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Additive equivalence in turbulent drag reduction by flexible and rodlike polymers
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We address the “additive equivalence” discovered by Virk and co-workers: drag reduction affected by
flexible and rigid rodlike polymers added to turbulent wall-bounded flows is limited from above by a very
similar maximum drag reduction (MDR) asymptote. Considering the equations of motion of rodlike polymers
in wall-bounded turbulent ensembles, we show that although the microscopic mechanism of attaining the MDR
is very different, the macroscopic theory is isomorphic, rationalizing the interesting experimental observations.
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I. INTRODUCTION

Turbulent flows in a channel are conveniently discussed
for fixed pressure gradients p’=-dp/dx, where x,y, and z
are the lengthwise, wall-normal, and spanwise directions, re-
spectively [1]. The length and width of the channel are usu-
ally taken much larger than the midchannel height L, making
the latter a natural rescaling length for the introduction of
dimensionless (similarity) variables. Thus the Reynolds
number Re, the normalized distance from the wall y*, and
the normalized mean velocity V*(y*) (which is in the x di-
rection with a dependence on y only) are defined by

Re=L\p'Liv,, y'=yRe/L, V'=VNp'L, (1)

where v, is the kinematic viscosity. Drag reduction by poly-
mers in a channel geometry is bounded by two asymptotes
[2]. One is the von Kdrmdn log law of the wall for Newton-
ian fluids,

Vi(y*) = Killn yt+B for y* = 30. (2)

While the log law can be derived using several approaches,
the von Kdrmén constant xx =~0.436 and intercept B~6.13
are only known from experiments and simulations [1,3]. The
second asymptote is the maximum drag reduction (MDR)
where the velocity field assumes another log law of the form

1
VH(y") = —In(e kyy*) for y* = 12. (3)
Ky

This law, which had been discovered experimentally by Virk
(and hence the notation ky), was derived theoretically for
flexible polymers in [4-7]. The actual velocity profile in the
presence of polymers is bounded between these two asymp-
totes: for sufficiently high values of Re and concentration of
the polymer, the velocity profile in a channel is expected to
follow the law (3). For finite Re, finite concentration, and
finite extension of the polymers, one expects crossovers back
to a velocity profile parallel to the law (2), but with a larger
mean velocity (i.e., with a large value of the intercept B).
The positions of the crossovers are not universal, and they
are understood fairly well [7,8].

In this paper, we address the experimental finding that
rigid rodlike polymers appear to exhibit a very similar MDR
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(3) as flexible polymers [9]. Since the bare equations of mo-
tion of rodlike polymers differ quite significantly from those
of flexible polymers, one needs to examine the issue care-
fully to understand this similarity, which was termed by Virk
“additive equivalence.” The aim of this paper is to under-
stand this additive equivalence on the basis of the equations
of motion.

In Sec. II, we address the theory of drag reduction by
rigid polymers. In Sec. II A, we consider the equations of
motion of rigid polymers (or fibers) in the presence of strong
wall-bounded turbulence. We explain the interesting differ-
ences between the interaction of flexible and rodlike poly-
mers with turbulent fluctuations. In Sec. II B, we discuss the
difference in statistics between flexible and rodlike polymers
near thermodynamic equilibrium (where the velocity field is
laminar, and fluctuations are thermal). Section II C is de-
voted to the statistics of rodlike polymers in turbulent flows
with a strong shear. In Sec. II D, we address the important
issue of how to evaluate the various cross-correlation func-
tions between the polymer conformation tensor and the tur-
bulent fluctuations. These objects have a seminal role in the
theory of drag reduction by rodlike polymers. In the follow-
ing Secs. I E and II F, we demonstrate that in spite of the
very significant microscopic differences between flexible and
rodlike polymers, the balance equations for momentum and
energy have exactly the same form as the corresponding
equations for flexible polymers. The “additive equivalence”
follows from this observation. In Sec. III, we summarize the
paper and discuss further the correspondence between drag
reduction by flexible and rodlike polymers.

II. THEORY OF DRAG REDUCTION BY RODLIKE
POLYMERS

A. Basic equation of motion
1. Hydrodynamic equations for the polymeric solutions

The hydrodynamic equations for an incompressible fluid
velocity U= U(t,r) in the presence of rodlike polymers have
the form

DU
E=V0AU—VP+V'0', (4a)
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0=V .U. (4b)

Here the fluid density is set to unity (0=1), D/Dt is the
substantial derivative

D J
—=—+U-V, (5)
Dt ot

p=p(t,r) is the pressure field, v, is the kinematic viscosity
of the carrier fluid, and o=o0,, is an extra stress tensor
caused by the polymers.

The calculation of the tensor o for rigid rods is offered in
the literature [10], subject to the assumptions that the rodlike
polymers are massless and have no inertia. In other words,
the rodlike polymers are assumed to be at all times in local
rotational equilibrium with the velocity field. Thus the stress
tensor does not have a contribution from the rotational fluc-
tuations against the fluid, but rather only from the velocity
variations along the rodlike object. Such variations lead to
“skin friction,” and this is the only extra dissipative effect
that is taken into account [11-13]. The result of these con-
siderations is the following expression for the additional
stress tensor:

O = 6vpnny(nn;S;),  rodlike polymers, (6)

where v, is the polymeric contribution to the viscosity at
vanishingly small and time-independent shear; v, increases
linearly with the polymer concentration, making it an appro-
priate measure for the polymer’s concentration. The other

quantities in Eq. (6) are the velocity gradient tensor
SE(VU)T:} Sab=(9Ua/’9xba (7)

and n=n(t,r) is a unit (n-n=1) director field that describes
the polymer’s orientation. Notice that for flexible polymers,
the equation for o, is completely different from Eq. (6),

Tup = VpYplalps  flexible polymers. (8)
Here 7, is the polymeric relaxation frequency. The difference
between Egs. (6) and (8) for o, for the rodlike and flexible
polymers reflects their very different microscopic dynamics.
For the flexible polymers, the main source of interaction with
the turbulent fluctuations is the stretching of the polymers by
the shear. This is how energy is taken from the turbulent
field, introducing an additional channel of dissipation with-
out necessarily increasing the local gradient. In the rigid
case, the dissipation is only taken as the skin friction along
the rodlike polymers. Having in mind all these differences, it
becomes even more astonishing that the macroscopic equa-
tions for the mechanical momentum and kinetic energy bal-
ances are isomorphic for the rodlike and flexible polymers,
as is demonstrated below.

2. Equation for the orientation field of dilute rods solution

The equation for n(r,7) has the form
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Dn D
—=(6-nn)-S-n=> Ma
Dt Dt

= (8~ nuni)Sijnj- )

This equation conserves the unit length of the director n. The
theory is written more compactly in terms of the (normal-
ized) conformation tensor

T\’_EnnﬁRabEnanb. (10)
The equation of motion of this object follows from Eq. (9),

DR,
Dt

=S,iRip+SpiRia—2 Rup(SiiRy)).- (11)

In terms of R, we can rewrite o, Eq. (6), as

U=6VPR TI{RS}: Uab=6VpRab(RijSij)' (12)

B. The statistics of rodlike polymers near thermodynamic
equilibrium

In order to understand the interaction of rodlike polymers
with wall-bounded turbulent fluctuations, we need to start
along the well charted road of dynamics near equilibrium,
and examine the solution of these equation for strong shears.

1. Equations of motion near thermodynamic equilibrium

Consider the shear S(r,t) in Eq. (9) as independent of
space and time, and replace S(r,r)=S. The near-
equilibrium rodlike polymer (or fibers) experiences rota-
tional disorder due to local thermal velocity fluctuations that
can be considered as a Brownian motion in the space of
angles. As usual, the effect of thermal fluctuations can be
mimicked by adding to the right-hand side (RHS) of Eq. (9)
a Langevin random force f(¢). When the rigid polymer is
symmetric, the hydrodynamics can depend only on the dy-
adic product rn. By pre- and postmultiplying the equation
above by n,, and taking average over the Brownian fluctua-
tions, we have the transport equation for the second moment

R _,=n_n,, where an overbar indicates an average over the
ab a'tb
polymer configurations,

PR 4,
D - SaiRip+ SpiRig = 28:/RijRap = 6¥8| Rap— 3 )

(13)

where g is the Brownian rotational frequency, proportional
to the temperature. The derivation of this equation in the
literature employs the closure

RinahSab = 7éij7§'absabv (14)
which is rationalized in [10].
2. Solution for a simple shear flow
For a simple shear, the velocity gradient satisfies
Sub=S5ax5by' (15)

Equation (13) in the stationary, space-homogeneous case
turns into
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Der( 5ax7€yh + 5bx7€ya - 27?11}77?')@') = 2(37€ah - 5{117) .
(16)

Here we introduces the Deborah number for the rodlike poly-
mers,

De, = S/vg. (17)

Equation (16) was solved in the limit De,>1 [10] with the
final results

_ 21/3
> Ryy - De23’
Ir

Ru~1> Ry~
T

L
2R2, = R Ryy. (18)

It is interesting to compare the statistics of rodlike and
flexible polymers in strong laminar shears. For example (cf.
[6] and references therein),

R,, ~De/”R,,, rodlike, (19)

Ry~ DefR,,, flexible. (20)

yy?

Here the Deborah number for flexible polymers De; is de-
fined with the flexible polymer relaxation frequency 7,
Deg=S/7,. The different dependence on Deborah number
stems from the very different microscopic dynamics that
leads to different expressions for the polymeric stress tensor
a,, for the rodlike and flexible polymers.

C. Statistics of rigid rods in turbulent flow with strong shear

In the presence of turbulence, the fluctuations are no
longer thermal and the statistical description of the polymer
orientation is accomplished with the mean values

Rab = <,R’ab>’ (21)

where the angular brackets denote an average over the tur-
bulent fluctuations. For well developed turbulence, it is ex-
pedient to use the Reynolds decomposition in which the ve-
locity field U(r) is written as a sum of its average (over time)
and a fluctuating part,

Ur,)=V(y) +u(r.n, V(y)=Ur.m). (22)

For a channel of large length and width, all the averages, and
in particular V(y)=V(y)X, are functions of y only. Corre-
spondingly, the shear is written as a sum of the mean shear

S, and fluctuating shear s(r,7) with zero mean,
§=(S(r.1), Srn=S+sr1), (s(r1))=0. (23)

With these notations and after averaging over the statistics of
turbulence, Eq. (11) takes the form

DR,
=A_,—-B 24
< Dt > ab ab» ( )

where A,, contains all the terms in which the mean shear
appears explicitly, and B, contains only the fluctuating part
of the shear,
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Ay = SuRip+ SpiRiy =2 SRR,

By = 2(Rp(s;/Ri))) = (SaiRin) = ($piRia)- (25)

In a steady state in channel geometry, the left-hand side
(LHS) of Eq. (24) contains only one nonvanishing term,
which is (- VR). This term is responsible for the turbulent
part of the physical flux of R. In all our derivation below,
we will assume that such terms are small compared to all
“local” contributions to the balance equations for the mo-
mentum and energy. This assumption will have to be tested a
posteriori.

With this in mind, Eq. (24) reads simply A_,,=B,,. This
will allow us to estimate the crucial correlation functions that
appear in the theory of drag reduction below. The LHS of
this relation can be made explicit in channel geometry; using
Eq. (15), we find

Aab = S( 5anyb + 5beya - 2<Rathy>)~ (26)

Using definition (10) and constraint |n|=1, this equation can
be rewritten in components as

Ap=2 S(Ry(Ryy+R.0)), (27a)
Ay =—2 SRR, (27b)
An==28(RyR.), (27¢)

Ay =S(R,(1-2R)). (27d)

In writing down expressions for B,,, we will make ex-
plicit use of the expected solution for the conformation ten-
sor in the case of large mean shear, 52> (s%). In such flows,
we expect a strong alignment of the rodlike polymers along
the streamwise direction x. The director components n,, and
n, are then much smaller than n, =~ 1. For large shear, we can
expand n, according to

1
nxz\l—ni—nle—i(n§+n§). (28)

We note that for n,=1 (when the shear is actually infinite)
the object B,;, vanishes since (s)=0. We therefore represent
B, in order on n,~n,, keeping up to second order. We will
show below that it is important to keep terms of second order
since some of them have the same magnitude as terms which
are formally of first order in the smallness. All terms of third
order are smaller in magnitude than the terms that we keep.
The first two orders read

B =2(s, Ryy + 5. Ro), (292)
Bl ==2(s,,R,), (29b)

B =-2(s,R.). (29¢)

B =(R (50— 5,,) = RS, (29d)
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Bg) = 2(R ) (Syy = 8x) + Ry (5, = 5y) + Ry(sy,+5,)),

(30a)
B =2(R (50— 5y,) = Ry28,0). (30b)
B =2(R (55— 52) = Ryusoy). (30c)

BE) = (R, (50 +35,) + sy, + Ry(s.. + 25.0)).
(30d)

Equations (27), (29), and (30) serve as a basis for further
analysis.

2z yz

D. Closures and orders of magnitude

1. Statistical objects of interest

A theory of turbulent channel flows of Newtonian fluids
can be constructed in terms of the mean shear S(y), the Rey-
nolds stress W(y), and the kinetic energy K(y); these are
defined, respectively, as

S(y) =dv(y)idy, W(y)=-(uu,), K(y)={|ul/2.

31)

In the rodlike polymer case, the additional stress tensor o;;
and its various correlation functions need to be considered as
well. For that purpose, we turn now to the analysis of the
necessary statistical objects.

First note that the expansion (28) allows us to express all
products R, R .4=n.n,n.n, in terms that are linear in R, up
to third-order terms in n,~n,. For example,
Ry ~1-2(R,+R.), Ry=R

X yy?

RoyRe:=Ryee RyRyj=Ry 8,8, etc.  (32)

yz

Actually we have used these estimates in the derivation of
Egs. (29a2)—(29d) and (30a)—(30c).

As a further preparation for the theory, below we analyze
various statistical objects in the turbulent environment and
estimate their magnitudes. Based on experimental observa-
tions and DNS data, we assume that statistics of turbulent
fluctuations do not deviate too much from isotropy. Explic-
itly,

(2~ ()~ () ~ (D)~ - (33)

Here and below, the notation ~ means “the same order of
magnitude (i.e., correct to leading order up to coefficients of
the order of unity).”

Second, consider correlation functions of turbulent fluc-
tuation of the shear, s;;, i.e., (s;;s;). At distance y from the
wall the correlation functions are dominated by eddies of
size y. Thus

(sijsee) ~ K)/y?  for all ij,kl. (34)

Third, consider the cross-correlation functions of the ten-
sor R with the turbulent shear s. For this goal, take the
leading terms on the LHS and the RHS of xy, Egs. (27d) and
(294),
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f_

VK
SR, | = B = Ry (35)

where on the RHS we have used the Cauchy-Schwartz in-
equality and Eq. (34). The notation < means “~ in the sense
defined above, or having a smaller order of magnitude.” Be-
low (cf. Sec. Il F), we show that this estimate is saturated.
Therefore, expecting that Ryy~R§y, we have

VK
SRy~ —. (36)
y

This estimate can be recast into an intuitive form, which is

<\'S>

=(nn,) ~ (37)
This is in direct accord with the understanding that the de-
gree of deviation from perfect alignment of the rodlike poly-
mers (R,.,=1) is proportional to the turbulent fluctuations
relative to the mean shear.

Taking now the leading terms in yy, Egs. (27b) and (29b),
we have

lB(l

SRy Roy) = = 27wy

= (5, Ry (38)

Estimating (R,,R,,) as ~R,,R
have

- and using Eq. (36), we

=
VK
<Syxny> -~ Ryy_ (39)
Notice then the Cauchy-Schwartz inequality for the same
correlation,

!/_

VK
<syxny> = ny? s (40)

gives a much higher upper bound than the real estimate Eq.
(39). This shows how important is the use of the equations of
motion in estimating various correlation functions; some-
times the direct Cauchy-Schwartz estimate saturates, and
sometimes it is a gross overestimate. The reason why differ-
ent correlations have different orders of magnitude can be
traced back to Egs. (27a)—(27d), which indicate that the di-
agonal components of A are cubic in the small parameter
n,~n, while A,, is quadratic.

Notlce that the correlator (R;;s;;) has the contributions of
the type of (s,,R,,) and (s,,R, ) Both of them have the
same estimate Ryyv'}/ y. Therefore, we can write

I
/

VK
<'R,~jsij -~ Rny. (41)

E. The momentum-balance equation

At this point, we can apply our estimates in the context of
the balance equations for the mechanical momentum and the
energy. We begin with the former, which is exact. It reads

016305-4



ADDITIVE EQUIVALENCE IN TURBULENT DRAG ...

S+ W+ (o) =p'(L-y), (42)

where p’ =—dp/dx. Near the wall, y<<L and the RHS of this
equation is approximated as p’L, a constant production of
momentum due to the pressure gradient. On the LHS, we
have the Reynolds stress which is the “turbulent” momentum
flux to the wall, in addition to the viscous and the polymeric
contributions to the momentum flux.

Using Eq. (6) and Reynolds decomposition (23), we
compute

(o) =6V R RSy = 6 v [S(RY) + (R Rysip].
(43)

With Eq. (32), the first term on the RHS of this equation can
be estimated as follows:

6 v,S(RL) =\ yR,,S, & =6. (44)

On the other hand, using the estimate (41) one sees that the
second term in the RHS of Eq. (43) is of the same order as
the first one.

Finally, we can present the momentum balance equation
in the form
VS + ¢ 1R, S+ W=p'L. (45)
Another way of writing this result is in the form of an effec-
tive viscosity,

v(y)S+W=p'L, (46)

where the effect of the rodlike polymers is included by the
effective viscosity v(y),

Uy) = vy +civRy,. (47)

F. Turbulent energy balance equation

The effective viscosity that appeared in the momentum
balance equation stems from the nondiagonal component of
the polymeric stress tenser (o). On the other hand, the en-
ergy balance equation involves dissipation effects that stem
from correlations between the polymeric stress tensor and the
fluctuating turbulent shear field, see Eq. (53). We will show
in this subsection that as far as the energy balance equation is
concerned, these effect translate to the same form of the
effective viscosity as the one appearing in the momentum
balance equation.

In considering the balance of energy in a channel flow, it
pays to separate the spatial directions, since we can learn
separate bits of information from each such equation. Intro-
duce the partial kinetic energy density

K =30, KO=K+K+K, @)

and consider the partial energy balance of K,(y),

JK,(y) .

ST R, e 4 &P = W(Y)S(y) 8, (49)

The total density of the kinetic energy at a given distance y
from the wall is,
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IK(y)
— +
gt

dis _ dis
€ - 2 81) ’
a

e 4+ eP = W(y)S(y),

eP=> e, D R,=0. (50)

The various symbols in the last two equations are explained
as follows: The RHS of these equations describes the energy
flux from the mean flow to turbulent fluctuations due to the
correlation between streamwise and cross-stream compo-
nents of the turbulent velocity, known as the Reynolds stress
W, see Eq. (31). Remarkably, in channel geometry this flux
exists only in the equation for the streamwise velocity fluc-
tuations, K.

The term R,(y) is known as the “return to isotropy” [14],
and it vanishes for isotropic turbulence in which K=K,
=K,. Otherwise, it redistributes partial kinetic energy be-
tween different vectorial components and does not contribute
to the total balance (50). A simple model for this term [14] is

—

'K K

RaNV_<Kﬁt—_>' (51)
y 3

As usual, the local “outer scale of turbulence” was estimated
as the distance to the wall y. The order of magnitude estimate
(33) is in accord with the role of this term in returning to
local isotropy.

The term

sgis = VOE (sjz-a), No sum over a, (52)
J

on the LHS of Eq. (49) is the rate of the viscous dissipation,
proportional to the kinematic viscosity of the carrier fluid .
Lastly, the polymer contribution to the energy balance, de-
noted as &b, can be exactly computed as

85 = <0-ajsaj> =6 Vp<saiRai(S ny + sijjk»' (53)

Notice that Egs. (49) and (50) are written “in the local ap-
proximation,” in which the energy flux in the physical space
is neglected. This is consistent with neglecting the term
(u-V'R) in our discussion after Eq. (25). A justification of
this approximation in the problem of drag reduction by poly-
mers is found in [4,5].

Using the expansion (28), we can rewrite the equation for
the dissipation rate eP as a series in the small parameter
n,~n,,

gP= 6Vp<{sxx + [ny(sxy + syx) + sz(sxy + Syx)]l
+[s,, Ry, + 5, Ry, +more], + -+ }
X{SRy+ s+l +[ L+ ... }). (54)

In the square brackets [- -], we displayed all the terms which
are linear in the small parameter. In the square brackets [- -],
we show two quadratic terms, and there are more of them as
indicated. The symbol +--- stands for “higher-order terms.”
In the second curly brackets, the square brackets [---]; and
[-+-], are identical to the corresponding terms in the first
curly brackets. The two leading terms in Eq. (54) are propor-
tional to <s§x> and S(R,,s,,). Using Eqgs. (29d), (34), and
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(35), one sees that both leading terms have the same order of
magnitude, ~K(y)/y*. In fact, we will argue that these two
terms must cancel each other, up to terms of higher-order
contributions ~R, K(y)/ y2.

To see that such a cancellation must exist, we note that
near the MDR we expect the polymer contribution to the
dissipation to balance the production term WS [cf. Eq. (58)
below]. We will show later that this production term is
y-independent (where y is the distance from the wall). On the
other hand, we will show that K(y) is linear in y, making
K/y? very large near the wall. Therefore, WS cannot be bal-
anced by K/y?. To avoid using the final results at this stage,
and nevertheless to see that a cancellation must exist, we can
focus just on the stationary balance Eq. (49) for the y com-
ponent, in which the RHS is zero. Notice also that near the
MDR, the polymer contribution to the energy balance domi-
nates over the viscous dissipation and the nonlinear energy
flux from large to small scales [4—6]. The latter was evalu-
ated in [4] as K*%/y, which is exactly the evaluation of the
return to isotropy term. The conclusion is that near the MDR,

&) =(0y;8,j) = 6 (s, Ryi(S Ry + 53 Rj)) = 0. (55)

This expression can be again arranged in orders of magni-
tude, similarly to Eq. (54),

e} = 60 ({[Ruysyuyt + L5y Ry + 5y Ry Lo+ 0
X{SRy + Sye+ [ 1y + [+ -+ 1.

Here the second curly brackets is the same as the second
curly brackets in Eq. (54). In Eq. (56), we find again the
same two large contributions, i.e., R s, {SR,+s,}+(Lo.t),
where the lower-order terms (l.o.t) have at least one small
factor. Thus these terms must cancel each other, which
means that SR, cancels s,, inside correlation functions. But
these are exactly the terms that appear in the sum of the two
large terms in Eq. (54), and we are therefore justified in
neglecting them, allowing the other terms to share the burden
of balancing WS. We note that this conclusion is justifying a
posteriori the statement after Eq. (35) that the Cauchy-
Schwartz inequality is saturated for the case considered.

An additional way to see that the cancellation must take
place is to examine again the momentum balance equation
(45). As discussed below, the MDR is obtained when the
Reynolds stress term W is negligible compared to the poly-
mer contribution ¢;v,R,,S. But when this happens it means
that

WS < c¢,v,R,,S* ~ clvpK/yz. (56)

Py
Evidently, this means that also in the energy balance equa-
tions WS would be overwhelmed by terms of the order of
K/ yz, which therefore must cancel against each other.

Using our order of magnitude estimates for the remaining
terms, we can therefore conclude that

8p()’) = CZVpRyy(y)K(y)/yz’

where ¢, is another parameter of the order of unity. Return-
ing to the balance equation for the energy, we recall that we
cannot calculate £%5(y) exactly, but we can estimate it rather
well at a point y away from the wall. When viscous effects

(57)
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are dominant, this term is estimated as v(a/y)?K(y) (the ve-
locity is then rather smooth; the gradient exists and can be
estimated by the typical velocity at y over the distance from
the wall). Here a is a constant of the order of unity. When the
Reynolds number is large, the viscous dissipation is the same
as the turbulent energy flux down the scales, which can be
estimated as K(y)/7(y), where 7(y) is the typical eddy turn
over time at y. The latter is estimated as y/b \m, where b
is another constant of the order of unity. Together with Eq.
(57), we can thus write the energy balance equation at point
y as

K(y)

K3/2(y)
avy—y +b———

K(y)

V> W()S(y).

(58)

%] VpRyy(y)

We recognize the important result that the effective viscosity
induced by the rodlike polymers in both the momentum and
the energy balance equation is proportional to R,,. These
balance equations are identical in form to those found for
flexible polymers [4]; this is an important step in understand-
ing the “additive equivalence” discovered by Virk.

To complete the derivation, one adds to the balance equa-
tion the relation between K(y) and W(y), which in the elastic
layer are expected to be proportional to each other,

K=c3W. (59)
It should be stressed that rigorously one can establish this
relation only as an inequality with ¢y =<1, and its use as an
equality (which is common to the derivation of the Newton-
ian log law as well as to the derivation of the MDR in the
flexible polymer case) rests on experimental and simulational
confirmation. Near the MDR, the terms representing the ef-
fect of the polymers in Egs. (45) and (58) are dominant, and
one estimates from the momentum equation R, (y) & 1/8(y).
Using this in Eq. (58) together with Eq. (59), one ends up
with the prediction that S(y)o1/y, leading to a logarithmic
law for the mean velocity. Repeating the derivation of [4] in
wall units, one ends up with the MDR Eq. (3), with the
identification
Ky = cylenyy .- (60)
In this equation, cy and y, are constants that appear in the
Newtonian theory, and cannot change from flexible to rod-
like polymers. The existence of drag reduction is guaranteed,
since ky was shown to be larger than its Newtonian counter-
part kg [4]. The actual value of the slope at the MDR loga-
rithmic law depends nonetheless on the numerical value of
cy. Thus the prediction of the theory is that if ¢y is about the
same in rodlike and flexible polymers, than the slope of the
MDR should be about the same.

For completeness, we reiterate our previous result stating
that the effective viscosity Eq. (47) is predicted to vary lin-
early in the distance from the wall when the system is at the
MDR. This result follows immediately from R,, > 1/5(y) and

S(y)e1/y.
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III. CONCLUSIONS

We have presented a scenario to rationalize the “additive
equivalence” discovered by Virk and co-workers. The main
conclusion of this paper is that although, on the face of it, the
dynamics of flexible and rodlike polymers appear different,
with flexible polymers being able to “stretch” and ‘“‘store”
energy (something that many researchers thought is central
to drag reduction), the effective Reynolds balance equations
for momentum and energy are isomorphic. Accordingly, the
MDR is expected to be the same as long as ¢y of Eq. (59) is
the same.

On the other hand, one expects that the cross-over from
the MDR to the Newtonian plug, which is nonuniversal even
in flexible polymers [7,8], may show significant differences
between rodlike and flexible polymers. Indeed, in friction
coordinates, drag reduction by rodlike polymers appears as
an upper bound on the drag reduction by flexible polymers
[9]. According to the theory of [8], flexible polymers reach
their maximal drag reduction when fully stretched, being
then as effective as rodlike polymers. This is one way of
rationalizing the findings of [9].

To make the difference between the flexible and rodlike
polymers sharper, we note the different y dependence of K(y)
and W(y) in the two cases. In the flexible case, one had a
threshold condition for the onset of drag reduction in terms
of the Deborah number, stating that the typical time scale for
turbulent fluctuations, y/ \/EK(y), is of the order of the poly-
mer relaxation time 7,. This immediately leads to the esti-
mate K(y)~y? and the same for the Reynolds stress. In
the present case, we have estimated SR, ~ \e’%/ v, and with
Riy~Ryy~y we get K(y)~y, and due to Eq. (59) we can
write

K(y) ~ W(y) ~y forrigid rodlike polymers,

K(y) ~ W(y) ~y* for flexible polymers. (61)

We note that this last statement is a sharp prediction of an
important difference between the two drag-reducing univer-
sality classes, a difference that is not at all in contradiction
with the “additive equivalence.” A posteriori we can also see
why the terms of the order of K(y)/y* in Eq. (54) must have
canceled, being divergent as 1/y against a y-independent en-
ergy input W(y)S(y). We hope that this prediction would be
put to experimental or simulational test.
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An additional important difference between rigid and
flexible polymers is that in the latter case an important con-
dition for attaining the MDR was R,,>R,,. In the present
case, we need to guarantee that ¢;v,R,, > v, in order to en-
able the polymer terms to overwhelm the Newtonian terms in
the balance equations. This condition means, however, that
the concentration of the rigid polymer should be large
enough before the MDR is obtained. In the flexible polymer
case, one could reach the MDR conditions even for small
concentrations as long as the Re is large enough and the
Deborah number is large, leading to R,,>R,, [7]. This dif-
ference leads to the observed experimental behavior, where
for flexible polymers the MDR is reached even for small
concentrations and then a crossover back to the Newtonian
plug is found, whereas in rigid polymers that MDR is ob-
tained gradually as the concentration increases; see the fig-
ures in [9] for comparison.

Finally, it is interesting to note that our order of magni-
tude estimates of R;; could be read directly from Egs. (18) by

replacing the thermal mean values 7_2,»J- with turbulent means
R;;/=(R;;) and simply identifying the Brownian frequency
vg in the definition (17) of the Brownian Deborah number
De, with the characteristic turbulent frequency 7y
= V’%Ryy/ y. Put, for example, in the Eq. (18) for R,,, we get

vy
Ry~ 21/3K1/3R%3/[S(y)y]2/3. (62)

Simplifying, this equation reads S°R,,~K(y)/y?, which is
nothing but the square of Eq. (36). All the other orders of
magnitude derived in Sec. II D follow as easily with this
identification. We believe that this is another way to argue
that our estimates are physically sensible and that we have
captured the essence of drag reduction by rodlike polymers
and the nature of the observation of the “additive equiva-
lence.”
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