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We study the phenomenon of spatial coherence resonance in a two-dimensional model of excitable media
with FitzHugh-Nagumo local dynamics. In particular, we show that there exists an optimal level of additive
noise for which an inherent spatial scale of the excitable media is best pronounced. We argue that the observed
phenomenon occurs due to the existence of a noise robust excursion time that is characteristic for the local
dynamics whereby the diffusion constant, representing the rate of diffusive spread, determines the actual
resonant spatial frequency. Additionally, biological implications of presented results in the field of neuroscience
are outlined.
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I. INTRODUCTION

Contradictory to the intuitive belief, noise has crystallized
to be a welcomed ingredient of both local �1� and space
extended �2� nonlinear systems, often facilitating their func-
tioning and overall effectiveness. In particular, for temporal
systems it has been discovered that the constructive role of
noise depends resonantly on the noise intensity, which lead
to terming this phenomenon stochastic resonance �3�. More
precisely, stochastic resonance stands for the resonant noisy
enhancement of a system’s response to weak external stimuli
�4–12�. Remarkably, stochastic resonance phenomena can
also be observed in the absence of any deterministic external
inputs in systems with no explicit time scales �13,14�. This
striking phenomenon has been termed coherence resonance
�15�.

In systems with spatial degrees of freedom, spatiotempo-
ral stochastic resonance has been first reported in Ref. �16�
for excitable systems, while spatial coherence resonance has
been introduced in Ref. �17� for systems near pattern form-
ing instabilities. Moreover, there exist studies reporting
noise-induced spiral growth and enhancement of spatiotem-
poral order �18–22�, noise sustained coherence of space-time
clusters and self-organized criticality �23�, noise enhanced
and induced excitability �24,25�, noise induced propagation
of harmonic signals �26�, as well as noise sustained and con-
trolled synchronization �27� in space extended systems. Re-
cently, Busch and Kaiser �28� have shown that additive noise
is also able to resonantly extract the spatiotemporal order in
excitable media. Little attention, however, has been devoted
to the explicit analysis of characteristic spatial frequencies of
nonlinear media. In addition to the work of Carrillo et al.
�17�, there exist no studies reporting a resonant enhancement
of an inherent spatial frequency in space extended systems.

In the present study, we analyze spatial frequency spectra
of excitable media in dependence on different levels of ad-
ditive noise. By calculating the average spatial structure
function, we present first evidences for spatial coherence
resonance in excitable media. Note that although stochastic
�29� and coherence resonance �30–33� phenomena have been
extensively studied in arrays of dynamical systems, our work
focuses explicitly on the spatial rather than temporal system
scale. In particular, we show that there exists an optimal

level of additive noise for which a particular spatial fre-
quency of the system is best pronounced. We emphasize that
no additional deterministic inputs are introduced to the sys-
tem, and the latter is locally initiated from steady state sin-
gular conditions. Hence, the studied spatial structures are in-
duced solely by additive noise and reflect an inherent spatial
scale of the media.

The excitable media under study is locally modeled by the
FitzHugh-Nagumo equations �34,35� that were derived from
the Hodgkin-Huxley model describing the excitable dynam-
ics of electrical signal transmission along neuron axons �36�.
Since neurons are known to be noisy analog units, which
only if coupled can carry out highly complex and advanced
computations with cognition and reliability �37�, it is evident
that excitable neural tissue combines features of being both
noisy and spatially extended. Therefore, it is of great interest
to study effects of noise on the spatial scale of such systems.
Hopefully, our work outlines some possibilities for future
experimental work, especially in the field of neuroscience,
where excitability and noise in space extended systems ap-
pear to be universally present.

The paper is structured as follows. Section II is devoted to
the description of the mathematical model and its main “lo-
cal” characteristics. In Sec. III evidences for the spatial co-
herence resonance are presented, while in the last section we
summarize the results and outline biological implications of
our findings.

II. MATHEMATICAL MODEL

We study a mathematical model of excitable media given
by

du

dt
= f�u,v� + D�2u + � , �1�

dv
dt

= g�u,v� , �2�

which is locally described by the FitzHugh-Nagumo equa-
tions �34,35�
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f�u,v� =
1

�
u�1 − u��u −

v + b

a
� , �3�

g�u,v� = u − v . �4�

The membrane potential u�x ,y , t� and time-dependent con-
ductance of potassium channels v�x ,y , t� are considered as
dimensionless two-dimensional scalar fields on a n�n
square lattice with mesh size �x=�y, whereby the local dy-
namics of u is much faster ���1� than that of v, whose
diffusive spread is, for simplicity reasons, neglected. More-
over, � is additive Gaussian noise with zero mean, white in
space and time, and variance �2 �2�. The Laplacian D�2u, D
being the diffusion coefficient, is integrated into the numeri-
cal scheme via a five-point finite-difference formula as de-
scribed by Barkley �38� with no-flux boundary conditions.
For parameter values a=0.75, b=0.01, and �=0.05 the local
FitzHugh-Nagumo system is governed by a Z-shaped u and a
linear v nullcline as depicted in Fig. 1, where the point u
=v=0.0 marks the only stable excitable steady state. Small
perturbations of the excitable steady state evoke nontrivial
spikelike behavior, which can induce various wave forms in
the spatial domain of the space extended system �39�. Note
also that since additive noise is introduced to the dynamics, it
is possible to induce numerical instability in the model if u
�1 or v	0 �see nullclines in Fig. 1�. To ensure the model
remains well behaved we use slightly modified FitzHugh-
Nagumo equations as proposed in Ref. �40�, which are given
by

f̃�u,v� = � f�u,v� , u 
 1,

− �f�u,v�� , u � 1,
	

�5�

g̃�u,v� = �g�u,v� , v � 0,

�g�u,v�� , v 	 0,
	

whereby f�u ,v� and g�u ,v� are the same as in Eqs. �3� and
�4�. It is evident that Eq. �5� does not alter excitable proper-
ties of the system �trajectories depicted in Fig. 1 remain un-
changed�, but ensures that solutions of u and v remain close
to the unit interval for arbitrary noise intensities �40�. In what
follows, we will show that there exists an optimal level of
additive noise for which a particular spatial frequency of the
studied system is resonantly pronounced, thus providing evi-
dences for spatial coherence resonance in excitable media.

III. SPATIAL COHERENCE RESONANCE

To quantify effects of various noise intensities on the spa-
tial scale of the studied system we calculate the structure
function according to the equation

P�kx,ky� = 
H2�kx,ky��/S , �6�

where H�kx ,ky� is the spatial Fourier transform of the u field
at a particular t �41�, S is the area of the system, and 
¯� is
the ensemble average over noise realizations. Note that
P�kx ,ky� can also be interpreted as the spatial power spec-
trum of the system. Figure 2 shows four spatial power spec-

tra for various additive noise levels. It can be well observed
that for small noise levels ��=0.11, �=0.18� the presented
spectra show no particularly expressed spatial frequency,
whereby a close examination of the spectrum at �=0.18 al-
ready reveals the onset of structure formation in the system.
For somewhat larger noise intensities ��=0.24� the spectrum
develops a well-expressed circularly symmetric ring, indicat-
ing the existence of a preferred spatial frequency induced by
additive noise. As the noise level is further increased ��
=0.48� random fluctuations start to dominate the spatial scale
and thus, similarly as by small noise levels, no preferred
spatial frequency can be inferred.

To study results presented in Fig. 2 in more detail, we
exploit the circular symmetry of the presented spatial power
spectra as proposed in Ref. �17�. In particular, we calculate
the circular average of the structure function according to the
equation

p�k� = �
�k

P�k�d�k, �7�

where k= �kx ,ky�, and �k is a circular shell of radius k= �k�.
Figure 3�a� shows results for three different �. It can be
observed that there indeed exists a particular spatial fre-
quency, marked with the thin solid line at k=kmax, that is
resonantly enhanced for some intermediate level of additive
noise. To quantify the ability of each particular noise level to
extract the characteristic spatial periodicity in the system
more precisely, we calculate the quantity p= p�kmax� / p̃,
where p̃= �p�kmax−�ka�+ p�kmax+�kb�� /2 is an approxima-
tion for the level of background fluctuations in the system,
whereby �ka=0.071 and �kb=0.18 mark the estimated width
of the peak around kmax at the optimal �. Thus, p measures
the normalized height of the peak at kmax for each particular
�. This is the spatial counterpart of the measure frequently
used for quantifying constructive effects of noise in the tem-
poral domain of dynamical systems �42�, whereas a similar

FIG. 1. Local dynamics of the FitzHugh-Nagumo system. Thin
solid and dashed lines denote the u and v nullclines, respectively,
while the circle marks the excitable steady state. Thick solid lines
show possible excursions of the trajectory resulting from various
perturbations acting upon u=v=0.0. Arrows indicate the direction
of the flow.
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measure for quantifying effects of noise on the spatial scale
of space extended systems was also used in Ref. �17�. Figure
3�b� shows how p varies with � for three different diffusion
constants D. It is evident that there always exists an optimal
level of additive noise for which the peak of the circularly
averaged structure function is best resolved, thus indicating
the existence of spatial coherence resonance in the studied
excitable media.

The existence of a preferred spatial periodicity in the
studied excitable media for a certain level of additive noise
can be well corroborated by studying snapshots of typical
u-field configurations for various � and D, as presented in
Fig. 4. It is evident that small noise levels are unable to
excite the system strong enough to evoke any particular spa-
tial dynamics in the media. On the other hand, optimal noise
levels at each particular D clearly enhance a particular spatial
scale, thus providing visible evidences that corroborate re-
sults presented in Figs. 2 and 3. For large noise levels the
pattern formation becomes violent so that the spatial profile
again lacks any visible structure. Taken together, our results
provide firm evidence for spatial coherence resonance in the
studied excitable media.

In order to provide insights into mechanisms that guaran-
tee the observed noise-induced spatial dynamics, we outline
some important aspects of results presented in Figs. 3�b� and
4. First, it is evident that larger D require larger � for the
resonant enhancement of a particular spatial frequency. Also,
the overall peak of p that can be achieved with additive
noise decreases with increasing D. Moreover, the middle row
of Fig. 4 clearly shows that the characteristic scale of the
system, i.e., the inverse of kmax, increases with increasing D.

To explain these results, we first briefly summarize find-
ings regarding the temporal coherence resonance in excitable

FIG. 2. Two-dimensional
power spectra of the spatial profile
of u for various �. Parameter val-
ues used for the calculation where
D=0.75, n=128, and �x=0.3125,
whereby the system was initiated
from steady state singular condi-
tions u�t=0�=v�t=0�=0.0 at all
lattice sites.

FIG. 3. �Color online.� Spatial coherence resonance in the stud-
ied excitable media. �a� Circular average of the structure function
for three different � at D=0.75. �b� p in dependence � for various
diffusion constants �black D=0.375, red D=0.75, green D=1.5�.
Other parameter values are the same as in Fig. 2.
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systems �15�. It is known that excitable systems have a char-
acteristic firing time te, termed excursion time, which is well
preserved under variable noisy perturbations. Contrary, the
average time between consecutive firings ta, termed activa-
tion time, depends heavily on the level of additive noise, i.e.,
decreases with increasing �. The time coherence of the sys-
tem is best pronounced when the noise level is large enough
so that ta� te, but still small enough so that fluctuations of te
remain moderate and thus the outline excursion phase
smooth �15�.

These different noise dependencies of te and ta, together
with the rate of diffusive spread that is proportional to D
�43�, hold also the key to understanding the spatial coherence
resonance in excitable media. We argue that during te each
particular lattice site acts like a circular �after local initializa-
tion all directions for spreading are equally probable� front
initiator. After initialization the front starts to spread through
the media with a rate proportional to D. When embarking
on neighboring sites the front can, depending on the level of
additive noise, cause new excitation or eventually die out. In
particular, if � is large enough, i.e., ta short enough, neigh-
boring sites have a large probability to also become excited,
which eventually nucleates a wave that propagates through
the media. Analogous to the time domain, for this to happen
the noise level also has to be sufficiently small so that the
outline of the excursion phase remains smooth, which con-

stitutes a nearly deterministic nucleus formation in the spa-
tial domain and guarantees that locally initiated excitations
can merge into a spatially coherent structure. Since larger D
constitute faster diffusive spread, it is understandable that the
characteristic spatial scale of coherent structures induced by
increasing D increases �see middle row of Fig. 4 from left to
right�. However, since for larger D local excitations tend to
die out more quickly, and larger coherent structures also re-
quire a higher rate of local excitations to propagate through
the media, it is evident that shorter ta �larger �� are required
to produce sustained waves. This explains the increasing �
that is required for the optimal response at larger D, as
shown in Fig. 3�b�. Furthermore, since larger noise intensi-
ties blur local excursion phases �te� as well, the maximal
spatial coherence that can be achieved by additive noise de-
creases with increasing D.

Finally, it is of interest to explain the existence of a par-
ticular spatial periodicity. We argue that the characteristic
noise robust excursion time te, combined with the diffusive
spread rate proportional to D, marks a characteristic spatial
scale of the system that is indicated by the resonantly en-
hanced spatial wave number kmax. Since the characteristic
spatial scale is determined by the inverse of the resonantly
enhanced spatial wave number, our reasoning thus predicts
the dependence kmax=1/�D, whereby �� te�constant. Fig-
ure 5 shows numerically obtained kmax for different D. It is

FIG. 4. �Color online.� Char-
acteristic snapshots of the spatial
profile of u for various D at small
�top�, near optimal �middle�, and
large �bottom� noise levels. Note
that all figures are depicted on
128�128 square grid with a lin-
ear color profile, red marking 1.0,
and blue 0.0 values of u.
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evident that obtained values are in excellent agreement with
the inverse square root function, thereby validating our
above explanation. Nevertheless, an open question remains
how the constant � is explicitly linked to te. Since a particular
lattice site acts like a front initiator only when the variable u
crosses a certain threshold value �not during the whole te�,
and also because other constants determining the exact rate
of diffusive spread are not known, the task of explicitly link-
ing � and te is left for future studies. The main point is that
the inverse square root function fits to the numerically ob-
tained values with a constant �, which reflects a noise robust

te that is characteristic for excitable systems �15�. Together
with a given D, this property of excitable systems constitutes
an inherent spatial scale that can be resonantly enhanced by
additive noise, thus explaining the existence of spatial coher-
ence resonance in excitable media.

IV. SUMMARY

We show that additive Gaussian noise is able to extract a
characteristic spatial scale of excitable media in a resonant
manner. In particular, there exist an optimal level of additive
noise for which the spatial periodicity of the system is best
pronounced. Thereby, no additional deterministic inputs were
introduced to the system and the latter was initiated from
steady state singular conditions. Thus, the presented results
offer convincing evidence for the existence of spatial coher-
ence resonance in the studied excitable media. We argue that
the observed phenomenon occurs due to existence of a noise
robust excursion time that is characteristic for the local dy-
namics whereby the diffusion constant, representing the rate
of diffusive spread, determines the actual resonant spatial
frequency, which decreases with increasing D.

Since excitability is ubiquitous in all areas of science �44�,
the present study might also have important biological impli-
cations �45�. In the nervous system, for example, it has been
discovered that excitable systems guarantee robust signal
propagation through the tissue in a substantially noisy envi-
ronment �46�. Moreover, studies evidencing the existence of
stochastic resonance in the human brain have recently been
mounting �8–10,12�. Thus, it would be very interesting to
elucidate if spatial coherence resonance in the nervous sys-
tem can be confirmed experimentally also. The above theo-
retical results indicate that such experimental findings might
be feasible and indeed not attributed to serendipity.
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