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Localization of Floquet states along a continuous line of periodic orbits
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A periodically driven particle in an infinite square well is shown to exhibit quantum localization due to a
continuous line of periodic orbits in the classical system. Individual Floquet eigenstates localized along this
line of periodic orbits are identified. The enhanced localization persists for field strengths beyond that at which
the continuous line of orbits is destroyed in the classical dynamics. These results may be relevant to experi-

ments involving trapping potentials with flat regions.
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I. INTRODUCTION

Studies of the quantum dynamics of systems whose clas-
sical counterpart is chaotic have led to a number of surpris-
ing results [1]. One such result is the localization of some
quantum eigenstates in chaotic regions of the underlying
classical phase space. The localization of eigenstates is due
to several different mechanisms. Some localized quantum
eigenstates, called scars, have probability densities peaked
along isolated unstable periodic orbits of the classical mo-
tion. Scarred eigenstates have been observed in a variety of
physical systems [2]. Localized eigenstates also occur in dis-
ordered systems due to dynamic Anderson localization [3]
and in regions of phase space containing cantori [4].

Another source of localized states is nonisolated, margin-
ally stable (parabolic) periodic orbits of the classical motion.
The “bouncing ball” (BB) states of the stadium billiard fall
into this category [5]. These BB states have been observed in
a variety of billiard systems [6], and their effects have been
measured experimentally [7]. “Bouncing ball” states survive
in the classical limit (E— o or A —0). However, since the
BB states form a set of measure zero in this limit, they con-
form to the theorems of Schnirelman, Zelditch, and Colin de
Verdiere [8] which indicate that in the classical limit all but a
set of measure zero of the quantum eigenstates must conform
to the domain of typical classical trajectories.

In the sections below, we show that a continuous line of
marginally stable periodic orbits can be created in systems
that are continuously driven by a periodic force and that
these orbits give rise to localized Floquet eigenstates of the
driven system. These orbits can exist in regions of the phase
space where the unperturbed potential is flat. We study this
effect by analyzing a sinusoidally driven particle in an infi-
nite square well. In Sec. II A, we review the classical dynam-
ics of our model and show the existence of a continuous line
of marginally stable periodic orbits that never collide with
the walls of the well. After a brief overview of the quantum
dynamics of time-periodic systems in Sec. II B, we show in
Sec. III that the quantum dynamics of our model exhibits
localization along the line of orbits and that this region of
enhanced localization changes to correspond with changes in
the line of orbits as the strength of the driving field is in-
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creased. In Sec. IV, we identify individual Floquet eigen-
states that are localized along the line of orbits (which we
dub “zero-collision” states) and show that their localization
is greater than would be predicted based on random matrix
theory (RMT) and symmetry considerations. In Sec. V, we
show that the enhanced localization and zero-collision states
remain for field strengths beyond that at which the line of
orbits disappears, even though the classical motion is highly
chaotic for these field strengths.

II. DYNAMICAL MODEL

The model we use to study the effect of flat regions of the
confining potential is a periodically driven particle in a one-
dimensional infinite square well. The Hamiltonian for this
system is

)
A = é’—m + Vo®) + & cos(@gd). (1)

where p and X are the momentum and postion, respectively,
of the particle. The square-well potential V,(¥) has a width
2a such that Vy(¥)=0 for [¥|<a and Vy(¥X)= for |x]>a.
The strength of the dipole coupling between the particle and
radiation field is €, the frequency of the field is @, and the
time is 7. We can write this Hamiltonian in terms of dimen-
sionless parameters with the following scaling transforma-
tion [9]: H=Hc, X=xa, ﬁ:p\e"%, €=ec/a, t=ta \e"m, and
@y=wp\c/(2ma®). In terms of dimensionless variables, the
Hamiltonian then takes the form

H(t)=p*+ Vso(x) + ex cos(wyt), (2)

where the scaled square-well potential Vgy(x) now has the
form Vgo(x)=0 for |x|<1 and Vgy(x)=2 for |x|>1. This
transformation introduces an arbitrary unit of energy c. The
transformation (w,, €) — (wy\c, €c) leaves the dynamics un-
changed except for a scaling of the energy by a factor of ¢, so
only one of these two parameters is independent. We can
obtain a complete picture of the dynamics of the system by
choosing an arbitrary value for w (in this paper w,=80) and
investigating the dynamics as € is varied. The Hamiltonian is
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FIG. 1. Strobe plots of the classical dynamics at various field
strengths. In (a) the /=1 primary resonance is visible at the left wall
near p=30. The chaotic region remains confined to low momenta at
all field strengths, but grows in size as € is increased. A continuous
line of periodic orbits runs along p=0 from x=4¢/ w(z)—l to x=1
(this line of orbits is not visible in the strobe plots). Note that only
the p=0 portion of the phase space is shown because the system is
symmetric in p.

invariant under the transformation p——p and under a gen-
eralized parity transformation defined by x ——x, t —¢+7/2.
For €=0, of course, the Hamiltonian is invariant under the
more conventional parity transformation x — —x.

A. Classical system

For the classical system, we can rewrite the Hamiltonian
in terms of action-angle variables (J, 6) if we introduce the
canonical transformation J=2|p|/7m and 6= sgn(p)(x
+1)/2. The Hamiltonian then takes the form

o1
HO=="=-— > 7 cos(10— ). (3)

[=—x

[ odd

Nonlinear resonances occur at values of the action given by
J;=2w/(I7*) or momenta given by |p,|=w,/(l7) where [ is
an odd integer that labels the resonances. The higher-order
resonances are at low momenta, and the resonances become
more closely spaced as [ increases. As € is increased these
resonances grow and overlap, forming a region of chaotic
motion in the low-momentum part of phase space. Figure 1
shows strobe plots of the classical dynamics for this system
at several field strengths. The /=1 resonance is visible as a
series of nested elliptical curves near p=30 for e=600 [Fig.
1(a)], but already at this field strength this resonance island is
surrounded by a sea of chaotic motion. Trajectories at high
values of momentum remain regular. As € is increased [Figs.
1(b)-1(d)] the chaotic sea grows toward higher momentum
and the regular structures within the chaotic region disappear
or diminish in size. Note, however, the appearance of a new
regular island near p=0 and x=-0.6 for €=3200 [Fig. 1(d)].

One regular structure which is not visible in the strobe
plots is a line of marginally stable periodic orbits that lie
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along p=0. This line occupies zero area in phase space, so
we do not expect it to be visible in the strobe plots. However,
the existence of this line of periodic orbits is easy to show.
Let us for the moment ignore the walls of the square well
and consider the motion of a free particle in the periodic
driving field. The Hamiltonian equations of motion for this
system can be easily solved to find

€

x(1) = xo + pot + —5[cos(wyr) — 1], (4)
Wy

p(0) = po - == sin(w). 5)
]

where x( and p, are the initial values of position and momen-
tum, respectively. If we now bring back the walls of our
square well, we see that there is a family of trajectories that
never hit either of the walls. Specifically, trajectories with
Po=0 and 4€/ w(z)— 1 <xy<1 will oscillate between the walls
of the well without colliding with either wall. We will refer
to these orbits as zero-collision (ZC) orbits. These trajecto-
ries are only marginally stable. Making p, nonzero results in
a trajectory that drifts slowly toward one wall or the other as
it oscillates, so that the trajectory will eventually collide with
one of the walls and diffuse throughout the chaotic region of
phase space. Also note that the condition on x, for the ZC
orbits can only be satisfied if €< /2. So for wy=80 the line
of ZC orbits will not exist for e>3200.

B. Quantum system

To analyze the quantum dynamics of our model we cal-
culate the Floquet eigenstates of the system [10]. The Flo-
quet Hamiltonian is given by Hp(t)=H(t)-id/dr and has
eigenstates obtained by solving the eigenvalue equation

Hp(0)|a(1)) = Qo da(1)). (6)

where |¢,(1)) is the ath Floquet eigenstate and (), is the ath
Floquet eigenvalue. Here we have set the value of the dimen-
sionless scaled Planck’s constant [#,=7/ (a\s“rmc)] to 1. The
Floquet eigenstates have period Ty=27/w,, s0 |¢,(t+T,))
=|¢,(1)). These eigenstates form a complete orthonormal ba-
sis which determines the dynamics. The Floquet eigen-
phases, (), are conserved quantities [1,11].

When the system is in an arbitrary quantum state |¢4(0)) at
time #=0, the state of the system at time f can be written

|0 = 2 (ba(0) [ 0))e™ ] (1)) ()

The Floquet evolution operator ﬁF(TO) can be defined as

, (8)

Up(Ty) = 2 %70, (0) )b (0)

and the state of the system at time =T, takes on an espe-
cially simple form |¢(Ty))=Ux(T,)|440)).

We can compute matrix elements of the Floquet evolution
operator in the basis of unperturbed energy eigenstates |E,,)
of the square-well potential. The (n,n’)th matrix element of
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the resulting Floquet matrix is given by U,,.(T)
=(E,|UA(T,)|E,). The ath eigenvalue of the Floquet matrix
U, .(Ty) is exp(-i€),T;), and the ath eigenvector in the un-

perturbed energy basis is given by a column matrix com-

posed of matrix elements (E, | ¢,(0)), where n=1, ... ,%. The
eigenvalues (), can be obtained from exp(-i{),T}), but only
modulo w.

Due to the symmetries of the Hamiltonian, the Floquet
states of our model can be classified as even or odd under the
generalized parity transformation and they will have prob-
ability distributions that are symmetric about the line p=0.

We numerically calculate the matrix U,,,,/(Ty) using a ba-
sis consisting of the first 120 energy eigenstates |E,) of the
infinite square well. This basis extends well into the regular
region of the phase space and should therefore be sufficient
to accurately calculate all of the quantum eigenstates associ-
ated with the chaotic region. The eigenstates of the Floquet
operator can be determined numerically [12] and will be of
the form

o) = 2 Canl En)- 9)

We can examine the distribution of probablity in phase
space for each Floquet eigenstate by constructing a Husimi
distribution for the eigenstate [13]. The Husimi distribution
is a quasiprobability distribution (smoothed on the scale of
fi;) for the Floquet state in phase space. To construct the
Husimi distribution we must first calculate the overlap of
each eigenstate with a Gaussian wave packet centered at the
point (xy,py). The wave function for the Gaussian wave
packet in dimensionless units is

(x - x0)2

1
(x[x0.po) = P eXP(- et ipo(x —xO)>-

(10)

The width of this Gaussian wave packet is Ax=g/ \5 in
the x direction and Ap= 1/(0'\«‘5) in the p direction. In this
paper we use 0=0.0892. The Husimi distribution for the Flo-
quet eigenstate |¢,) is constructed by calculating £ ,(x, po)
=|(xq,po| du)|* on a grid of points in phase space.

III. LOCAL INVERSE PARTICIPATION RATIO

To identify regions of phase space in which the quantum
system shows enhanced localization we calculate the local
inverse participation ratio (LIPR) L(xy,py), which is the
mean-squared Floquet-state intensity at the point (x,,p,) av-
eraged over all of the Floquet states [14]:

Ly
NE [ha(x0.p) T

ﬁ(xo,l?o)= | N 2 (11)
(Ng ha(xo’P0)>

where N=120 is the number of Floquet eigenstates. Higher
values of L(xy,p) indicate a greater degree of localization
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FIG. 2. Local inverse participation ratio £(xy,p,) as a function
of phase-space location for several field strengths. Dark regions
indicate high values of L(x(,py) and therefore areas of increased
localization. The thick, solid line at the bottom of each plot indi-
cates the range of x values covered by the line of periodic orbits that
runs along p=0. Note that L(x(,p,) is peaked along the line of
periodic orbits in (a), (b), and (c). In (d) the line of orbits has shrunk
to a single point, but there is still a small increase in L£(xg,pg) in
that vicinity.

near (xy,po). The LIPR has been shown to be an effective
measure of quantum localization in the stadium billiard [14].
If eigenstates in a chaotic region of phase space are assumed
to be random superpositions of plane waves, then their over-
lap with a Gaussian wave packet should follow a x> distri-
bution with two degrees of freedom and the expected value
for the LIPR is £(x,,p,)=2. However, along symmetry lines
(such as p=0 in our model) the Gaussian wave packets are
real and the overlap with the Floquet states will follow a x?
distribution with only one degree of freedom, giving
L(xy,po=0)=3 [14]. So we expect to see an enhancement of
L(xy,pg) by a factor of 1.5 along py=0 due to symmetry.

We calculate L£(xy,pg) on a 129X 129 grid of points in
phase space with values of p, ranging from —125 to 125.
Contour plots of L(xy,py) for various field strengths are
shown in Fig. 2. Note that only the region with py=0 is
shown because L(xg,po), like h(xy,pg), is symmetric about
the line p=0. In all four parts of Fig. 2, L(xy,py) has a
significant peak in the regions of phase space occupied by
the classical nonlinear resonance islands seen in Fig. 1. This
is expected since resonance regions are occupied by only a
few Floquet states which are localized in those regions.
There are also significant peaks in L(xy,p,) along the line
po=0. We find that the value of L(xy,p,) at these peaks is
significantly higher than would be expected based on the fact
that p=0 is a symmetry line. Even if the value of £ at these
peaks is reduced by a factor of 1.5 to offset the effects of
symmetry, the values are still more than two standard devia-
tions greater than the mean.

Perhaps the strongest evidence that the enhancement of
L(xy,po) along py=0 is not due solely to symmetry effects is
that the peaks in L(x,,p,) change their location in phase
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space as € is increased. The enhancement of L(xy,p,) due to
symmetry should occur uniformly along the line py=0. In-
stead, Fig. 2 shows a nonuniform distribution with well-
defined peaks. For comparison, we show at the bottom of
each plot in Fig. 2 a line indicating the values of x, covered
by the line of periodic orbits discussed in the previous sec-
tion. Note that as € is increased the most prominent peaks in
L(xq,pg), outside of the resonance regions, lie along the line
of periodic orbits. For €=3200 there is a very prominent
peak near x,=-0.6 but inspection of Fig. 1(d) shows that this
is the location of a classical resonance island at this field
strength. Based on this observed behavior we conclude that
the strong peaks in L(x,,p,) in the vicinity of the line of
periodic orbits are not due to symmetry effects, but rather
represent a genuine enhancement of quantum localization as
a result of the line of periodic orbits. We also note that a few
other minor peaks in £(xy,py) occur within the chaotic re-
gion of phase space at all of the field strengths shown. These
peaks may be due to scarring on unstable periodic orbits.

IV. INVERSE PARTICIPATION RATIO OF FLOQUET
EIGENSTATES

To provide additional evidence linking quantum localiza-
tion to the line of periodic orbits we compute the inverse
participation ratio (IPR) of each Floquet state. The inverse
participation ratio Z, for the ath Floquet eigenstate is

2
;2 [ha(xj’pj)]z
T,=

[e3

(12)

1 J 2°
(;FEI ha(xj’pj)>

where j is an index labeling the phase-space points in the
grid used to calculate the Husimi distribution and J is the
number of those grid points. The IPR has been shown to be
an effective measure of the localization of an individual
eigenstate [14] (larger values of Z, imply greater localiza-
tion). Some highly localized states lie in the high-momentum
regular region of phase space, and to distinguish between
these states and localized states that lie in the low-
momentum chaotic region, we plot Z, versus the energy ex-
pectation value (H,=(¢,|p?|#.)) of each Floquet state. The
results, for several field strengths, are shown in Fig. 3.
Figure 3(a) shows the plot of Z,, versus H, for e=600. For
large values of H, there is a regular sequence of points with
roughly constant 7, which correspond to Floquet states that
lie in the high-energy regular region of phase space. There is
also a sequence of points (indicated by solid squares) with
H,~800 and a range of values for Z,. These points corre-
spond to Floquet states that lie within the region of phase
space occupied by the /=1 resonance island seen in Fig. 1(a).
The remainder of the points correspond to Floquet states that
lie within the chaotic region of Fig. 1(a). Four of these states
(indicated by solid triangles) have much higher values of 7,
than do the rest of the chaotic states. Husimi distributions for
these four states are shown in Fig. 4. It is clear that all four of
these states are peaked along the line of periodic orbits
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FIG. 3. Plots of Z,, versus H,, for several field strengths. At high
values of H, the points form a regular sequence. These points cor-
respond to states located in the high-momentum regular region of
phase space. Points indicated by solid squares correspond to states
that lie in or around a resonance island. Points indicated by solid
triangles (and labled by a state number a) correspond to Floquet
states that are peaked along the line of orbits. Husimi distributions
for these states are shown in Figs. 4 and 5. Note that for each field
strength the states peaked on the line of orbits have the highest
values of 7, of any state that does not lie in or near a resonance
island.

(which is indicated by the thick line at the bottom of each
plot). We designate such states as ZC states since they are
peaked along the line of classical orbits that never collide
with either wall.

Figures 3(b)-3(d) show plots of Z, versus H, for higher
field strengths. In each case Floquet states that lie within a
classical resonance region are indicated with solid squares
and ZC states are indicated with solid triangles. Husimi dis-
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FIG. 4. Husimi distributions of the first four Floquet eigenstates
(ordered by increasing value of (p?)) for e=600. The thick, solid
line at the bottom of each plot indicates the range of x, values
covered by the line of periodic orbits that runs along py=0. Note
that all four states are peaked along the line of periodic orbits.
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FIG. 5. Husimi distributions of Floquet eigenstates that are
peaked along the line of periodic orbits for several field strengths.
The thick, solid line at the bottom of each plot indicates the range of
X values covered by the line of periodic orbits that runs along p,
=0. The index « labels the Floquet state by increasing value of {p?)
for each field strength.

tributions of these ZC states are shown in Fig. 5. Note that
for each field strength the ZC states have the highest Z,
values of all of the low-energy chaotic states (not including
the resonance island states). The Husimi distributions of all
of the low-energy Floquet states were examined for many
field strengths and in each case we found that the highest IPR
values for states lying in the chaotic region of phase space
were those of the ZC states.

In the stadium billiard, some localized quantum states ex-
ist because of the large energy separation between adiabatic
basis states at low energies while others (the BB states) exist
because of the presence of families of marginally stable pe-
riodic orbits [15]. It is important to point out that, although
the Husimi distributions for the ZC states at =0 resemble
that of the ground state of the infinite square well, the ZC
states are not a low-energy phenomenon. The Husimi distri-
butions shown in Figs. 4 and 5 show the ZC states at one
phase of the driving field and thus do not provide a complete
picture of the average energy of these states over one cycle
of the field. To see that this effect is not confined to low
energies note that the average energy of a classical ZC orbit
over one cycle of the field is 262/(1)%. This quantity is quite
large for many of the field strengths we have examined in
this paper.

Another concern is that the increased values of Z, for the
ZC states might be due to the symmetry effects described in
Sec. III. Random matrix theory predicts a Porter-Thomas dis-
tribution of wave function intensities in the chaotic region of
phase space, leading to Z,=2 for complex wave functions
[14]. Our Floquet eigenstates are real, but the Gaussian wave
packets used to calculate the Husimi distribution are in gen-
eral complex. Along the line py=0, however, the Gaussian
wave packets are real which leads to a RMT value of 7,
=3. The line of symmetry artificially enhances Z, by a factor
of 1.5. To determine if this symmetry effect is solely respon-
sible for the enhanced IPR values of the ZC states, we iden-

PHYSICAL REVIEW E 72, 016208 (2005)

16 1 1 1 1 1 1 1
L mean
14 . a RZMCI E E
2L = = s n
™ L
10 - -
n
Io s ¥ ? o " .
[ §
6 Fprinle: - .
it s g PEHEm & g
4 2 =3 m
2 .
0 i 1 1 i I i i

0 500 1000 1500 2000 2500 3000 3500
€

FIG. 6. Plot of the value of Z,, as a function of field strength for
the state most closely identified with the line of periodic orbits. For
comparison we show the mean Z, of all chaotic states and the RMT
prediction for Z. Error bars for the mean Z, are determined by
dividing the standard deviation by the square root of the number of
chaotic states.

tified (by visual inspection of the Husimi distrubitons) the
state most strongly peaked on the line of orbits at each field
strength and found the value of Z, for this state. We also
examined the Husimi distributions to identify which Floquet
states lie in the chaotic region of phase space so that we
could calculate the mean value of Z, for this set of states.
Figure 6 shows a plot of the IPR of the ZC state versus field
strength. For comparison, we also show the mean IPR of all
the chaotic states as well as the predicted value of Z, from
RMT.

The RMT values have been scaled to account for the fact
that only a part of the region of phase space on which the
Husimi distributions were calculated is chaotic. From the
definition of the IPR [Eq. (12)] we see that the RMT value
for a fully chaotic phase space (Z,=2) must be multiplied by
J/K, where J is the total number of grid points used in cal-
culating the Husimi distribution and K is the number of those
points that lie within the chaotic region of phase space. We
estimate this ratio using the ratio of the area of the chaotic
region to the area of the region on which the Husimi distri-
butions are calculated. From Fig. 6 it is clear that the IPR of
the ZC state is much higher than the average IPR for all
chaotic states or the prediction of RMT for all field strengths.
Indeed, even if the IPR of the ZC state is reduced by a factor
of 1.5, it still remains much higher than the average for all
chaotic states for 1000 <<e<2400. This is a clear indication
that the enhancement of the IPR for the ZC states is not due
solely to the fact that they lie along a line of symmetry. Note
that the average value of Z,, for the chaotic states is in good
agreement with the prediction of RMT.

V. DISAPPEARANCE OF THE ZERO-COLLISION ORBITS

The zero-collision states of our model are very similar to
the bouncing ball states of the stadium and other billiard
systems. However, there is at least one important difference.
In the stadium billiard the BB orbits are trajectories that
bounce back and forth between the horizontal straight-line
segments of the stadium boundary. For each point along this
horizontal segment there is a corresponding BB orbit at any
energy. Therefore the BB orbits form a one parameter family
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FIG. 7. The plots on the left are strobe plots of the classical
motion at three field strengths for which the line of periodic orbits
along p=0 no longer exists. The plots on the right show £ (x,p) as
a function of phase-space location for the same field strengths,
where the horizontal and vertical axes on the right-hand plots, x,
and p,, respectively, take the same range of values as x and p on the
left-hand plots. Note that at e=3800 there is still a prominent peak
in L(xg,po) near the right wall at py=0. For e=5000 this peak has
moved well away from p,=0.

of periodic orbits for any given energy. To make this family
of orbits disappear one must reduce the length of the hori-
zontal segment of the boundary to zero. In this limit the
stadium billiard turns into a circular billiard, which is a clas-
sically integrable system. In our model, the ZC orbits also
form a one-parameter family of periodic orbits. However,
our model does not become integrable in the limit in which
the family of ZC orbits disappears. No ZC orbits will be
found for €>3200 in our model, but for these fields
strengths the classical dynamics in the region of phase space
around p=0 is chaotic. We would like to know what happens
to the ZC states when the ZC orbits no longer exist.

Figure 7 shows strobe plots of the classical motion and
contour plots of the LIPR (see Sec. III) as a function of
phase-space location for e=3800, 4500, and 5000. Note that
in Fig. 7(a) (e=3800) there is a significant peak in L(xy,p,)
near (xo=1, py=0), which is the location of the last ZC orbit
at €=3200. In Fig. 7(b) (e=4500) this peak is still visible but
there is a more prominent peak near (xo=1, p,=40) which
appears to be the location of an unstable periodic orbit that
lies on the separatrix of a newly formed resonance. In Fig.
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FIG. 8. Husimi distributions of Floquet states that are peaked
near (xp=1, py=0) for e=3800 and €=4500. For e=5000 we were
unable to find a Floquet state that was peaked near (xo=1, py=0).

7(c) there is no visible peak at (xo=1, py=0). Instead there
is a very prominent peak near the apparent unstable periodic
orbit at (x=1, p=40). These results indicate that the effects
of the ZC orbits do not disappear as soon as the orbits them-
selves do. Indeed, there seems to be increased localization in
the vicinity of the last ZC orbit for values of € well beyond
the value at which that last ZC orbit disappears. Investigation
of the classical dynamics in that region of phase space shows
no sign of any stable classical structures. This increased lo-
calization may be an example of scarring by ghosts of peri-
odic orbits, where “ghosts” are defined to be periodic orbits
that do not exist in the classical system but rather in some
neighboring classical system. In our model, a neighboring
system would correspond to the same model with a slightly
different value for e. Pseudointegrable triangle billiards have
been shown to have quantum eigenstates scarred on families
of periodic orbits that exist in neighboring billiards (triangles
with slightly different angles) [16]. Further work is needed to
verify whether or not the enhanced localization in our model
near (x=1, p=0) for €>3200 is due to this ghost effect.

Husimi distributions of low-energy Floquet states were
also examined for €e=3800, 4500, and 5000. For e=3800 and
4500 we found Floquet states with very prominent peaks
near (x=1, p=0). The Husimi distributions of these states
are shown in Fig. 8. However, for e=5000 we were unable to
find any Floquet states with a prominent peak at (x=1, p
=0). This is in agreement with what is seen in Fig. 7. The
enhanced localization due to the ZC orbits appears to con-
tinue for €>3200, but for e=5000 the effects of the ZC
orbits are no longer apparent.

VI. CONCLUSION

A sinusoidally driven classical particle in an infinite
square well displays predominantly chaotic motion at low
momentum when the strength of the driving field is suffi-
ciently high. Buried within the chaotic region of the phase
space for this system is a continuous line of marginally stable
periodic orbits which we call “zero-collision” orbits because
they never collide with the walls of the well. We have shown
that the quantum version of this system has Floquet eigen-
states that are strongly localized in the vicinity of the ZC
orbits. Surprisingly, the increased localization associated
with the ZC orbits seems to persist at field strengths beyond
that at which the ZC orbits themselves disappear. This may
be an example of scarring by the “ghost” of a family of
periodic orbits.
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The ZC states are not the first examples of quantum states
that are strongly localized along a line of marginally stable
periodic orbits. The “bouncing ball” energy eigenstates seen
in a number of billiard systems illustrate the same effect
[5,6]. Similar bouncing ball states have been identified
among the Floquet eigenstates of a J-kicked system related
to the Sinai billiard [17]. To our knowledge, though, the ZC
states are the first example of this effect in a continuously
driven system. The bouncing ball states form a set of mea-
sure zero in the semiclassical limit and thus do not contradict
Schnirelman’s theorem [8]. We would expect the ZC states to
follow the same pattern and persist as #—0, but form an
ever decreasing fraction of the overall set of quantum eigen-
states. We intend to explore this conjecture in future work,
with particular emphasis on the ghost ZC states that exist at
field strengths beyond that at which the ZC orbits are de-
stroyed.

PHYSICAL REVIEW E 72, 016208 (2005)

The bouncing ball states in billiard systems give rise to
experimentally detectable effects [7]. The presence of the ZC
states in our model may also be detectable in experiments
involving trapping potentials with flat regions, such as an
electron in a GaAs/Al,Ga,;_,As quantum wells subject to
intense far-infrared radiation [18]. This effect might be used
to localize and trap low-energy electrons in the presence of
radiation. Since the ZC states are localized at low energies,
an electron in a ZC state will be less likely to be ejected from
the well.

ACKNOWLEDGMENTS

L.E.R. wishes to thank the Robert A. Welch Foundation
(Grant No. F-1051) and F.P. wishes to thank the Berry Col-
lege Office of Student Work for partial support of this work.

[1] L. E. Reichl, The Transition to Chaos: Conservative Classical
Systems and Quantum Manifestations, 2nd ed. (Springer-
Verlag, New York, 2004).

[2] E. J. Heller, Phys. Rev. Lett. 53, 1515 (1984).

[3] P. W. Anderson, Phys. Rev. 109, 1492 (1958).

[4] R. C. Brown and R. E. Wyatt, Phys. Rev. Lett. 57, 1 (1986).

[5] P. W. O’Connor and E. J. Heller, Phys. Rev. Lett. 61, 2288
(1988).

[6] E. Bogomolny and C. Schmit, Phys. Rev. Lett. 92, 244102
(2004); G. Berkolaiko, J. P. Keating, and B. Winn, ibid. 91,
134103 (2003); T. Papenbrock and T. Prosen, ibid. 84, 262
(2000); D. Biswas and S. R. Jain, Phys. Rev. A 42, 3170
(1990).

[7] H. Alt, C. Dembowski, H.-D. Grif, R. Hofferbert, H. Rehfeld,
A. Richter, and C. Schmit, Phys. Rev. E 60, 2851 (1999); S.
Sridhar, Phys. Rev. Lett. 67, 785 (1991).

[8] A. 1. Schnirelman, Usp. Mat. Nauk 29, 181 (1974); S.

Zelditch, Duke Math. J. 55, 919 (1987); Y. Colin de Verdiere,
Commun. Math. Phys. 102, 497 (1985).
[9] W. A. Lin and L. E. Reichl, Physica D 19, 145 (1986).

[10]J. H. Shirley, Phys. Rev. 138, B979 (1965).

[11] H. Sambe, Phys. Rev. A 7, 2203 (1973).

[12] T. Timberlake and L. E. Reichl, Phys. Rev. A 59, 2886 (1999).

[13] K. Husimi, Proc. Phys. Math. Soc. Jpn. 22, 246 (1940); K.
Takahashi, Prog. Theor. Phys. Suppl. 98, 109 (1989).

[14] W. E. Bies, L. Kaplan, M. R. Haggerty, and E. J. Heller, Phys.
Rev. E 63, 066214 (2001).

[15] Y. Y. Bai, G. Hose, K. Stefanski, and H. S. Taylor, Phys. Rev.
A 31, 2821 (1985).

[16] P. Bellomo and T. Uzer, Phys. Rev. E 50, 1886 (1994).

[17] L. Kaplan and E. J. Heller, Phys. Rev. E 62, 409 (2000).

[18] B. Birnir, B. Galdrikian, R. Grauer, and M. Sherwin, Phys.
Rev. B 47, R6795 (1993); B. Galdrikian, B. Birnir, and M.
Sherwin, Phys. Lett. A 203, 319 (1995).

016208-7



