
��− ux�1/4��− ux�5/4�xx��

x
, �1�
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2
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Here E, �, and � are the bulk elastic modulus, density, and
Poisson ratio of the particles in the chain. The particle diam-
eter is a and �0 is the initial strain in the system �phononic
crystal�. It should be mentioned that the constant c is of the
same order of magnitude as the bulk sound speed in the
particle material and not the sound speed in the phononic
crystal. Instead the parameter c0 corresponds to a long wave
sound speed related to initial strain �0. This equation for high
amplitude pulses �or for negligible precompression� has no
characteristic wave speed that is independent of amplitude.
The regularized equation and the equation for a general in-
teraction law can be found in �18�. Despite its complex na-
ture Eq. �1� has simple stationary solutions with unique prop-
erties that are similar to the stationary solutions for the
discrete chain even though some differences due to the rela-
tively short width of solitary wave exist �1,16–18,23,24,29�.
The solitary wave with a speed Vs in a “sonic vacuum” can
be closely approximated by one hump of a periodic solution
with finite length �L� equal to only five particle diameters
�1,18�:
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The concept of the sonic vacuum was introduced in �3,5,6,9�
to emphasize the fact that in an uncompressed chain ��0

=0� the sound speed is equal to zero. The solitary wave
speed Vs has a nonlinear dependence on maximum strain �m,*Corresponding author. Email address: vnesterenko@ucsd.edu
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particle velocity �m, and the force between particles Fm:

Vs =
2
	5

c�m
1/4 = �16

25
�1/5

c4/5�m
1/5 = 0.68� 2E

a�3/2�1 − �2��
1/3

Fm
1/6.

�3�

In a weakly compressed chain a supersonic solitary wave
�Vs�c0� with an amplitude much higher than the initial pre-
compression propagates with a speed Vs, which can also be
closely approximated by one hump of the periodic solution
corresponding to zero prestress �1,18�.

The speed of a wave in a sonic vacuum can be infinitesi-
mally small if the amplitude of the wave is also small. It is
interesting that a strongly nonlinear system supports solitary
waves that are composed from a constant strain and only two
harmonics �with wavelengths about 2.5a and 5a, respec-
tively� �see Eq. �2��. The existence of this unique wave was
verified analytically, numerically, and in experiments
�1,2,4,7,8,10,11,13,14,16–18,24�. This solitary wave can be
considered as a soliton in a physically reasonable approxi-
mation �1,4,18�, though small amplitude secondary solitary
waves were observed in numerical calculations after colli-
sion of two identical solitary waves. The ratio of the largest
amplitude of the secondary wave to the amplitude of the
original wave is about 0.02 �21�. This solitary wave is of a
fundamental interest because Eq. �1� is more general than the
weakly nonlinear KdV equation, which describes the behav-
ior of various physical systems �12� and the former includes
the latter.

The solitary wave speed Vs in a chain with finite prestress
�0 due to applied static precompression F0 for tuning can be
written in terms of normalized maximum strain �r=�m /�0 or
force fr=Fm /F0 �18�:

Vs = c0
1
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For simplicity only the leading approximation was used to
connect the strains in the continuum limit and the forces in a
discrete chain in Eqs. �3� and �4�.

It is important to mention that Vs can be significantly
smaller than the bulk sound speed in the material composing
the beads and can be considered approximately constant in
any narrow interval of its relative amplitude fr. The de-
scribed properties of strongly nonlinear waves might allow
the use of sonic-vacuum-based materials as effective delay
lines with exceptionally low speed of signal propagation.
The estimation based on Eq. �3� with Young’s modulus E
=600 MPa, Poisson’s ratio �=0.46, and density �=2.2
	103 kg/m3 �34� of polytetrafluoroethylene �PTFE� shows
that it is possible to create materials with an impulse speed
below 100 m/s, which corresponds to a particle velocity of
0.2 m/s or smaller. This signal speed in condensed soft mat-
ter is below the level of sound speed in gases at normal

conditions. In this paper we present experimental results on
pulse propagation in PTFE chains of spheres in accord with
the main conclusions of the outlined strongly nonlinear
theory. The speed of the signals is in the range of
88 to 168 m/s. Uniformly compressed discrete chains have
been considered in numerical analysis and in experiments
�4,18,25�. It was shown that the solitary wave speed gener-
ated by the impact of a piston with the same velocity in-
creases with precompression. Also, the tendency of the im-
pulse to split into a train of solitary waves decreases and the
solitary wave width increases. Gravitationally loaded dis-
crete chains are considered in numerical calculations in pa-
pers �15,19,22�.

It should be noticed that particles with Hertzian contacts
serving as strongly nonlinear springs are not the only way of
discovering a sonic vacuum type system. Any power law
interaction between particles �n�1� results in a similar be-
havior �3,17,18�. Also, any general strongly nonlinear inter-
action laws support solitary waves with finite length for the
long wave approximation �18�. Different physical systems
can be designed with properties suitable for the realization of
sonic vacuum type behavior. For example, a forest of verti-
cally aligned carbon nanotubes exhibits strongly nonlinear
but non- Hertzian type force interaction with spherical par-
ticles which can be used for assembling strongly nonlinear
phononic crystals �35�.

The solitary wave width for general strongly nonlinear
interaction law is proportional to the bead diameter �or dis-
tance between particles� and the speed has a nonlinear de-
pendence on amplitude �18�. It is interesting that a power law
interaction with n=3, corresponding to a physical system of
particles on an unstretched string in transverse vibrations
�5,18� supports periodic harmonic waves and solitary waves
with a linear dependence of maximum strain on speed.

II. EXPERIMENTAL PROCEDURES AND RESULTS

One-dimensional phononic crystals were assembled by
filling a PTFE tube �with inner diameter 5 mm� with chains
of 11 and 21 PTFE balls �McMaster-Carr� with diameter a
=4.76 mm and mass 0.1226 g �standard deviation 0.0008 g�
�Fig. 1�. Different numbers of particles were used to clarify
the stages of impulse transformation and interaction with the

FIG. 1. �Color online� �a� Experimental setup for testing of 1D
strongly nonlinear phononic crystals with PTFE beads; �b� sche-
matic drawing of a particle with embedded piezosensor.
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wall. A chain assembled from 18 PTFE particles with smaller
diameter a=2.38 mm and mass equal to 0.0157 g �standard
deviation 0.0003 g� in a PTFE tube with inner diameter of
2.5 mm was also tested. Using two different sizes of beads
helps to understand the behavior of the investigated poly-
meric material in the contact area at different stresses,
strains, and strain rates, which are dependent on the particle
size. Scaling down the particle sizes is important for future
applications in different devices �i.e., biomedical application,
imaging, sound scrambling, etc.�. Waves of different ampli-
tude and duration were excited by impacting the top of the
chain with strikers of different mass and velocity.

The experimental setup for measurements of soliton
speed, duration, and force amplitude together with the mea-
surements of reflected pulse from the wall is presented in
Fig. 1. It includes three calibrated piezosensors �RC
�103 
s� connected to a Tektronix oscilloscope. Two lead
zirconate titanate based piezogauges �3 mm side plates with
thickness 0.5 mm� with nickel plated electrodes and custom
microminiature wiring, supplied by Piezo Systems, Inc.,
were embedded inside two PTFE particles as in �18,36,37�.
The particles with embedded sensors consisted of two PTFE
caps with a total mass 2M =0.093 g and a sensor with mass
m=0.023 g glued between these caps. Including glue, the
total mass of the sensor was equal to 0.116 g �Fig. 1�b��,
which was very close to the mass of the PTFE particle,
0.123 g. This design allows a calculation of the speed of
solitary wave simultaneously with measurement of the forces
acting inside the particles.

A third piezogauge, supplied by Kinetic Ceramics, Inc.,
was bonded with epoxy on electrode foils for contacts and
reinforced by a 1 mm brass plate on the top surface. The
sensor assembly was then placed on the top surface of a long
vertical steel rod �waveguide� embedded at the other end into
a steel block to avoid possible wave reverberation in the
system �Fig. 1�a��. This sensor was calibrated by using the
impact of a single steel ball, which provides similar condi-
tions of loading as in our measurements. The initial velocity
and linear momentum conservation law were used for cali-
bration. The area under the force-time curve measured by the
gauge was integrated from the beginning of impact up to the
point of maximum force and compared with the linear mo-
mentum of the particle at the beginning of impact. The sen-
sors in the two particles were calibrated by comparison with
the signal from the sensor at the wall. This was done using a
controlled, relatively long, simultaneous loading of the par-
ticle with the sensor and the sensor in the wall by the impact
of a massive piston.

The introduction of a particle with a different mass �par-
ticle with a sensor� in the chain of particle of equal masses
results in wave reflections investigated in �11,17,19�. It was
suggested to use reflected signals for detection of buried in-
clusions �19�. In numerical calculations, a slightly lighter
particle with mass 0.116 g was introduced into the chain of
particles with mass 0.123 g, producing wave reflections that
would be too small to detect experimentally. Attenuating a
solitonlike pulse in a chain of random particles was consid-
ered in �1,4,18,20�.

To interpret the signal measured in the experiments we
considered the particle with an embedded sensor as a rigid

body �Fig. 2�a��. The forces on the sides of the contacts of
the particle �F1 and F2� can be easily related to the forces
acting on both sides of the sensor �F3 and F4�:

F3 =
F1 + F2

2
+

F1 − F2

2

m

2M + m
,

F4 =
F1 + F2

2
−

F1 − F2

2

m

2M + m
. �5�

From Eq. �5� we can see that the average of the compres-
sion forces F3 and F4 �considered positive� is equal to the
average value of forces F1 and F2, F�F1+F2� /2, acting on
the particle contacts. It should be mentioned that in numeri-
cal modeling the particles are considered rigid bodies and
only the contact forces F1 and F2 are taken into consider-
ation. The time dependence of forces on the particle contacts
was calculated numerically and their average values are pre-
sented in Fig. 2�b�.

In the case of m�M, the forces on each side of the sensor
�Eq. �5�� are very close to the average forces on the particle
contacts �18,36�. In our case the forces F3 and F4 deviate
from their average value by less than 20% in the vicinity of
signal “shoulders,” and are seen from the time dependence of
contact forces in Fig. 2�b�. It should be noted that at the
moment when the averaged force F is maximum it is equal to
the corresponding forces F3 and F4 �Fig. 2�b�, Eq. �5��. Com-
parison of the averaged force and contact forces �Fig. 2�b��
reveals that averaging reduces the maximum amplitude of
the force and increases the duration of the pulse. This aver-
aged curve is used for comparison with experimental results
based on sensors embedded in the particles.

To relate the maximum value of average compression
force Fm,e measured by the embedded sensor to the value of
maximum force at the contact between neighboring particles
�Fig. 2�a��, we used a coefficient � determined in numerical

FIG. 2. �Color online� �a� Schematic drawing showing the
forces acting on the different parts of particle with embedded sen-
sor. �b� Force vs time plot obtained in numerical calculations for the
two contacts of the particle with embedded sensor �left and right
curves corresponding to F1 and F2� and the average of the previous
two �central curve�. �c� Dependence of the coefficient � on the
amplitude of the normalized dynamic average force �Fm,n /F0� in the
solitary wave �Fm,n is the maximum of the central curve in �b��,
found in numerical calculations.
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calculations. It represents the ratio of the amplitude of the
dynamic force on the particle contacts to the maximum av-
erage of dynamic forces Fm,n acting on the two contacts of
the given particle in the solitary wave. Relating the two
forces facilitates the use of Eqs. �3� and �4� with experimen-
tal data. The dependence of � on the normalized force am-
plitude of a solitary wave is presented in Fig. 2�c�. This
coefficient has negligible dependence on the elastic moduli
of the PTFE particles �1% in the investigated range of
solitary wave amplitude and relevant range of elastic modu-
lus from 600 to 1460 MPa�. It should be mentioned that the
investigated range of the relative amplitudes of the dynamic
force and static precompression represents a strongly nonlin-
ear regime of system behavior resulting in relatively short
length solitary waves. The coefficient � is about 1 in the
linear regime when the amplitude of the dynamic force is
much smaller than the initial precompression and the solitary
waves are very long in comparison with a particle diameter.

The maximum compression force on the contact between
two particles �Fm� adjacent to the particle with the sensor
was calculated using the equation:

Fm = �Fm,e + F0, �6�

where Fm,e is the maximum averaged dynamic compression
force measured experimentally by the gauge embedded in
the particle �it is represented by Fm,n in numerical calcula-
tions� and F0 is the gravitational precompression.

Pulses of different durations and amplitudes in the 1D
phononic crystals were generated by impact of an alumina
�Al2O3� cylinder �0.47 g�, a PTFE ball with a diameter of
4.76 mm �mass 0.123 g�, or a stainless steel bead with a
diameter of 2 mm �mass 0.036 g� onto the top particle of the
chain. Single solitary waves can be generated by an impactor
with a mass equal to the mass of the beads in the system,
which is physically equivalent to the application of a
�-function force �1,4,18�. To generate a single solitary wave
in a chain of 21 PTFE beads, we used the same bead as the
striker �m=0.123 g�. Sensors were placed in the ninth and

fifth balls from the bottom and in the wall at the end of the
chain.

The theoretically predicted speed of solitary waves in
strongly nonlinear phononic crystals has a strong dependence
on the amplitude represented by Eqs. �3� and �4� for sonic
vacuums and for precompressed chains, respectively. This is
shown in Fig. 3�a� together with the corresponding numerical
calculations of the soliton speed for discrete chains. The
curves based on the long wave approximation �Eqs. �3� and
�4�� and the numerically calculated values practically coin-
cide. In experiments �solid dots in Fig. 3�b��, the solitary
wave speeds for different amplitudes were obtained by divid-
ing the distance between the sensors by the measured peak-
to-peak time interval. The corresponding force amplitude in
the solitary wave was found based on the measurements of
gauges embedded inside the particles. The log10Fm-log10Vs
curves presented in Fig. 3�b� are based on these measure-
ments. Accuracy of the measurements of amplitude of soli-
tary waves was in the range of 15% to 30% for large and
small amplitudes, the larger errors being due to the higher
signal to noise ratio at low amplitudes. In experiments the
accuracy of the speed measurement can be estimated within
10% due to the uncertainty in the sensor alignment �about
1 mm for each sensor�.

After measuring the speed and duration of the propagating
pulse, the widths of solitary waves were calculated for the
corresponding force amplitudes �Table I�. The same data ob-
tained from numerical analysis of discrete chains with PTFE
elastic modulus 1.46 GPa based on the averaged forces on
the particle contacts are also shown with solitary width trun-
cated at the levels 0.2% and 4% of the solitary wave ampli-
tude.

Experimental results for forces measured by sensors em-
bedded into the particles and into the wall corresponding to a
2.0 m/s impact velocity are shown in Fig. 4�a�. The zero
time in all experiments corresponds to the start of recording
triggered by the signal. In numerical calculations presented
in all figures the zero time corresponds to the moment of
impact.

One of the distinguished features of a strongly nonlinear
sonic vacuum type system is the fast decomposition of shock

FIG. 3. Dependence of the solitary wave speed on its amplitude. �a� Comparison of numerical results for a discrete chain and analytical
data obtained from the long wave approximation. Curves 1 and 3 represent the long wave approximation for gravitationally precompressed
systems �Eq. �4�� at E=1460 and 600 MPa respectively; curves 5 and 7 represent the corresponding numerical calculations for a discrete
chain. Curves 2 and 4 are the theoretical curves based on Eq. �3� for a sonic vacuum with a Young’s modulus equal to 1460 and 600 MPa,
respectively. Curves 6 and 8 represent the corresponding numerical calculations for these cases. �b� Comparison of the experimental values
�shown by solid dots� with the curves obtained from the long wave approximation. Curves 1–4 in �b� are the same as in �a�.
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type pulse caused by impact at a short distance from the
impacted side �1,4,18�. To check if the PTFE-based strongly
nonlinear phononic crystal exhibits this property, impact by a
striker with a larger mass �Al2O3 cylinder 0.47 g� was em-
ployed to create a longer initial shock pulse in chains of
different lengths. This impact results in an incoming pulse
shape at the entrance of the system with the rise time equal-

ing 50 
s and an initial decay with the characteristic expo-
nential behavior A exp�−0.0185t�, where the time �t� is mea-
sured in microseconds, starting from the peak of the signal
with amplitude A. The total duration of the incident signal is
equal to 370 
s. The result for the short chain composed of
11 PTFE particles is presented in Fig. 5�a�.

It is important to note that if exponential curves are drawn
through the soliton maxima, corresponding to the force his-
tory at a given point �in Fig. 5 this point corresponds to the
wall�, they will depend on the position of the sensor due to
the dependence of soliton speeds on amplitude. The expo-
nential decays corresponding to the experimental data and
numerical calculations at the wall are Ae exp�−0.0067t� and
An�exp−0.0059t� �time is measured in microseconds�. The
absolute values of coefficients in these exponents are about
three times smaller than in the incident pulse �0.0185� due to
the dependence of soliton speeds on amplitude. Despite the
evident attenuation in experiments �AeAn� the correspond-
ing exponents for envelope curves in experimental data and
numerical calculations are close to each other. This suggests
that the attenuation of the solitary waves is not strongly de-
pendent on their amplitudes at the investigated range of am-
plitudes.

A chain of smaller diameter PTFE particles �2.38 mm�
was also investigated to determine the diameter dependence
of the strongly nonlinear behavior of the PTFE-sphere-based
sonic vacuum and its dissipative properties. It should be
mentioned that based on the Hertz law the radius of the con-
tact area decreases with decreasing particle radius under the
same force. The experimental results are presented in Fig.
6�a� for short duration of shock loading �impact by a 2 mm
diameter steel ball with a mass about 2.3 times that of the
PTFE particle� and for relatively long duration of impact
induced by a PTFE ball with a diameter 4.76 mm and mass
0.123 g �Fig. 6�c��.

III. NUMERICAL CALCULATIONS

It was shown previously �1,2,4,10,14,18� that wave propa-
gation in a 1D system of linear elastic beads can be described
considering particles as rigid bodies connected by nonlinear
springs according to the Hertz law �Eq. �7�� for contact in-
teraction of spheres �38,39�:

TABLE I. Experimental data for amplitude, speed, duration, and normalized width of solitary wave in the
PTFE chain composed of particles with diameter 2R=4.76 mm. Numerical data for discrete chains are also
presented for comparison.

Experimental data Numerical results

Fm �N� Duration �
s� Vs �m/s� L /2R Vs �m/s� L /2R �at 0.2%� L /2R �at 4%�

5 153 168 5.4 190 5.4 4.0

2 164 152 5.2 164 5.7 4.1

0.6 233 106 5.2 137 6.2 4.3

0.1 326 97 6.6 109 7.8 5.3

0.06 360 88 6.7 103 8.6 5.7

FIG. 4. �Color online� Solitary waves in PTFE chain generated
by PTFE ball striker with a velocity of 2 m/s. �a� Incident and
reflected solitary waves, and force on the wall detected experimen-
tally in the chain of 21 PTFE beads with diameter 4.76 mm. The
curves represent force vs time detected by the sensor embedded into
the ninth ball from the wall �top curve�, by the sensor in the fifth
ball from the wall �middle curve�, and at the wall �the vertical scale
is equal to 0.5 N�. �b� Numerical calculations for a discrete chain
under conditions corresponding to experimental conditions in �a�.
Curves represent the average value of the forces acting on the top
and bottom contact of each sensor. Grid scaling on the vertical axes
is 2 N.
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F =
2E

3�1 − �2�� R1R2

R1 + R2
�1/2

��R1 + R2� − �x1 − x2��3/2. �7�

A system of second order differential equations was reduced
to first order equations �1,4,18� and numerical calculations
were performed using MATLAB.

For comparison with experiments we calculated an aver-
age compression force F= �F1+F2� /2 for solitary waves
based on the compression forces on the particle contacts
�F1 ,F2�. Both of these plots are shown in Fig. 2�b�. In our
calculations we also used the Hertz law for PTFE particle
interaction. We used different values of elastic modulus and
Poisson ratio equal to 0.46 �34,40�. The interaction between
the flat wall and last particle was also described by the Hertz
law with an elastic modulus of 115 GPa and Poisson ratio of
0.307 for red brass �Cu85Zn15�. The Hertz law was also used
to calculate the interaction between the alumina impactor
�E=416 GPa, �=0.231� and the first PTFE particle. No dis-
sipation was included in the numerical analysis. The gravita-
tional force acting on particles, causing initial nonuniform
precompression in the chain increasing toward the wall, was
included in the calculations. The linear momentum �before
interaction with a wall� and energy were conserved with a
relative error of 10−12% and 10−8%. Results of the numerical
calculations modeling our experimental setup and conditions
are shown in Figs. 2�b�, 2�c�, and 3; see the corresponding
curves in Figs. 4�b�, 5�b�, 6�b�, and 6�d�.

IV. DISCUSSION

PTFE is a polymeric viscoelastic material with a strong
strain rate sensitivity �41� and exceptionally low elastic
modulus �40�. At normal conditions the Young’s and flexural
moduli for PTFE are in the range of 400–750 MPa and the
Poisson ratio is 0.46 �34,40,42�. This property can be very
attractive for ensuring a very low speed of soliton propaga-
tion and tunability of the system. But it is not evident that a
chain formed from this type of beads will support strongly
nonlinear solitary waves as do chains made from typical lin-
ear elastic materials like stainless steel �2,10,14�. In particu-
lar, the role of dissipation and deviation from a linear elastic

law �41� for PTFE under high strain and high strain rate
deformation in the contact area with high gradients of strain
is the primary concern. In the present study, the strains ob-
tained were up to 0.06, based on estimation of maximum
compressive stresses in the center of the contact on the order
of 80 MPa at a maximum force approximately equal to 5 N.
The typical strain rates were approximately 4	102 s−1 and
the compressive strains at the center of contact were about
0.06 decreasing to zero at a distance about 170 
m.

Beads made from nylon with elastic modulus six times
larger than that for PTFE demonstrated a Hertz type interac-
tion law �14�. Chains made of these beads supported propa-
gation of strongly nonlinear solitary waves with amplitudes
in the range 1–33 N. In our experiments we extended the
range of amplitudes of solitary waves toward far smaller am-
plitudes by more than an order of magnitude, down to
0.03 N. The dynamic behavior of sonic vacuum type systems
at such low amplitudes is very interesting especially in view
of potential practical applications related to noise reduction
in the audible acoustic range, acoustic lenses, and delay
lines, and for investigation of the validity of the Hertz law at
very low displacements.

Furthermore, one of the distinguishing features of sonic
vacuum systems is a strongly nonlinear dependence of the
solitary wave speed on amplitude and precompression �Eqs.
�3� and �4��, which are the important factors in imparting
tunability of various properties of these systems, for ex-
ample, in delay lines or acoustical lenses. The dependence of
the solitary wave speed on the force amplitude �Fm�, based
on Eqs. �4� and �3�, is shown in Figs. 3�a� and 3�b� �curves 3
and 4, respectively� with an elastic modulus equal to
600 MPa �43�. Results of the numerical calculations for a
discrete chain are also shown in Fig. 3�a� at the same value
of elastic modulus �see curves 7 and 8�. It is clear that the-
oretical and numerical approaches result in very close values
of the speeds in the given interval of amplitudes. A notice-
able deviation of the experimental data from curve 1 in Fig.
3�b� was observed for low amplitude solitary waves. Com-
parison of the solitary wave profiles and speeds in a discrete
chain and in a continuum approximation for different nonlin-
ear interaction laws is considered in �17,29�.

FIG. 5. �Color online� Experimental and theoretical results demonstrating that a short chain of PTFE beads with a diameter 4.76 mm
supports a train of solitary waves induced by an alumina striker with a mass equal to four times the mass of the particle. �a� Force detected
in experiment by the sensor mounted at the wall supporting an 11-PTFE-particle chain, striker velocity 0.44 m/s, vertical scale 1 N. �b�
Numerical calculations corresponding to experimental conditions in �a�, including gravitational precompression; vertical scale is 1 N, elastic
is modulus 1.46 GPa.

DARAIO et al. PHYSICAL REVIEW E 72, 016603 �2005�

016603-6



It is evident that there is a large difference between ex-
perimental values of the soliton speed obtained in numerical
calculations and in the long wave theory for large amplitudes
of force if the value of the Young’s modulus is taken as
600 MPa �43�. If 400 MPa was used for the PTFE elastic
modulus �42�, the difference between experimental speeds at
high amplitude and predicted values based on the long wave
approximation �or on numerical calculations� would be even
more dramatic.

It should be mentioned that the dependence of shock
wave speed us on particle velocity up in polymers �Hugoniot-
curves in us�up� coordinates� extrapolated to bulk sound
speed results in significantly higher values than the sound
speed at normal conditions measured using ultrasonic tech-
nique. This well known discrepancy indicates a rapidly vary-
ing change of compressibility at low values of shock ampli-
tudes �44�. For PTFE, the extrapolated value of bulk speed cb
from a Hugoniot curve gives a value of 1.68 km/s in com-
parison with 1.139 km/s from ultrasonic measurements. Us-
ing cb=1.68 km/s from extrapolated Hugoniot measure-
ments and Poisson ratio 0.46, we obtained a value of Young’s
modulus equal to 1.46 GPa based on relations for elastic
solids �45�. Ultrasonic data for the same material give a
value of the elastic modulus equal to 704 MPa �45�. The
calculated theoretical and numerical data for solitary wave
speed versus amplitude using an elastic modulus of 1.46 GPa
are presented in Fig. 3�a� �see curves 1, 2, 5, and 6�. When
comparing the analytical data �curves 1 and 2 in Figs. 3�a�
and 3�b� at E=1.46 GPa� with the experimental data �in Fig.

3�b�� we can see that there is a better agreement between the
experimental results and the calculated speed of solitary
waves at high amplitude.

Calculation with an elastic modulus of 1000 MPa results
in a reasonable correspondence between experimental data
and calculation in the lower range of investigated force am-
plitudes of solitary waves. This suggests that the elastic
modulus of PTFE is likely to be stress and strain rate depen-
dent.

In a sonic vacuum, the solitary wavelength does not de-
pend on amplitude; it depends on the behavior of the inter-
action force �17,18�. In the case of a power law Hertz inter-
action �n=3/2, Eq. �6�� this length is equal to five particles.
The properties of solitary waves were used to establish the
validity of the Hertz law for different materials �14�. Mea-
suring solitary wave speeds and durations in our experiments
allows straightforward calculation of solitary wave widths
corresponding to different amplitudes �see Table I�.

In the experiment corresponding to Fig. 4�a�, for example,
the speed of the leading solitary wave �with amplitude about
2 N� was measured using the fifth and ninth particles from
the wall and was found to be 152 m/s. The estimation based
on the peak-to-peak measurements between the sensor in the
fifth particle and the wall gave a similar value. The duration
of solitary wave was about 164 
s resulting in a length of
solitary wave equal to 5.2 times the diameter of the PTFE
particle �Table I�. This is very close to the predicted length of
the solitary wave in the long wave approximation, equal to
five particle diameters �1,4,18�. The measurement of aver-

FIG. 6. �Color online� The experimental and theoretical results demonstrating that a PTFE chain of smaller particles with 2.38 mm
diameter supports solitary waves and oscillatory “shock” waves modified by dissipation in experiments. �a� The leading solitary wave with
an oscillatory tail detected at the wall generated in a chain of 18 smaller PTFE balls �0.016 g� �the velocity of the 2 mm diameter steel ball
impactor �0.036 g� was 0.89 m/s�. �b� Numerical calculations corresponding to experimental conditions in �a�, including gravitational
precompression; elastic modulus 1.46 GPa. �c� Oscillatory “shock” wave detected at the wall generated in a chain of 18 PTFE balls,
impacted at velocity 0.89 m/s with a 5 mm diameter PTFE ball �0.123 g�. �d� Train of solitary waves detected in numerical calculations
corresponding to experimental conditions in �c�, including gravitational precompression; elastic modulus 1.46 GPa.
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aged force using sensors embedded into the particle results in
a slightly longer pulse in comparison with pulse duration
based on the contact forces �Fig. 2�b��.

It is clear from the experimental data that the widths of
solitary waves with relatively large amplitude are close to the
predicted value of five particle diameters based on the Hertz
interaction law. Numerical analysis of a solitary wave in a
sonic vacuum demonstrated that the energy contained in five
particles is equal to 99.999 996% of the total energy of the
solitary wave. The distribution of velocities of particles in a
solitary wave including more than five particles was ana-
lyzed in �16,46�. It should be mentioned that these widths do
not depend on the elastic modulus. The widths of the solitary
waves tend to be wider at lower amplitudes of the propagat-
ing signals �Table I�. This may be due to the influence of
gravitational precompression closer to the impulse ampli-
tude, which drives the system away from the strongly non-
linear limit, producing broader solitary pulses tending to the
weakly nonlinear regime described by solitary waves of
Korteweg–de Vries equation �4,18,25�. Numerical calcula-
tions performed in this work demonstrated a similar depen-
dence of solitary widths on the amplitudes seen in Table I.

It is evident from the comparison between Fig. 4�a� and
Fig. 4�b� that numerical calculations of the behavior of a
discrete system and experimental results are in close agree-
ment with respect to the signal amplitudes and time durations
between corresponding pulses. It is noted, however, that the
amplitude of the reflected solitary wave recorded by the sen-
sor inside the ninth bead is significantly smaller than the
amplitude of the incident wave. This is apparently due to the
presence of dissipation in experiments, which was not taken
into account in numerical calculations and will be addressed
in future research.

From the preceding discussions it is apparent that a chain
of low modulus PTFE beads also supports the propagation of
a strongly nonlinear solitary wave, which is yet another re-
alization of the sonic vacuum type of phononic crystal with
exceptionally low speed of the signal.

Another remarkable feature of a sonic vacuum type sys-
tem is the very fast decomposition of the longer initial pulse
into a train of solitary waves �1,2,4,17,18�. Apparently this
phenomenon can be obscured by the strong dissipation in the
system. To check if this property is also demonstrated by a
chain of PTFE particles, we used a striker mass �ms

=0.47 g� that was higher than the mass of the particles in the
chain to create a longer incident pulse. Usually the number
of solitary waves with significant amplitude is comparable to
the ratio of the striker mass to the mass of the beads in the
chain �1,4,17,18,28�.

The results of this experiment are shown in Fig. 5. It is
evident that this Teflon-based sonic vacuum also demon-
strates very fast decomposition of the initial impulse on a
distance comparable with the soliton width �Figs. 5�a� and
5�b�� and a clear tendency of signal splitting is very notice-
able already after only ten particles. The mass of the striker
was chosen to be about four times that of the particles in the
chain, expecting a decomposition of the initial triangular
pulse into a train of four solitary waves. It should be men-
tioned that the number of solitary waves may be significantly
larger if smaller amplitudes are included �17,46�. This ex-

ample also demonstrates that a short duration impact on
highly nonlinear sonic vacuum type ordered periodic systems
results in a train of solitary waves instead of the intuitively
expected shock wave. An increase of the duration of impact
results in a shock wave impulse with an oscillatory structure
where the leading pulse can be a KdV type solitary wave for
a weakly nonlinear chain or a strongly nonlinear soliton with
finite width for the strongly nonlinear case �1,4,18�. Similar
qualitative agreement of the experimental results and nu-
merical calculations was found for all investigated conditions
of impact.

Previous experimental work �2,7,8,10,14� with chains of
steel beads, acrylic disks and spheres, and glass, brass, and
nylon beads validated the prediction of a strongly nonlinear
solitary wave as a stationary solution of the strongly nonlin-
ear wave equation �Eq. �1��. In those cases, the amplitude of
the maximum force in the solitary wave was at least thirty
times greater �1 N for nylon beads� than the one obtained in
this paper for PTFE beads �0.03 N�. This and the higher
elastic modulus of nylon resulted in higher speeds of signal
propagation �the minimum reported speed was 235 m/s for
nylon beads �14��. Furthermore, PTFE is a very versatile
viscoelastic material. It is widely biocompatible and has a
very low friction coefficient and a very low elastic modulus,
which ensures applicability in a large variety of engineering
solutions. As a result, we were able to experimentally
achieve a speed of signal propagation of 88 m/s for a force
amplitude of 0.06 N �Table I�, which is more than two times
smaller than the speed of solitary wave detected for nylon
beads �14� and more than three times smaller than the sound
speed in the air at normal conditions. In principle, sonic
vacuum type media of different structures �Hertzian and non-
Hertzian� can support solitary waves with indefinitely small
amplitude and speed of propagation. In the future, it is not
unreasonable to expect that a sonic vacuum type system
which supports detectable solitary waves with force ampli-
tude similar to the one investigated in this paper with a speed
of the order of magnitude of 10 m/s or lower could be de-
signed using materials with tailored elastic properties.

Finally, it is important to investigate the influence of par-
ticle size on the system behavior for application purposes. In
fact, smaller size of the particles composing the PTFE-based
strongly nonlinear system results in different stresses and
strain rate conditions in the contact area which may affect the
system behavior. We conducted experiments with smaller di-
ameter PTFE balls �2.38 mm� to check the validity of the
strongly nonlinear theory. Experimental and numerical re-
sults are presented in Fig. 6. In the experiments, pulses were
generated by impact of a 2 mm diameter steel ball �0.036 g,
Figs. 6�a� and 6�b�� and a 5 mm diameter PTFE ball
�0.123 g, Figs. 6�c� and 6�d�� at velocity 0.89 m/s. Numeri-
cal calculations did not account for the effects of dissipation.
It is evident that the smaller diameter PTFE particles do
support the sonic vacuum type behavior, although in this
case the effect of dissipation appears to be more significant.
The influence of dissipation on dynamics of solitary waves in
strongly nonlinear discrete systems was considered in
�20,26�. The effect of dissipation is likely to be responsible
for the tail present after the second solitary waves formed in
experiments �Fig. 6�a��, and delays the solitary wave split-
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ting in experiments in comparison with numerical results
�compare Fig. 6�a� and 6�b� and Fig. 6�c� and 6�d��.

V. CONCLUSIONS

Propagation of impulses in one-dimensional strongly non-
linear phononic crystals assembled from PTFE spheres was
investigated for different conditions of loading and geometri-
cal parameters. It was demonstrated that the chains of PTFE
beads with different diameters support the Hertzian behavior
with very low signal propagation speed due to its exception-
ally low Young’s modulus and despite the viscoelastic nature
of PTFE. Single solitary waves and decomposition of the
signal into trains of solitary waves with amplitude more than
one order of magnitude smaller than previously reported

were observed. The small amplitude solitons broke the
“sound barrier,” having a speed of propagation well below
sound speed in air. Single solitary waves and trains of
strongly nonlinear solitary waves excited by impact were
investigated experimentally and were found to be in reason-
able agreement with numerical calculations based on the
Hertz interaction law with Young’s modulus 1000 MPa for
lower amplitudes and 1460 MPa for higher amplitudes of
signals, both being significantly higher than its value in nor-
mal conditions.
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