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Synchronized clusters in coupled map networks. I. Numerical studies
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We study the synchronization of coupled maps on a variety of networks including regular one- and two-
dimensional networks, scale-free networks, small world networks, tree networks, and random networks. For
small coupling strengths nodes show turbulent behavior but form phase synchronized clusters as coupling
increases. When nodes show synchronized behavior, we observe two interesting phenomena. First, there are
some nodes of the floating type that show intermittent behavior between getting attached to some clusters and
evolving independently. Second, we identify two different ways of cluster formation, namely self-organized
clusters which have mostly intracluster couplings and driven clusters which have mostly intercluster couplings.
The synchronized clusters may be of dominant self-organized type, dominant driven type, or mixed type
depending on the type of network and the parameters of the dynamics. We define different states of the coupled
dynamics by considering the number and type of synchronized clusters. For the local dynamics governed by
the logistic map we study the phase diagram in the plane of the coupling constant (€) and the logistic map
parameter (u). For large coupling strengths and nonlinear coupling we find that the scale-free networks and the
Caley tree networks lead to better cluster formation than the other types of networks with the same average
connectivity. For most of our study we use the number of connections of the order of the number of nodes. As
the number of connections increases the number of nodes forming clusters and the size of the clusters in

general increase.
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I. INTRODUCTION

Several complex systems have underlying structures that
are described by networks or graphs and the study of such
networks is emerging as one of the rapidly growing subjects
[1,2]. One significant discovery in the field of complex net-
works is the observation that a number of naturally occurring
large and complex networks come under some universal
classes and they can be simulated with simple mathematical
models, viz. small-world networks [3], scale-free networks
[4], etc. These models are based on simple physical consid-
erations and they give simple algorithms to generate graphs
which resemble several actual networks found in many di-
verse systems such as the nervous systems [5], social groups
[6], World Wide Web [7], metabolic networks [8], food webs
[9], and citation networks [10].

Several networks in the real world consist of dynamical
elements interacting with each other and the interactions de-
fine the links of the network. Several of these networks have
a large number of degrees of freedom and it is important to
understand their dynamical behavior. Here, we study syn-
chronization and cluster formation in networks consisting of
interacting dynamical elements.

Synchronization and cluster formation lead to rich spa-
tiotemporal patterns when opposing tendencies, i.e., the non-
linear dynamics of the maps that in the chaotic regime tends
to separate the orbits of different elements, and the couplings
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that tend to synchronize them, compete. There are several
studies on coupled maps/oscillators on regular lattices as
well as globally coupled networks. Coupled map lattices
with nearest neighbor or short range interactions show inter-
esting spatiotemporal patterns and intermittent behavior
[11,12]. Globally coupled maps (GCM) where each node is
connected with all other nodes, show interesting synchro-
nized behavior [13]. Formation of clusters or coherent be-
havior and then loss of coherence are described analytically
as well as numerically with different viewpoints [14-19].
Chaotic coupled map lattices show beautiful phase ordering
of nodes [20]. There are also some studies of coupled maps
on different types of networks. References [21-23] shed
some light on the collective behavior of coupled maps/
oscillators with local and nonlocal connections. Random net-
works having a large number of connections also show syn-
chronized behavior for large coupling strengths [24-26].
There are some studies on synchronization of coupled maps
on Caley tree [27], small-world networks [28-30], and hier-
archal organization [31]. Coupled map lattice with sine-circle
map gives synchronization plateaus [32]. The analytical sta-
bility condition for synchronization of coupled maps for dif-
ferent types of linear and nonlinear couplings are also dis-
cussed in several papers [33-36]. Synchronization and
partial synchronization of two coupled logistic maps are dis-
cussed at length in Ref. [37]. Apart from this there are other
studies that explore different properties of coupled maps
[38-42].

Coupled maps have been found to be useful in several
practical situations. These include fluid dynamics [43], hy-
drodynamic turbulence [44], nonstatistical behavior in opti-
cal systems [45], convection [46,47], stock markets [48],
ecological systems [49], logic gates [50], solitons [51],
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c-elegans [52], cosmology [53], and quantum field theories
[54].

Here we study the detailed dynamics of coupled maps on
different networks and investigate the mechanism of cluster
formation and synchronization properties. We explore the
evolution of individual nodes with time and study the role of
different connections in forming the clusters of synchronized
nodes in such coupled map networks (CMNs).

Most of the earlier studies of synchronized cluster forma-
tion have focused on networks with a large number of con-
nections (~N?). In this paper, we consider networks with a
number of connections of the order of N. This small number
of connections allows us to study the role that different con-
nections play in synchronizing different nodes and the
mechanism of synchronized cluster formation. The study re-
veals two interesting phenomena. First, when nodes form
synchronized clusters, there can be some nodes which show
an intermittent behavior between independent evolution and
evolution synchronized with some cluster. Second, the clus-
ter formation can be in two different ways, driven and self-
organized phase synchronization [55]. The connections or
couplings in the self-organized phase synchronized clusters
are mostly of the intracluster type while those in the driven
phase synchronized clusters are mostly of the intercluster
type. As the number of connections increases more and more
nodes are involved in cluster formation and also the coupling
strength region where clusters are formed increases in size.
For a large number of connections, typically of the order of
N? and for large coupling strengths, mostly one phase syn-
chronized cluster spanning all the nodes is observed.

Depending on the number and type of clusters we define
different states of synchronized behavior. For the local dy-
namics governed by the logistic map, we study the phase
diagram in the w—e plane, i.e., the plane defined by the
logistic map parameter and the coupling constant.

The paper is organized as follows. In Sec. II, we give the
model for our coupled map networks. We also define phase
synchronization and synchronized clusters. Some general
properties of synchronized clusters in CMNs are discussed in
Sec. III. In Sec. IV, we present our numerical results for
synchronization in different networks and illustrate the
mechanism of cluster formation. This section includes the
study of the phase diagram, Lyapunov exponent plots, be-
havior of individual nodes, floating nodes, dependence on
number of connections, and behavior for different types of
networks. Section V considers the circle map. Section VI
concludes the paper.

II. COUPLED MAPS AND SYNCHRONIZED CLUSTERS
A. Model of a coupled map network (CMN)

Consider a network of N nodes and N, connections (or
couplings) between the nodes. Let each node of the network
be assigned a dynamical variable xt, i=1,2,...,N. The evo-
lution of the dynamical variables is written as

N
5= (1= ) + 2 Csal). (M
ij=1

where x! is the dynamical variable of the ith node at time ¢
and € is the coupling constant. The topology of the network
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is introduced though the adjacency matrix C with elements
C;; taking values 1 or 0 depending upon whether i and j are
connected or not. C is a symmetric matrix with diagonal
elements zero and k;=2C;; is the degree of node i. The fac-
tors (I1—¢) in the first term and k; in the second term are
introduced for normalization. The function f(x) defines the
local nonlinear map and the function g(x) defines the nature
of coupling between the nodes. Here, we present detailed
results for the logistic map,

J&) = pux(1 - x) (2)

governing the local dynamics. We have also considered some
other maps for the local dynamics. We have studied different
types of linear and nonlinear coupling functions and here
discuss the results for the following two types of coupling
functions.

glx) =x, (3a)

g(x) = fx). (3b)

We refer to the first type of coupling function as linear and
the later as nonlinear. Note that the nonlinear coupling func-
tion [Eq. (3b)] is equivalent to a diffusive type of coupling
with the diffusion being equally likely along all the connec-
tions from any given node.

B. Phase synchronization and synchronized clusters

Synchronization of coupled dynamical systems [56-58] is
manifested by the appearance of some relation between the
functionals of different dynamical variables. The exact syn-
chronization corresponds to the situation where the dynami-
cal variables for different nodes have identical values. The
phase synchronization corresponds to the situation where the
dynamical variables for different nodes have some definite
relation between their phases [59-62]. When the number of
connections in the network is small (N-~ N) and when the
local dynamics of the nodes [i.e., function f(x)] is in the
chaotic zone, and we look at exact synchronization, we find
that only a few synchronized clusters with a small number of
nodes are formed. However, when we look at phase synchro-
nization, synchronized clusters with a larger number of
nodes are obtained. Hence in our numerical study we con-
centrate on phase synchronization. We define phase synchro-
nization as follows [63].

Let v; and v; denote the number of times the dynamical
variables x; and x/, r=ty,t5+1,2, ... 10+ T—1, for the nodes i
and j show local minima during the time interval T starting
from some time ¢,. Here the local minimum of x’ at time ¢ is
defined by the conditions x/ <x!_ and x!<x.,,. Let v;; denote
the number of times these local minima match with each
other, i.e., occur at the same time. We define the phase dis-

tance, d;;, between the nodes i and j by the following relation
[64]:
;.
dij =1-——"— “4)
max(v;,v;)

Clearly, d;;=d;;. Also, d;j=0 when all the minima of variables

x and ¥ match with each other and d,-jzl when none of the
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minima match. In the Appendix, we show that the above
definition of phase distance satisfies metric properties. We
say that the nodes i and j are phase synchronized if d;;=0,
and we define a phase synchronized cluster as a cluster of
nodes in which all the pairs of nodes are phase synchronized.
In the subsequent discussion the word “phase” is omitted
when the meaning is clear.

III. GENERAL PROPERTIES OF SYNCHRONIZED
DYNAMICS

We consider some general properties of synchronized dy-
namics. They are valid for any coupled discrete and continu-
ous dynamical systems. Also, these properties are applicable
for exact as well as phase synchronization and are indepen-
dent of the type of network.

A. Behavior of individual nodes

As the network evolves, it splits into several synchronized
clusters. Depending on their asymptotic dynamical behavior
the nodes of the network can be divided into three types.

(a) Cluster nodes: A node of this type synchronizes with
other nodes and forms a synchronized cluster. Once this node
enters a synchronized cluster it remains in that cluster after-
wards.

(b) Isolated nodes: A node of this type does not synchro-
nize with any other node and remains isolated all the time.

(c) Floating nodes: A node of this type keeps on switch-
ing intermittently between an independent evolution and a
synchronized evolution attached to some cluster.

Of particular interest are the floating nodes and we will
discuss some of their properties afterwards.

B. Mechanism of cluster formation

The study of the relation between the synchronized clus-
ters and the couplings between the nodes represented by the
adjacency matrix C shows two different mechanisms of clus-
ter formation [55].

(i) Self-organized clusters: The nodes of a cluster can be
synchronized because of intracluster couplings [see, e.g.,
Fig. 3(b)]. We refer to this as the self-organized synchroni-
zation and the corresponding synchronized clusters as self-
organized clusters.

(ii) Driven clusters: The nodes of a cluster can be syn-
chronized because of intercluster couplings [see, e.g., Fig.
3(d)]. Here the nodes of one cluster are driven by those of
the others. We refer to this as the driven synchronization and
the corresponding clusters as driven clusters.

In our numerical studies we have been able to identify
ideal clusters of both types, as well as clusters of the mixed
type where both ways of synchronization contribute to clus-
ter formation. We will discuss several examples to illustrate
both types of clusters.

Geometrically the two mechanisms of cluster formation
can be easily understood by considering a tree type network.
A tree can be broken into different clusters in different ways.

(a) A tree can be broken into two or more disjoint clusters
with only intracluster couplings by breaking one or more
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connections. Clearly, this splitting is not unique and will lead
to self-organized clusters.

(b) A tree can also be divided into two clusters by putting
connected nodes into different clusters. This division is
unique and leads to two clusters with only intercluster cou-
plings, i.e., driven clusters.

(c) Several other ways of splitting a tree are possible. For
example, it is easy to see that a tree can be broken into three
clusters of the driven type.

Quantitative measure for self-organized and driven be-
havior. To get a clear picture of self-organized and driven
behavior we define two quantities fj,, and fi,., as measures
for the intracluster and intercluster couplings as follows:

N;

fintra = ]\I;ja 5 (Sa)
Nin er

finter = N[ s (Sb)

c

where N, and Nj,., are the numbers of intra- and inter-
cluster couplings, respectively. In N, couplings between
two isolated nodes are not included. The quantities f;,., and
finter @llow us to determine the dominant behavior when there
are several clusters and it is not easy to identify the main
mechanism of cluster formation.

C. States of synchronized dynamics

Normally, the states of coupled dynamical systems are
classified on the basis of the number of clusters as in Ref.
[65]. Our finding of two mechanisms of cluster formation
allow us to refine this classification.

(a) Turbulent state (I-T): All nodes behave chaotically
with no cluster formation.

(b) Partially ordered state (IIT): Nodes form a few clusters
with some isolated nodes not attached to any cluster. We can
further subdivide the clusters of the partially ordered state
into subcategories depending on the type of clusters, i.e.,
self-organized (S), driven (D), or mixed type (M).

(c) Ordered state (IV): Nodes form two or more clusters
with no isolated nodes. The ordered state can be further di-
vided into three substates based on the nature of dynamics of
the synchronized clusters as chaotic ordered state (C), quasi-
periodic ordered state (Q), and periodic ordered state (P).
Also, as for the partially ordered state we can have subcat-
egories as self-organized (S), driven (D), or mixed type (M).

(d) Coherent state (V): Nodes form a single synchronized
cluster. The dynamical behavior is usually periodic (P) or of
a fixed point (F).

(e) Variable state (IT): Nodes form different states, par-
tially ordered or ordered state depending on the initial con-
ditions.

IV. NUMERICAL RESULTS

Now we present the numerical results for the CMNs on
different types of networks. The adjacency matrix C depends
on the type of network and C;;=1 if the corresponding nodes
in the network are connected and zero otherwise. Starting
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from random initial conditions the dynamics of Eq. (1), after
an initial transient, leads to interesting phase synchronized
behavior.

A. Coupled maps on scale-free network

First we present a detailed discussion of our numerical
results for the scale-free network. Other types of networks
will be discussed briefly indicating the similarities and dif-
ferences in the behavior.

1. Generation of network

The scale-free network of N nodes is generated by using
the model of Barabasi er al. [66]. Starting with a small num-
ber, m,, of nodes, a new node with m=<m, connections is
added at each time step. The probability 7r(k;) that a connec-
tion starting from this new node is connected to a node i
depends on the degree k; of node i (preferential attachment)
and is given by

After 7 time steps the model leads to a network with N=7
+mg nodes and m7 connections. This model leads to a scale-
free network, i.e., the probability P(k) that a node has degree
k decays as a power law,

P(k) ~ k™,

where \ is a constant and for the type of probability law (k)
that we have used A =3. Other forms for the probability (k)
are possible which give different values of A. We have tried
out a few more forms of (k) giving different values of A
and we find results similar to the ones reported here. This
indicates that the exact form of 7r(k) is probably not impor-
tant for the properties that we have studied.

2. Linear coupling

Phase diagram. First we consider the linear coupling,
g(x)=x. Figure 1 shows the phase diagram in the two param-
eter space defined by u and € for the scale-free network with
m=my=1, N=50, and T=100. For m=1, the network has a
tree structure. The behavior for larger m values will be dis-
cussed afterwards. The different regions of the phase dia-
gram are labeled as explained in the Sec. III C. For u <3, we
get a stable coherent region (region V-F) with all nodes hav-
ing the fixed point value. To understand the remaining phase
diagram, consider the line w=4. Figure 2 shows the largest
Lyapunov exponent A as a function of the coupling strength
€ for u=4. For small values of €, we observe turbulent be-
havior with all nodes evolving chaotically and there is no
phase synchronization (region I-T). Figure 3 shows node-
node plots of the synchronized clusters with any two nodes
belonging to the same cluster shown as open circles and the
couplings between the nodes (C;=1) shown as closed
circles. Turbulent behavior with no synchronization is shown
in Fig. 3(a). There is a critical value of the coupling strength
€. beyond which synchronized clusters can be observed. This
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34

FIG. 1. Phase diagram showing different regions in the two
parameter space of u and e for the scale-free network for f(x)
=pux(1-x) and g(x)=x. Different regions are I: turbulent region, II:
region with varying behavior, III: partially ordered region, IV: or-
dered region, and V: coherent region. The symbols T, S, M, D, P, Q,
and F, respectively, correspond to turbulent behavior, self-organized
synchronization, mixed synchronization, driven synchronization,
periodic, quasiperiodic, and fixed point behavior. Region bound-
aries are determined based on the asymptotic behavior using several
initial conditions, number of clusters and isolated nodes, synchro-
nization behavior, and also the behavior of the largest Lyapunov
exponent. The dashed lines indicate uncertainties in determining the
boundaries. Calculations are for N=50, m=1, and 7=100. The inset
shows the phase diagram for the entire range of parameter w, i.e.,
from O to 4.

is a general property of all CMNs and the exact value of e,
depends on the type of network, the type of coupling func-
tion, and the parameter wu.

As € increases beyond €., we get into a variable region
(region II-S) which shows a variety of phase synchronized
behavior, namely ordered chaotic, ordered quasiperiodic, or-
dered periodic, and partially ordered behavior depending on

0.8

LT
0.6 :

LS
0.4 ;

0.2

FIG. 2. Largest Lyapunov exponent, \, is plotted as a function
of € for the scale-free network and f(x)=4x(1-x) and g(x)=x. Dif-
ferent regions are labeled as in Fig. 1.
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the initial conditions. The mechanism of cluster formation is reason for the formation of several clusters and floating

of dominant self-organized type. In the middle of region II-S,  nodes as well as the sensitivity of these to the initial condi-
we can observe ideal self-organized behavior with two clus- tion;.
ters [Fig. 3(b)] [67]. Figure 4 shows the plot of finy, and fiyer [Eq. (5b)] as a

The next region (region III-M) shows partially ordered fqnction of the goupling strength €. The figure g.ives a Clqar
chaotic behavior. Here, the number of clusters as well as the  picture of the different features of the phase diagram dis-

number of nodes in the clusters depend on the initial condi-  cussed above. It shows that for small coupling strength (tur-
tions and also they change with time. There are several iso-  bulent region I-T) both fi,, and fin, are zero indicating that
lated nodes not belonging to any cluster and floating nodes ~ there is no cluster formation. In region II-S, we get fiy
which keep on switching intermittently between an indepen- 1
dent evolution and a phase synchronized evolution attached F"u
to some cluster. The synchronized clusters are of the mixed
type where both mechanisms of cluster formation contribute 0.8
and intracluster and intercluster connections are almost equal =
in number [Fig. 3(c)]. *§ 0.6

The last two regions (IV-DQ and IV-DP) are ordered qua- w3
siperiodic and ordered periodic regions showing driven syn- 5
chronization. In these regions, the network always splits into B 04
two clusters. The two clusters are perfectly antiphase syn- =
chronized with each other, i.e., when the nodes belonging to 0.2
one cluster show minima those belonging to the other cluster
show maxima. Figure 3(d) shows the node-node plot of ideal i
driven synchronization obtained in the middle of region 0

0 0.2 0.4 0.6 0.8 1

IV-DP [67]. The phenomena of driven synchronization in this
region is a very robust one in the sense that it is obtained for
almost all initial conditions, the transient time is very small, FIG. 4. The fraction of intracluster and intercluster couplings,

the nodes belonging to the two clusters are uniquely deter- £ (closed circles) and fiyy, (open circle), is shown as a function

mined, and we get .a stable solution. ) of the coupling strength e for the scale-free networks with f(x)
We note that region III-M acts as a crossover region from =4x(1-x) and g(x)=x. (The lines connect the points and are drawn

the self-organized to the driven behavior. Here, the clusters as a guide to the eye.) The figure is obtained by averaging over 20
are of the mixed type and there is a competition between the realizations of the network and 50 random initial conditions for
self-organized and driven behavior. This appears to be the each realization.

€
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FIG. 5. (a) The time evolution of nodes in a cluster for a scale-free network with both cluster nodes and floating nodes. The nodes
belonging to the cluster are shown by closed circles. Here, €=0.4, f(x)=pux(1-x), and g(x)=x. Node numbers 12, 24, 38, and 50 are of the
floating type. They spend some time intermittently in a synchronized evolution with the given cluster and the remaining time in either a
synchronized evolution with other clusters or in an independent evolution as an isolated node. (b) Figure shows two stationary clusters of
self-organized type for €=0.19 and g(x)=x. The two clusters are for the same € value but obtained from two different initial conditions and
are denoted by open circles and crosses. Note that some nodes are common to both the clusters while some are different. This illustrates the
nonuniqueness of nodes belonging to self-organized clusters depending on the initial conditions.

~1 at €~0.2 showing that there are only intracluster cou-
plings leading to self-organized clusters. As coupling
strength increases further fi,,, decreases and fi,., increases,
i.e., there is a crossover from self-organized to driven behav-
ior (regions III-M). Finally, in regions IV-DQ and IV-DP, we
find that f;,, is large which shows that in this region most of
the connections are of the intercluster type. In region IV-DP
we get fir almost one corresponding to an ideal driven
synchronized behavior.

Behavior of individual nodes forming clusters. Now we
explore the time evolution of individual nodes. Figure 5(a)
shows nodes belonging to one of the synchronized clusters as
a function of time for €=0.4 (region III-M) where the sym-
bols (closed circles) indicate the time for which a given node
belongs to that cluster. We observe that there are some nodes
which intermittently leave the cluster, evolve independently,
or get attached with some other cluster and after some time
again come back to the same cluster, e.g., the nodes 12 and
24 in Fig. 5(a). These are the floating nodes discussed in Sec.
IIT A. Note that the node 12 spends about 90% of its time in
phase synchronization with the given cluster while for the
node 24 this time is about 10%.

Let 7 denote the residence time of a floating node in a
cluster (i.e., the continuous time interval that the node is in a
cluster). Figure 6 plots the frequency of residence time v(7)
of a floating node as a function of the residence time 7. A
good straight line fit on a log-linear plot shows an exponen-
tial dependence,

v(71) ~ exp(- 7/7,), (6)

where 7, is the typical residence time for a given node. We
have also studied the distribution of the time intervals for
which a floating node is not synchronized with a given clus-
ter. This also shows an exponential distribution.

Figure 5(b) demonstrates the nonuniqueness of the self-
organized clusters. The figure shows a set of nodes (crosses)
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FIG. 6. The figure plots the frequency of residence time »(7) of
a floating node in a cluster as a function of the residence time 7. The
data is for the node No. 12 in Fig. 5(a). A good straight line fit on
log-linear plot shows exponential dependence.

016211-6



SYNCHRONIZED CLUSTERS IN... . T ....

. II-D

0.8

0.6

4

0.2

FIG. 7. Phase diagram in the two parameter space of u and e for
the scale-free network for f(x)=pux(1-x) and g(x)=f(x). The deter-
mination of region boundaries and their classification and symbols
are as explained in Fig. 1. Calculations are for N=50, m=1, and
T=100. The inset shows the phase diagram for the entire range of
parameter wu, i.e., from O to 4.

belonging to a cluster for €=0.19 (region II-S) and another
set of nodes (open circles) belonging to another cluster for
the same € but obtained with different initial conditions. For
this € value the nodes form self-organized clusters with no
isolated nodes. Comparing the members of the two clusters
which are obtained from different initial conditions we see
that there are some common nodes while some are different.
This demonstrates that the splitting of nodes into self-
organized clusters is not unique (see Sec. III B). On the other
hand, driven synchronization (region IV-DP) mostly leads to
a unique cluster formation and does not depend on the initial
conditions.

3. Nonlinear coupling

Now we discuss the results for the nonlinear coupling of
the type g(x)=f(x). As noted earlier this is equivalent to a
diffusive type of coupling. The phase space diagram in the
u— € plane is plotted in Fig. 7. Here we do not get clear and
distinct regions as we get for the g(x)=x form of coupling.
For u<3.5, we get coherent behavior (regions V-P and VI-
F). To describe the remaining phase diagram consider the
wm=4 line. Figures 8 and 9 show, respectively, the largest
Lyapunov exponent and fi,, and fi,. as a function of the
coupling strength € for w=4. For small coupling strengths no
cluster is formed and we get the turbulent region (I-T). As
the coupling strength increases we get into the variable re-
gion (II-D). In this region we get a partially ordered and
ordered chaotic phase depending on the initial conditions and
the clusters of dominant driven type. In a small portion in the
middle of region II-D, all nodes form two ideal driven clus-
ters. These two clusters are perfectly antiphase synchronized
with each other. Interestingly the dynamics still remains cha-
otic. Figure 10(a)(a) shows the node-node plot as in Fig. 3
demonstrating ideal driven clusters in the middle of region
II-D.
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FIG. 8. Largest Lyapunov exponent, A, is plotted as a function
of € for a scale-free network with f(x)=4x(1-x) and g(x)=f(x).
Different regions are labeled as in Fig. 7.

In region III-T, we get almost turbulent behavior with
very few nodes forming synchronized clusters. Regions
III-M and III-D are partially ordered chaotic regions. In these
regions some nodes form clusters and several nodes are iso-
lated or of the floating type. In region III-M, the clusters are
of the mixed type (both inter- and intra-cluster couplings)
while in region III-D the clusters are of the dominant driven
type (see Fig. 9). In these regions, we get phase synchronized
clusters but both the size of clusters as well as the number of
nodes forming clusters are small. Figures 10(b) and 10(c) are
node-node plots demonstrating typical cluster formation in
regions III-M and III-D, respectively.

It is interesting to note that for the scale-free network and
for the nonlinear coupling, the largest Lyapunov exponent is
always positive (Fig. 8), i.e., the whole system remains cha-
otic but we get phase-synchronized behavior.

We have found significant differences in the synchroniza-
tion properties for the linearly and nonlinearly coupled maps.

1

0.8

0.6

0.4

fintera fint7’a

0.2

0 0.2 0.4 0.6 0.8 1
€

FIG. 9. The fraction of intracluster and intercluster couplings,
finter (closed circles) and fi,, (open circles), is shown as a function
of the coupling strength € for the scale-free networks with g(x)
=f(x). The figure is obtained by averaging over 20 realizations of
the network and 50 random initial conditions for each realization.
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FIG. 10. Examples illustrating the phase synchronization for a
scale-free network with coupling form g(x)=f(x) using node vs
node diagram for a scale-free network as in Fig. 3. (a) An ideal
driven phase synchronization for €=0.13. (b) Mixed behavior for
€=0.71. (c) A dominant driven behavior for €=0.88.

Differences in the behavior of linearly and nonlinearly
coupled maps have been noted before in connection with
other properties [68].

4. Dependence on the number of connections

So far we have treated the scale-free network with m=1
which gives a tree structure and the number of connections is

PHYSICAL REVIEW E 72, 016211 (2005)

of the order of the number of nodes (N,.=N-1). As m in-
creases the number of connections increases.

For m>1 and g(x)=x the dynamics of Eq. (1) leads to a
similar phase diagram as in Fig. 1 with region II-S domi-
nated by self-organized synchronization and regions IV-DQ
and IV-DP dominated by driven synchronization. Though
perfect inter- and intra-cluster couplings between the nodes
as displayed in Figs. 3(b) and 3(d) are no longer observed,
clustering in the region II-S is such that most of the cou-
plings are of the intracluster type while for the regions
IV-DQ and IV-DP they are of the intercluster type. As m
increases the regions I and II are mostly unaffected, but the
region IV shrinks and the region III grows in size. Figure
11(a) is a node-node plot for m=3 in region II-S (€=0.19)
showing two clusters. It is clear that synchronization of
nodes is mainly because of intracluster connections but there
are a few intercluster connections also. Figure 11(b) is a
node-node plot for the ordered periodic region at coupling
strength €=0.78. Here the clusters are mainly of the driven
type but they have intracluster connections also. Note that
for Figs. 11(a) and 11(b) the average degree of a node is 6,
and breaking the network into clusters with only intercluster
or intracluster couplings is not possible. As the average de-
gree of a node increases further and the number of connec-
tions become of the order of N2, self-organized behavior
starts dominating and for large values of € we get one big
synchronized cluster.

For m>1 and g(x)=/(x) we get a similar kind of behavior
as for m=1 (Fig. 7) with dominant driven clusters for most
of the coupling strength region, but we do not get any ideal
driven clusters. Figure 11(c) is a node-node plot for coupling
strength €=0.9 and m=3. As m increases the region I show-
ing turbulent behavior remains unaffected, but the region II
grows in size while the region III shrinks. As m increases
more and more nodes participate in cluster formation. The
driven behavior decreases in strength with increasing m and
self-organized behavior increases in strength. For m=10, all
nodes form one cluster for larger € values which is obviously
of the self-organized type [Fig. 11(d)].

We have also studied the effect of size of the network on
the synchronized cluster formation. The phenomena of self-
organized and driven behavior persists for the largest size
network that we have studied (N=1000). The region II show-
ing self-organized or driven behavior is mostly unaffected
while the ordered regions showing driven behavior for large
coupling strengths show a small shrinking in size.

B. Coupled maps on different networks

We now consider several other networks and investigate
synchronization properties of these networks.

1. One-dimensional networks

For one-dimensional CMN, each node is connected with
m nearest neighbors (degree per node is 2m). First we con-
sider m=1, i.e., each map is connected with just next neigh-
bors on both sides and we take the open boundary condition.
Note that this a tree structure with N.=N-1. Figures 12(a)
and 12(b) show fiya and fiyer versus € for u=4, N=50, and,
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respectively, for g(x)=x and g(x)=f(x). For g(x)=x, the be-
havior of clusters as well as the phase diagram and Lyapunov
exponent graph are very similar to the scale-free network
with the coupling form f(x)=x.

However, for g(x)=/f(x) coupling and m=1 we observe a
considerable deviation from the corresponding behavior for
the scale-free network. In region I-T of Fig. 7, we get turbu-
lent behavior as for the scale-free network. But we observe
clusters only in the region corresponding to the region II-D
in Fig. 7. These clusters are of the driven type [Fig. 12(b)].
For the rest of the coupling strength region, i.e., region III in
Fig. 7, there is almost no cluster formation and the behavior
is close to turbulent and chaotic.

Figure 13(a) shows a node-node plot of two clusters of the
mixed type and several isolated nodes for € in region III-M
for g(x)=x. Figure 13(b) shows a node-node plot of driven
clusters for an € value in the region II-D for g(x)=/(x).

We now consider the case m>1. For g(x)=x as m in-
creases, i.e., the number of connections increases, the behav-
ior is similar to that of the scale-free network.

For g(x)=f(x) and m>1, we find that as the number of
connections increases we get two dominant driven phase
synchronized clusters as for m=1 in region II-D. For large
coupling strength the number of nodes forming clusters and
the sizes of clusters both increase with the increase in the
number of connections. This behavior is seen in Figs. 12(c)
and 12(d) which show fi,, and fiyer versus € for g(x)=/(x),
u=4, and, respectively, for m=5 and m=10. Figure 14(a)
shows the fraction of nodes forming clusters as a function of
the number of connections N, normalized with respect to the
maximum number of connections N,,=N(N—-1)/2 for two
values of e. The overall increase in the number of nodes

forming clusters is clearly seen. Figure 14(b) shows the frac-
tion of nodes in the largest cluster as a function N, for two
values of e. The overall growth in the size of the clusters
with N, is evident.

Cluster formation with a large number of connections (of
the order of N?) and its dependence on the coupling strength
is discussed in Refs. [69,70]. It is reported that for these
networks it is the coupling strength which affects the syn-
chronized clusters and not the number of connections. How-
ever, as discussed above, we find that when the number of
connections is of the order of N the size of the clusters and
the number of nodes forming clusters increase as the number
of connections increases. This behavior approaches the re-
ported behavior [69,70] as the number of connections be-
comes of the order of N2,

2. Small world networks

Small world networks are constructed using the following
algorithm by Watts and Strogatz [3]. Starting with a one-
dimension ring lattice of N nodes in which every node is
connected to its nearest k neighbors (k/2=m), we randomly
rewire each connection of the lattice with probability p such
that self-loops and multiple connections are excluded. Thus
p=0 gives a regular network and p=1 gives a random net-
work. The typical small world behavior is observed around
p=0.01. We find that for g(x)=x, the synchronization behav-
ior is very similar to that for the scale-free networks and
one-dimensional lattice. We note that this result for g(x)=x is
a general result and appears to be valid for all the networks
with the same number of connections. But, for g(x)=f(x),
nodes form clusters only for region II-D of coupling strength
and there is almost no cluster formation for larger values of
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(a)

finter‘ ! fintra

FIG. 12. The fraction of intra-
cluster and intercluster couplings,
Sfiner (closed circles) and fiya
(open circles), are shown as a
function of the coupling strength

finter’ fintra

€. (a) and (b) are for the one-
dimensional coupled maps with
nearest neighbor coupling (m=1)
and for g(x)=x and g(x)=f(x), re-
spectively. (c) and (d) are for
g(x)=f(x) and, respectively, m=5
and m=10.

€. This trend can be seen from Fig. 15(a) where we plot fiyya
and fi.r for g(x)=f(x) as a function of € for p=0.06, u=4,
N=50, and k=2. As k increases, we observe some clusters
for large € values. This behavior is similar to that of the
one-dimensional network.

3. Caley tree

We generate a Caley tree using the algorithm given in
Ref. [27]. Starting with three branches at the first level, we
split each branch into two at subsequent levels. For g(x)=x,
the synchronization behavior is similar to all other networks
with the same number of connections. For g(x)=f(x) all
nodes form driven clusters for region II-D, and for larger
coupling strengths about 40% of nodes form clusters of the
dominant driven type [Fig. 15(b)].

4. Higher dimensional lattices

First we consider the two-dimensional square lattice with
nearest neighbor interactions. Figures 15(c) and 15(d) plot
Sinra @and finer for g(x)=x and g(x)=f(x), respectively, as a
function of € for u=4. For g(x)=x the cluster formation is
similar to other networks described earlier except for very
large € close to one where we get a single self-organized
cluster. For g(x)=f(x) cluster formation is similar to that in
one-dimensional networks with nearest and next nearest
neighbor couplings. In small coupling strength region II-D

(see Fig. 7), nodes form two clusters of the driven type and
for large coupling strength driven clusters are observed with
about 25-30% nodes showing synchronized behavior [Fig.
15(d)].

Coupled maps on three-dimensional cubic lattice (degree
per node is six) for g(x)=x show clusters similar to the other
networks discussed earlier. For g(x)=/(x), nodes form driven
clusters in region II-D and mostly we observe three clusters.
For large coupling strengths nodes form driven clusters and
the nodes participating in cluster formation are now much
larger than the two-dimensional case.

5. Random networks

Random networks are constructed by connecting each
pair of nodes with probability p. First consider the case
where the average degree per node is two. For linear cou-
pling g(x)=x cluster formation is the same as for other net-
works with the same average degree. For g(x)=f(x) driven
clusters are observed in region II-D and no significant cluster
formation is observed for larger coupling strengths. This be-
havior is similar to the one-dimensional network with k=2
but different from the corresponding behavior for the scale-
free network. For coupled maps on random networks with
the average degree per node equal to four and g(x)=f(x),
clusters with dominant driven behavior are observed for all
€>€,.
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plings, finer (solid line) and fi,, (dashed line), is shown as a func-
tion of the coupling strength € for the small world network for
g(x)=f(x), respectively. Small world networks are generated for
N=50, m=1, and p=0.06 [3]. (b) Same plot as in (a) but for the
Caley tree with g(x)=f(x) and N=47. Caley trees are generated
with coordination number three [27]. (¢) and (d) Same as in (a), but
for two-dimensional lattice with N=49 and, respectively, for g(x)
=x and g(x)=f(x).

C. Parameter variation

So far we have considered homogeneous coupled sys-
tems, i.e., with identical local dynamics. We now consider a
situation of coupled systems where the maps are not identical
but have some parameter mismatch. We have done some
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FIG. 14. (a) The fraction of nodes forming clusters as a function of the fraction of couplings N./N,, where N,,=N(N—1)/2. The figures
are plotted for I1-dimensional coupled maps with g(x)=f(x) and for €=0.49 (closed circles) and €=0.7 (open circles). The results are for
N=50 and are obtained by averaging over 100 random initial conditions. (b) The fraction of nodes in the largest cluster as a function of
N,/N,, for e=0.49 (closed circles) and €=0.7 (open circles). Other parameters are the same as in (a).
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preliminary calculations of synchronization in such systems.
We vary the parameter p of the logistic map first with a
linear increase

i
wi=40-—, i=1,....N

N

and secondly with a random distribution in a range
(4.0-Aw,4.0). (For the linear change of w in random and
other similar networks the ordering of the node indices is
arbitrary.)

For small coupling strength (region II) the driven behav-
ior is somewhat strengthened while for large coupling
strength there is not much variation. The region of complete
synchronization shows a slight decrease.

How does the transition to complete synchronization take
place? Opisov et al. [71] have analyzed coupled Rossler and
coupled circle maps and found that there are two ways in
which transition to complete synchronization takes place:
soft and hard. In these studies, the state with no parameter
mismatch is always the state of complete synchronization.
The soft transition takes place without cluster formation and
occurs when the parameter mismatch is smaller while the
hard transition takes place through formation of smaller clus-
ters and it occurs when the parameter mismatch is larger. The
case of synchronization in complex networks that we are
considering is somewhat different. We have cluster formation
even when there is no parameter mismatch. However, it is
interesting to see how the transitions occur in our case as the
coupling strength is varied. Let us first consider the case of a
small number of connections (~N). As the coupling strength
increases we get synchronization around €=0.2 (region II).
This transition is soft, i.e., without clusters. However, the
desynchronization for further increase in the coupling
strength is a hard transition and several smaller clusters are
formed. Again the transition to complete synchronization for
large coupling strength is hard. Second, when the number of
connections are increased (~N?) the self-organized state is
favored and in this case the transition to a completely syn-
chronized state is hard.

D. Example

There are several examples of self-organized and driven
behavior in naturally occurring systems. An important ex-
ample in physics that includes both self-organized and driven
behavior is the nearest neighbor Ising model treated using
Kawasaki dynamics. As the strength of Ising interaction be-
tween spins changes sign from positive to negative there is a
change of phase from a ferromagnetic (self-organized) to an
antiferromagnetic (driven) behavior. In the ferromagnetic
phase, domains (or clusters) of spins aligned in the same
direction can be observed. In the antiferromagnetic state, i.e.,
driven behavior, the lattice spits into two sublattices with
opposite spin states and having only intercluster interactions
and no intracluster interactions. Several other examples are
discussed in Ref. [55]. Several natural systems show ex-
amples of floating nodes, e.g., some birds may show inter-
mittent behavior between free flying and flying in a flock.

PHYSICAL REVIEW E 72, 016211 (2005)

V. CIRCLE MAP

We have studied the cluster formation with the circle map

defining the local dynamics, given by

f(x) =x+ w+ (k/27)sin(27x) (mod 1). (7)
Due to the modulo condition, instead of using the variable x,,
we use a function satisfying periodic boundary conditions,
e.g., sin(7x,), to decide the location of maxima and minima
which are used to determine the phase synchronization of
two nodes [Eq. (4)]. Here we discuss the results with the
parameters of the circle map in the chaotic region (w=0.44
and k=6). For linear coupling g(x)=x and scale-free net-
works with m=1, for small coupling strength nodes evolve
chaotically with no cluster formation (turbulent region). As
the coupling strength increases nodes form clusters for
0.21 <€<0.25. In most of this region the nodes form two
dominant driven clusters, except in the initial part, e=0.21,
where self-organized clusters can be observed. As the cou-
pling strength increases nodes behave in a turbulent manner
and after €>0.60 nodes form clusters of dominant driven
type. Here the number of nodes forming clusters and the
sizes of clusters, both are small. For the one-dimensional
linearly coupled network with m=1, for linear coupling the
nodes form phase synchronized clusters for the coupling
strength region 0.21 <€<0.25. The clusters are mainly of
the driven type except in the initial part, e=~0.21, where they
are of the self-organized type. For large coupling strength
they do not show any cluster formation.

For g(x)=f(x) we found very negligible cluster formation
for the entire range of the coupling strength for both scale-
free and one-dimensional network with m=1. However, as m
increases the nodes form phase synchronized clusters for €
larger than some critical €,.

For the circle map the normalization factor (1—e¢) in the
first term of Eq. (1) is not necessary and the following modi-
fied model can also be considered.

N
Xy = fx0) + kEE Cyjg(x)) (mod 1). (8)
1

ij=

We now discuss the synchronized cluster formation for the
same parameter values as above (w=0.44 and k=6) for this
modified model. For linear coupling [g(x)=x], clusters are
formed only for 0.02<e<0.17 with dominant self-
organized behavior for most of the range except near €
~(0.17 where the behavior is of dominant driven type. For
the scale-free networks (m=1) we have ordered states while
for the one-dimensional networks we have partially ordered
states. For nonlinear coupling [g(x)=f(x)], the clusters are
formed for 0.0<e<0.09. The scale-free networks show
mostly mixed clusters while one-dimensional networks show
dominant self-organized clusters. There is no cluster forma-
tion for larger coupling strengths for both linear and nonlin-
ear coupling. However, as for the logistic map, synchronized
clusters are observed for large € as the number of connec-
tions increases.
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VI. CONCLUSION AND DISCUSSION

We have studied the properties of coupled dynamical el-
ements on different types of networks. We find that in the
course of time evolution they form phase synchronized clus-
ters. We have mainly studied networks with a small number
of connections (N.~ N) because a large number of natural
systems fall under this category of a small number of con-
nections. More importantly, with a small number of connec-
tions, it is easy to identify the relation between the dynamical
evolution, the cluster formation, and the geometry of net-
works. We have studied the behavior of individual nodes,
either forming clusters or evolving independently, and also
the mechanism of cluster formation.

In several cases when synchronized clusters are formed
there are some isolated nodes which do not belong to any
cluster. More interestingly there are some floating nodes
which show an intermittent behavior between an independent
evolution and an evolution synchronized with some cluster.
The residence time spent by a floating node in the synchro-
nized cluster shows an exponential distribution.

We have identified two mechanisms of cluster formation,
self-organized and driven phase synchronization. By consid-
ering the number of inter- and intra-cluster couplings we can
identify phase synchronized clusters with dominant self-
organized behavior (S), dominant driven behavior (D), and
mixed behavior (M) where both mechanisms contribute. We
have also observed ideal clusters of both self-organized and
driven type. In most cases where ideal behavior is observed,
the largest Lyapunov exponent is negative or zero giving
stable clusters with periodic evolution. However, in some
cases ideal behavior is also observed in the chaotic region.

By defining different states of the dynamical system using
the number and type of clusters, we consider the phase-
diagram in the w—e€ plane for the local dynamics governed
by the logistic map. When the local dynamics is in the cha-
otic region, for small coupling strengths we observe turbu-
lent behavior. There is a critical value €. above which phase
synchronized clusters are observed. The critical value de-
pends on the type of network and the coupling function. For
g(x)=x type of coupling, self-organized clusters are formed
when the strength of the coupling is small. As the coupling
strength increases there is a crossover from the self-
organized to the driven behavior which also involves reorga-
nization of nodes into different clusters. This behavior is al-
most independent of the type of network. For the nonlinear
diffusive coupling of type g(x)=f(x), for small coupling
strength phase synchronized clusters of driven type are
formed, but for large coupling strength the number of nodes
forming clusters as well as sizes of clusters both are very
small and almost negligible for many networks. Only scale-
free networks and Caley tree show some cluster formation
for large coupling strengths.

As the number of connections increases, most of the clus-
ters become of the mixed type where both the mechanisms
contribute. We find that in general, the self-organized behav-
ior is strengthened and also the number of nodes forming
clusters as well as the size of clusters increase. As the num-
ber of connections become of the order of N2, self-organized
behavior with a single spanning cluster is observed for e
larger than some value.
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It is interesting to consider the dynamical origin of the
self-organized and driven phase synchronization and of float-
ing nodes. A clue can be obtained by considering some
tailor-made networks such as globally coupled networks and
complete bipartite networks. These are considered in Part II
[72].
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APPENDIX

Here we show that the definition (4) of phase distance d;;
between two nodes i and j satisfies metric properties. Let
denote the set of minima of the variable x; in a time interval
T. The phase distance satisfies the following metric proper-
ties.

(A) dij=d,.

(B) d;;=0 and the equality hold only if NV;=N.

(C) Triangle inequality: Consider three nodes i, j, and k.
Denoting the number of elements of a set by |.|, let

(2) b=|Mme|—(1.

(3) c=|N;NN|-a.

4) d:|]\/}ﬂ./\/j|—a.

(5) e=|N}|-b—-d-a.

(6) f=IN|~c~d~a.

(7) g=|Nil=b-c~a.

We have
ng=a+b,
ng=a+c,
ni:=a+d,

)

n,=a+b+d+e,
nj=a+c+d+f,

n,=a+b+c+g.
Consider the combination
dl-k+djk—d,-j=1—X (Al)
where
Nk Mk _ nij
max(n;,n)  max(n;,n) rnax(ni,nj)'

The triangle inequality is proved if X=1. Consider the fol-
lowing three general cases.
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Case a. n;<n;<ny

a+b a+c a+d a+b+c-d
= + - < < (A2)
nk nk nj }’lk
Case b. n;<ni<n;:
a+b a+c a+d a+b+c
= + - = =1 (A3)
nk nj n] nk
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Case c. ;p=<n;<n;:

a+b a+c a+d a+b+c a+b+c
= — < < =1

= + < < <

nJ n; ny

n; nj

(A4)

This proves the triangle inequality.
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