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We study spatiotemporal intermittency �STI� in a system of coupled sine circle maps. The phase diagram of
the system shows parameter regimes where the STI lies in the directed percolation �DP� class, as well as
regimes which show pure spatial intermittency �where the temporal behavior is regular� which do not belong
to the DP class. Thus both DP and non-DP behavior can be seen in the same system. The signature of DP and
non-DP behavior can be seen in the dynamic characterizers, viz. the spectrum of eigenvalues of the linear
stability matrix of the evolution equation, as well as in the multifractal spectrum of the eigenvalue distribution.
The eigenvalue spectrum of the system in the DP regimes is continuous, whereas it shows evidence of level
repulsion in the form of gaps in the spectrum in the non-DP regime. The multifractal spectrum of the eigen-
value distribution also shows the signature of DP and non-DP behavior. These results have implications for the
manner in which correlations build up in extended systems.
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I. INTRODUCTION

The phenomenon of spatiotemporal intermittency �STI�,
which is characterized by the coexistence of laminar states of
regular dynamics and burst states of irregular dynamics, is
ubiquitous in natural and experimental systems. Such behav-
ior has been seen in experiments on convection �1,2�, coun-
terrotating Taylor-Couette flow �3�, oscillating ferrofluidic
spikes �4�, and experimental and numerical studies of rheo-
logical fluids �5,6�. In theoretical studies, STI has been seen
in partial differential equations �PDEs� such as the damped
Kuramoto-Sivashinsky equation �7� and the one-dimensional
Ginzburg Landau equation �8�, coupled map lattices �CML�
�9� such as the Chaté-Manneville CML �10�, the inhomoge-
neously coupled logistic map lattice �11�, and in cellular au-
tomata studies �10�.

A variety of scaling laws have been observed in these
systems. However, there are no definite conclusions about
their universal behavior. Many of the observed phenomena
have been seen in experimental systems where no simple
model is available. There has been much discussion about
the nature of spatiotemporal intermittency and its analogy
with systems which undergo phase transitions. It has been
argued that the transition to spatiotemporal intermittency
with absorbing laminar states is a second order phase transi-
tion, and that this transition falls in the same universality
class as directed percolation �12� with the laminar states be-
ing identified with the “inactive” states and the turbulent
states being identified as the “active” or percolating states.
This conjecture has become the central issue in a long-
standing debate �10,13–16�, which is still not completely re-
solved. Thus the analysis of spatiotemporal intermittency re-
mains a challenging theoretical problem.

In this paper, we study spatiotemporal intermittency in the
coupled sine circle map lattice �17�, a popular model for the

behavior of mode-locked oscillators. Spatiotemporal inter-
mittency has been reported to exist for several points in the
parameter space of this model and a full set of directed per-
colation exponents has been found at these points �16,18�.
The detailed phase diagram of this model shows that these
points lie on, or near, the bifurcation boundary where the
synchronized fixed points of the model lose stability. We
now find that spatiotemporal intermittency can be found all
along the bifurcation boundary of this region. Interestingly,
while some points of this boundary show spatiotemporal in-
termittency where synchronized laminar regions coexist with
turbulent regions, with associated directed percolation expo-
nents �DPs�, other points of the boundary show pure spatial
intermittency where the synchronized laminar regions are in-
terspersed with bursts of temporally periodic or quasiperi-
odic behavior which are not associated with DP exponents.
Thus both DP and non-DP regimes can be seen in this model.
The distinct signatures of these two types of behavior can be
found in the eigenvalue distribution of the stability matrix
calculated at one time step. The eigenvalue spectrum of the
system in the DP regimes is continuous, whereas distinct
gaps can be seen in the spectrum in the non-DP regime. The
multifractal analysis of the eigenvalue distribution of the two
cases also shows the signature of this behavior. Thus the
signature of the DP and non-DP behavior of the model can
be found in the dynamic characterizers of the system. In the
case of low dimensional systems, intermittency of different
types has been observed to contribute characteristic signa-
tures to the distribution of finite time Lyapunov exponents
�19�. The present study indicates the presence of a similar
phenomenon in high-dimensional systems as well.

The organization of this paper is as follows. The details of
the model are given in Sec. II. The phase diagram of this
CML is discussed in the same section and the various types
of STI observed are described therein. In Sec. III, the univer-
sality classes are identified and the differences between the
STI belonging to the DP class and non-DP classes are quan-
tified. Section IV describes dynamic characterizers which
can pick up these distinct classes. The paper ends with a
discussion of these results.
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II. MODEL AND PHASE DIAGRAM

The coupled sine circle map lattice has been known to
model the mode-locking behavior �20� seen commonly in
coupled oscillators, Josephson Junction arrays, etc., and is
also found to be amenable to analytical studies �17�. The
model is defined by the evolution equations

xi
t+1 = �1 − ��f�xi

t� +
�

2
�f�xi−1

t � + f�xi+1
t �� �mod 1� , �1�

where i and t are the discrete site and time indices, respec-
tively, and � is the strength of the coupling between the site
i and its two nearest neighbors. The local on-site map, f�x� is
the sine circle map defined as

f�x� = x + � −
K

2�
sin�2�x� . �2�

Here, K is the strength of the nonlinearity and � is the wind-
ing number of the single sine circle map in the absence of the
nonlinearity. We study the system with periodic boundary
conditions in the parameter regime 0���1/2� �where the
single circle map has temporal period 1 solutions�, 0��
�1 and K=1.0. The phase diagram of the system is highly
sensitive to initial conditions due to the presence of many
degrees of freedom and has been studied extensively for sev-
eral classes of initial conditions �17,20�, which result in rich
phase diagrams with many distinct types of attractors. In
particular, this system has regimes of spatiotemporal inter-
mittency when evolved in parallel with random initial con-
ditions �16�. An earlier study of the inhomogeneous logistic
map lattice had shown that the bifurcation curves corre-

sponding to bifurcations from the synchronized fixed point
can form rough guide lines to the regions in parameter space
where STI can be found �11�. It is therefore worthwhile to
investigate the detailed phase diagram of the present system,
identify various types of dynamical behavior, and correlate
the observed behavior, especially the spatiotemporally inter-
mittent behavior, with the known bifurcations that occur in
the system.

Phase diagram

The phase diagram of the system of Eqs. �1� and �2� for
the parameter region mentioned above is shown in Fig. 1.
Many types of solution can be seen in the phase diagram.
Stable, synchronized, fixed point solutions, where the vari-
ables xi take the value xi

t= �1/2��sin−1�2�� /K�=x� for all
i=1,…N for all t, are indicated by dots. These solutions,
which are very robust against perturbations, can be seen in
large regions of the phase diagram. Cluster solutions, in
which xi

t=xj
t for i , j belonging to the same cluster, are also

seen in the phase diagram, and are indicated by + signs in
Fig. 1. The synchronized solution is, in fact, a single cluster
solution where the size of the cluster is the lattice itself.
Spatiotemporally intermittent solutions are seen near the bi-
furcation boundaries where these synchronized solutions lose
stability. Several distinct kinds of STI are seen in the phase
diagram. These are as follows:

1. STI where the synchronized laminar state is inter-
spersed with turbulent bursts is seen along the bifurcation
boundary starting from �=0.0457,�=0.89 to �=0.06,�
=0.303 96. Some of the points where this kind of STI is seen

FIG. 1. Phase diagram obtained at K=1.0 for a lattice of size N=1000. A transient of 15 000 iterates has been discarded. The dots
represent the synchronized fixed point solutions. Plus signs �+� represent the cluster solutions. The diamonds ��� represent STI with
traveling �TW� wave laminar states and turbulent bursts whereas boxes ��� represent STI with TW laminar state and turbulent bursts
containing solitons. The asterisks �*� represent STI belonging to the DP class, and spatial intermittency is represented by triangles ���. The
crossover regime from spatial intermittency to DP is magnified in the inset figure. SI with frozen bursts are seen below the dashed line.
Above this line, the bursts start spreading on the lattice.
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are shown by asterisks �*� in the phase diagram. The laminar
state corresponds to the synchronized fixed point x� defined
earlier. The turbulent state takes all values other than x� in
the �0,1� interval. The space-time plot of these solutions is
shown in Fig. 2�a�.

2. Spatial intermittency �SI� with a synchronized laminar
state interspersed with quasiperiodic and periodic bursts is
seen along the boundary marked by triangles ��� in the
phase diagram. �The triangles indicate specific locations
where the SI has been studied.� The laminar state is the syn-

chronized fixed point x� and the burst state is a mixture of
quasiperiodic and periodic bursts �see Fig. 2�b��.

3. The locations where STI with traveling wave laminar
states and turbulent bursts can be seen are marked by dia-
monds ��� in the phase diagram �Fig. 2�c��. As can be seen
from the space-time plot, the burst states are localized and do
not spread through the lattice.

4. Parameter values which show spatiotemporal intermit-
tency with traveling wave laminar states and turbulent bursts
are shown by boxes ��� in the phase diagram. The space-

FIG. 2. Space-time plots of the different types of STI observed in the phase diagram. The lattice index i is along the x axis and the time
index t is along the y axis. The space-time plots show �a� STI with synchronized laminar state interspersed with turbulent bursts seen at
�=0.06,�=0.7928; �b� SI with synchronized laminar state with quasiperiodic and periodic bursts seen at �=0.031,�=0.42; �c� STI with
TW laminar state and turbulent bursts observed at �=0.007,�=0.99; �d� STI with TW laminar state and turbulent bursts containing solitons
at �=0.03,�=0.954.
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time plot of such states can be seen in Fig. 2�d�. These states
differ from those seen in Fig. 2�c� in that apart from the
turbulent bursts, solitonlike structures which are turbulence
of a coherent nature traveling in space and time, are also seen
in this type of STI. Such coherent structures have also been
seen in the Chaté-Manneville class of CMLs �15,21�.

We concentrate on STI with the simplest version of the lami-
nar state, viz. the synchronized state. Two types of intermit-
tent behavior are associated with this laminar state, viz. spa-
tiotemporal intermittency with spreading turbulent bursts,
and spatial intermittency with localized periodic and quasi-
periodic bursts. These two types of behavior can be seen in
contiguous regions of the boundary, but belong to different
universality classes. We discuss this behavior below, as well
as the crossover region between the two types of behavior.
STI with other types of laminar states, as well as STI in the
presence of solitons, will be dealt with elsewhere. The blank
regions of the phase diagram show solutions of varying de-
grees of spatiotemporal irregularity which will also be dis-
cussed elsewhere.

III. UNIVERSALITY CLASSES IN SPATIOTEMPORAL
INTERMITTENCY

We contrast the two types of intermittency and identify
their universality classes in this section. It is seen that spa-
tiotemporal intermittency with spreading bursts belongs to
the directed percolation class, whereas spatial intermittency
with periodic or quasiperiodic bursts does not belong to the
directed percolation class. The signature of this behavior can
be seen in the dynamic characterizers of the system, viz. the
distribution of eigenvalues of the linear stability matrix.

A. STI of the directed percolation class

The phase diagram shows STI with synchronized laminar
state interspersed with turbulent bursts along the upper
boundary of the leaf shaped region where synchronized so-
lutions are stable �the boundary on which asterisks are seen�.
These solutions show spreading and infective behavior simi-
lar to that seen in directed percolation models �22�. In this
type of STI, the spontaneous creation of turbulent bursts
does not take place as can be seen in the space-time plot of
this STI �Fig. 2�a��. A laminar site becomes turbulent only if
it has been infected by a neighboring turbulent site at the
previous time step. The turbulence either spreads to the
whole lattice, or dies down completely to the laminar state
depending on the coupling strength �. Once all the sites in
the lattice relax to the laminar state, it remains in this state
forever. Hence the synchronized laminar state is the absorb-
ing state. Importantly, this type of STI, as seen in this model,
is free of solitons which could bring in long-range correla-
tions. Hence a straightforward analogy with the DP class can
be drawn in this case, where the burst states are identified
with the “wet” sites, the laminar states are the “dry” sites and
the time axis acts as the directed axis.

The DP transition is characterized by a set of static critical
exponents associated with physical quantities of interest such
as the escape time, the order parameter which is defined as

the fraction of turbulent sites in the lattice at time t, the
distribution of laminar lengths, and the pair correlation func-
tion. In addition, a set of dynamic critical exponents can be
obtained by considering temporal evolution from initial con-
ditions which correspond to an absorbing background with a
localized disturbance, i.e., a few contiguous sites which are
different from an absorbing background. The quantities of
interest are the time dependence of N�t�, the number of ac-
tive sites at time t averaged over all runs, P�t�, the survival
probability, or the fraction of initial conditions which show a
nonzero number of active sites �or a propagating distur-
bance� at time t and the radius of gyration R2�t�, which is
defined as the mean squared deviation of position of the
active sites from the original sites of the turbulent activity,
averaged over the surviving runs alone. The detailed defini-
tion of the full set of DP exponents is given in the Appendix
and typical behavior is shown in Fig. 3. This complete set of
DP exponents has been calculated at the points marked by
asterisks in the phase diagram �Fig. 1�. �The exponents at
two of these points, viz. at parameters �=0.068,�
=0.637 75,K=1.0, and �=0.064,�=0.732 77,K=1.0, were
found in a earlier paper �16��.

All these points are located near the bifurcation boundary
of the spatiotemporally synchronized solutions. The static
and dynamic exponents obtained after averaging over 103

initial conditions at these parameter values have been listed
in Tables I and II, respectively. The agreement between these
exponents and the universal DP exponents is complete.

B. Spatial intermittency shows non-DP behavior

Spatial intermittency with synchronized laminar state, and
quasiperiodic or periodic bursts, is also seen in the vicinity of
the bifurcation boundary at the locations indicated by tri-
angles. The laminar state is the synchronized fixed point x�

defined earlier. The bursts observed are quasiperiodic in na-
ture. Figure. 2�b� shows the space-time plot of SI. We can
see the absence of spreading dynamics or infective behavior
on the lattice. The bursts are spatially localized which is
unlike the dynamics seen in directed percolation systems.
The spatially intermittent solutions have zero velocity com-
ponents in the spatial direction, and modes which travel
along the lattice do not appear. In addition to the solutions
with quasiperiodic bursts seen in the space-time plot, solu-
tions which have strictly periodic bursts can also be seen.

The scaling exponent � for the laminar length distribution
P�����−�, is found to have the value 1.1 in the case of SI
which is very different from the corresponding DP exponent
��DP=1.67� �Fig. 4�. Hence SI does not belong to the DP
universality class. We note that this exponent, however, has
been seen for the inhomogenously coupled logistic map lat-
tice �11� where similar spatial intermittency is seen.

C. Crossover regime

It is clear from the phase diagram that the regimes of
spatial intermittency and spatiotemporal intermittency are
contiguous to each other on the lower part of the bifurcation
boundary of the synchronized solutions �in the neighborhood
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of �=0.06 and �=0.3�, and crossover effects can be ex-
pected in this parameter regime. This crossover region is
magnified in the inset to Fig. 1. The transition takes place
through an intermediate stage wherein apart from periodic
and quasiperiodic bursts, frozen bursts are also seen. This
regime is found just below the dashed line shown in the
inset, e.g., at �=0.0608,�=0.273. Here, the laminar length

distribution is exponential in nature �see Fig. 5�. Above the
dashed line �e.g., at �=0.061 and �=0.273�, the crossover
starts with the appearance of bursts which spread on the lat-
tice. As � is increased further, the bursts lose their localized
nature and STI with synchronized laminar state is seen. At
the point marked by an asterisk �*� in the figure, DP expo-
nents are obtained.

FIG. 3. �a�Log-log plot of the escape time � vs lattice size L at �=0.049 and �=0.852, 0.8498, 0.8495, 0.8492, 0.849 from top to bottom.
At �c=0.8495,� scales with L with z=1.60±0.01. �b� The log-log plot of order parameter m vs t at �=0.073,�=0.4664. The exponent
� /�z=0.157. �c� The log-log plot of the correlation function Cj�t� vs j at �=0.049,�=0.8495 at time steps t=65 000, 35 000, 15 000 shown
as �, + ,	, respectively. The exponent 
�−1=0.51 �d� shows the log-log plot of the radius of gyration R2�t� vs t at �=0.073,�
=0.4664,zs=1.268. All logarithms are to base 10.

TABLE I. The static exponents obtained at the critical �c are shown. The universal DP exponents are
listed in the last row. These exponents have been obtained after averaging over 1000 initial conditions.

� �c���

Bulk exponents

z � /�z � � 
� � ��

0.049 0.8495 1.60±0.01 0.16±0.01 0.271 1.1 1.51±0.0 1.68±0.01 0.87±0.01

0.06 0.7928 1.59±0.02 0.17±0.02 0.293 1.1 1.51±0.01 1.68±0.01 0.78±0.01

0.073 0.4664 1.58±0.02 0.16±0.01 0.273 1.1 1.5±0.01 1.65±0.01 0.72±0.01

0.065 0.34949 1.59±0.03 0.16±0.01 0.273 1.1 1.5±0.01 1.66±0.01 0.75±0.01

0.06 0.30396 1.6±0.02 0.16±0.01 0.27 1.05 1.5±0.01 1.61±0.01 0.70±0.01

0.102 0.25554 1.6±0.01 0.16±0.00 0.277 1.1 1.52±0.01 1.67±0.01 0.73±0.01

0.12 0.257 1.60±0.01 0.15±0.01 0.264 1.1 1.51±0.01 1.64±0.01 0.71±0.01

DP 1.58 0.16 0.28 1.1 1.51 1.67 0.748
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The distinction between the DP and non-DP regimes lies
in the extent to which the burst solutions are able to spread
into the laminar regions, i.e., the extent to which they are
able to infect the laminar regions. While the spreading expo-
nents are the obvious signature to this problem, their nonuni-
versal nature and strong dependence on the initial configura-
tion makes their use problematic. However, the dynamic
signature of the extent to which burst solutions can spread
and mix into the laminar regions is contained in the spectrum
of the eigenvalue distribution of the one-step stability matrix
and also in the multifractal spectrum of the eigenvalue dis-
tribution. The eigenvalue spectrum of the DP class is con-
tinuous whereas the non-DP class contains distinct gaps in
the spectrum indicating regions where the eigenvalues are
repelled, corresponding to stretching rates which are ex-
cluded. These gaps appear to lead to the strong spatial local-
ization and temporally regular or quasiregular behavior for
the burst solutions characteristic of spatial intermittency. The
multifractal spectrum of the eigenvalues also contains the
signature of this behavior. Thus the eigenvalue spectrum and
the multifractal spectrum of the eigenvalues, constitute dy-
namic characterizers of spatiotemporal intermittency. We
elaborate on these characterizers in the next section.

IV. DYNAMIC SIGNATURES OF DP AND NON-DP CLASS

A. Eigenvalue distribution of the stability matrix

The linear stability matrix of the evolution equation �1� at
one time step about the solution of interest is given by the
N	N dimensional matrix Mt

N, given below:

Mt
N =�

�sf��x1
t � �nf��x2

t � 0 … �nf��xN
t �

�nf��x1
t � �sf��x2

t � �nf��x3
t � … 0

0 �nf��x2
t � �sf��x3

t � �nf��x4
t � …

] ] ] ] ]

�nf��x1
t � 0 … �nf��xN−1

t � �sf��xN
t �
�

where �s=1−� , �n=� /2, and f��xi
t�=1−K cos�2�xi

t�. xi
t is the

state variable at site i at time t, and a lattice of N sites is
considered.

The diagonalization of Mt
N gives the N eigenvalues of the

stability matrix. The eigenvalues of the stability matrix were
calculated for spatiotemporally intermittent solutions which
result from bifurcations from the spatiotemporally synchro-
nized solutions. The eigenvalue distribution for the STI be-
longing to the DP universality class and SI was calculated by
averaging over 50 initial conditions.

The eigenvalue distributions for STI belonging to the DP
class can be seen in Fig. 6�a�, and that for spatial intermit-
tency can be seen in Fig. 6�b�. It is clear from the insets that
the eigenvalue spectrum of the SI case shows distinct gaps.
No such gaps are seen in the eigenvalue spectrum of the STI
belonging to the DP class and the spectrum is continuous.
Thus a form of level repulsion is seen in the eigenvalue
distribution for parameter values which show spatial inter-
mittency. We note that such gaps are seen at all the parameter
values studied where spatial intermittency is seen, and that
no gaps are seen for any of the parameter values where DP is
seen �23�. It can be seen that Fig. 6�c� shows power-law
scaling �with power −1.254� in the range 0.1–1, unlike Fig.
6�d�. The gaps in the spectrum can also be seen in Fig. 6�d�.
Thus the gaps in the spectrum are associated with temporally
quasiperiodic or periodic bursts in a synchronized fixed point
laminar background. The bursts have no velocity component
along the lattice, and hence do not travel in space, nor do
they infect their laminar neighbors. On the other hand, when
the spectrum is continuous the bursts are temporally turbu-
lent and show the infective behavior characteristic of di-
rected percolation problems. Since the eigenvalue spectrum
of the SI case has zero probability regions, they are strongly
picked up by multifractal analysis. However, it is interesting
to note that the multifractal analysis of this case, with gaps
excluded, also carries the signature of spatial intermittency.
We discuss these signatures in the next section.

TABLE II. The spreading exponents obtained at �c are shown.
The last row lists the DP exponents.

� �c

Spreading exponents


 � zs

0.049 0.8495 0.308±0.002 0.17±0.02 1.26±0.01

0.06 0.7928 0.315±0.007 0.16±0.01 1.26±0.01

0.073 0.4664 0.308±0.001 0.17±0.01 1.27±0.00

0.065 0.34949 0.303±0.001 0.16±0.01 1.27±0.01

0.06 0.30396 0.317±0.001 0.17±0.01 1.26±0.0

0.102 0.25554 0.315±0.001 0.16±0.00 1.25±0.01

0.12 0.257 0.305±0.00 0.16±0.00 1.27±0.03

DP 0.313 0.16 1.26

FIG. 4. Log-log �base 10� plot
of the laminar length distribution
for �a� STI with synchronized
laminar state obtained at �
=0.06,�=0.7928. The exponent
obtained is 1.681. �b� SI obtained
at �=0.04,�=0.4. The exponent �
is 1.12.
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B. Multifractal analysis

The eigenvalue distributions obtained at different param-
eter values were analyzed using the multifractal framework
�24,25�. Given a probability distribution whose support is
covered by equal lengths, the generalized dimensions Dq are
defined by the relation

Dq =
1

q − 1
lim
l→0

ln�
i

pi
q

ln l
, �3�

where pi is the probability associated with the ith bin and l is
the bin size. Clearly, Dq picks out the effect of larger prob-
abilities at large positive q’s and smaller probabilities at large
negative q’s. The quantity ��q� is defined as

��q� = Dq�q − 1� . �4�

The ��q� vs q spectrum for the STI and SI cases are shown in
Fig. 7. Figure 7�a� has been plotted for the parameter values
�=0.058,�=0.291, where spatial intermittency is seen, and
there are gaps in the spectrum. The solid line is the plot of �
vs q for the case where the entire support of the distribution
is covered with equal lengths of s=0.005. It is clear that ��q�
diverges to −� for negative values of q, due to the presence
of gaps in the spectrum where the distribution takes zero
values.

The dotted line in Fig. 7�a� corresponds to the � vs q
curve obtained for the same distribution without including
the contribution of the gaps. While the ��q� now no longer
diverges, its behavior is still distinct from that obtained from
the distributions which correspond to DP regimes. This can
be seen in Fig. 7�b�. We see that the ��q� curves show dif-
ferent behavior in the neighborhood of q=0 for the DP �solid

FIG. 5. Behavior on either side of the crossover line shown in Fig. 1 �inset�. �a� Space-time plot of SI seen at �=0.0608,�=0.273. Frozen
bursts can be seen in the space-time plot. The laminar length distribution is plotted on a semilog plot �base 10� in �b�. The fit to this
distribution is 13.0 exp�−0.05x�. �c� Space-time plot obtained at �=0.061,�=0.273. The laminar length distribution is shown in �d�. The fit
is 12.06 exp�−0.043x�.
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lines� and non-DP �dotted lines� cases. The behavior in the
vicinity of the knee of the curve is magnified and shown in
the inset. The dotted lines corresponding to the SI case fall
on the same curve here, and are distinct from the curve on
which the solid lines of the DP case fall �although both sets
of curves separate out for large values of 	q	�. It is clear that
the curvature of the � vs q curve in this region is different
near q=0 for the DP and non-DP cases. The curvature of
��q� ,d2��q� /dq2, for the two types of STI is shown in Fig. 8.
The negative and positive parts of the y axis have been in-
terchanged for ease of representation. A twin peak is seen in
the curvature of ��q� of STI belonging to the DP class �Fig.
8�a�� whereas a single peak is seen in the case of spatial
intermittency �Fig. 8�b��. Figure 8�c� shows the curvature of
the SI case, for q positive, with gaps included �solid line� and
gaps excluded ���. A jump is seen in the spectrum at q
=0.0 due to the contribution of the gaps, and the two curva-
tures coincide completely for q positive.

The signatures of the DP vs non-DP behavior can also be
seen in the f − curves of the distribution. The �q�, the
scaling exponent of the probabilities, and f��, the fractal
dimension of the set which supports the probability which
scales with the exponent , are obtained from the relations
�q�=d��q� /dq and f��=q�q�−��q�. The f�� vs  spec-
tra of the STI and SI cases are plotted in Figs. 9�a� and 9�b�,
respectively �where the SI regime has been analyzed omit-
ting the gaps in the spectrum�. It is clear that STI of the DP
class shows f − behavior distinct from the SI class. The SI
curves are more asymmetric and peak at higher values of .
It is also interesting to note that STI of the DP class at dis-
tinct parameter values collapses quite closely on the same
f − curve for positive q �since df /d=q, this is the part of
the curve with positive slope�, but separate out for negative

q−s, whereas the data for the SI case does not fall on the
same curve for either regime.

Figure 9�c� shows the comparison between the f − spec-
trum of the SI distribution with gaps excluded �dotted line�,
and that where the gaps are included �diamonds, plotted for
positive q−s, only�. The contribution of the gaps can be very
clearly seen. We also note that crossover effects can be seen
in the dynamical characterizers as well, and the distributions
cross over from those characteristic of DP behavior, to those
characteristic of non-DP behavior.

Thus the absence or presence of the gaps in the eigen-
value spectrum constitutes the primary signature of DP and
non-DP behavior in this system. The leading signature of DP
or non-DP behavior in the multifractal spectrum is the diver-
gence of the � vs q curve for negative q−s, as well as cor-
responding behavior in the f − spectrum. However, the sec-
ondary signatures of DP vs non-DP behavior can be found
even when the � vs q for SI is obtained excluding the gaps
which contribute to the divergence in the curvature of the �
vs q curve. Thus the distribution of eigenvalues of the sta-
bility matrix and the multifractal spectrum of the distribution
constitute the dynamic characterizers of DP and non-DP be-
havior.

V. DISCUSSION

To summarize, the phase diagram of the coupled sine
circle map shows regimes of spatiotemporal intermittency of
different types. The regimes of spatiotemporal intermittency
with synchronized laminar states and turbulent bursts are
characterized by a complete set of DP exponents. Regimes of
spatial intermittency, where the bursts have regular temporal
behavior, do not show infective behavior, and do not belong

FIG. 6. Eigenvalue distribu-
tion for �a� STI belonging to the
DP class at �=0.06,�=0.7928,
and �b� spatial intermittency at �
=0.04,�=0.4. A section of the ei-
genvalue distribution is magnified
in the inset figures. Gaps are seen
in the spatial intermittency eigen-
value distribution whereas the ei-
genvalue distribution for STI does
not show any such gaps. The loga-
rithmic plots �base 10� of P��� vs
� can be seen in �c� for the DP
class �for the positive part of the
spectrum� and �d� for the spatial
intermittency.
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to the DP class. Thus the same model can show DP and
non-DP behavior in different regions of the parameter space.
The signature of the DP and non-DP behavior can be seen in
the dynamical characterizers of the system, viz. the distribu-
tion of eigenvalues and the multifractal spectrum of this dis-
tribution. Gaps in the eigenvalue spectrum are characteristic
of spatial intermittency, i.e., of spatially localized, temporally
regular or quasiregular bursts with associated non-DP expo-
nents. The eigenvalue spectrum is continuous for regimes of
regular spatiotemporal intermittency with spreading bursts
and characteristic DP exponents. The model also shows spa-
tiotemporally intermittent regimes with other types of lami-
nar and burst states. The scaling behavior in these regimes,
and the identification of their universality classes is being
pursued further. In order to gain insight into the way in
which correlations build up in this system, it may be useful
to set up probabilistic cellular automata which exhibit similar
regimes and to examine their associated spin Hamiltonians
�26�. The comparison of the scaling exponents seen in this
model with those seen in absorbing phase transitions which
do not belong to the DP class �27–31� is also of interest. We
hope to examine some of these questions in future work.
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APPENDIX: DEFINITION OF DP EXPONENTS

The DP transition is characterized by a set of static and
dynamic critical exponents associated with various quantities
of physical interest.

1. Static exponents
�i� We first consider the escape time ��� ,� ,L�, which is

defined as the time taken for the system starting from ran-
dom initial conditions to relax to a completely laminar state.
It is expected from finite-size scaling arguments that � varies
with the system size L such that

���,�� = 
ln L laminar phase

Lz critical phase

exp Lc turbulent phase
� .

Hence, at the critical value of the coupling strength �c, the
escape time � shows a power-law behavior, z being the as-
sociated exponent.

�ii� The order parameter m�t�, associated with this transi-

FIG. 7. �a� The ��q� vs q curves for �=0.058,�=0.291 includ-
ing the gaps �solid line� and excluding the gaps �dashed line�; �b�
the ��q� vs q curves �with gaps excluded� for �=0.073,�
=0.4664;�=0.06,�=0.303 96;�=0.058,�=0.291, and �=0.04,�
=0.4 from top to bottom. The first two curves represent STI belong-
ing to the DP class �shown by solid lines� and the last two represent
spatial intermittency. The difference in the curvatures of ��q� for the
DP and the non-DP class can be seen in the inset figure in which the
region near q=0.0 has been magnified.

FIG. 8. −d2��q� /dq2 plotted against q for �a� STI belonging to
DP class calculated at �i� �=0.073,�=0.4664, and �ii� �=0.06,�
=0.30396; and for �b� spatial intermittency at parameters �i� �
=0.058,�=0.291, and �ii� �=0.031,�=0.42. Twin peaks are seen
for STI belonging to the DP class; �c� −d2��q� /dq2 obtained for SI
including gaps and excluding gaps. A sharp change is seen near q
=0.0 when gaps are included.
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tion is defined as the fraction of turbulent sites in the lattice
at time t. At �c, the order parameter scales as

m � �� − �c��, � → �+. �A1�

At t�� ,m�t� scales with t as m��c , t�� t−�/�z, where � is the
exponent associated with the spatial correlation length. The
exponent � is obtained by using the scaling relation

��L,�c� � �zf�L/�� , �A2�

where � is the correlation length which diverges as ���−�

and � is given by ��−�c�. Hence � is adjusted until the scaled
variables L�� and ���z collapse onto a single curve.

�iii� The correlation function in space is defined as

Cj�t� =
1

L
�
i=1

L

�xi
txi+j

t  − �xi
t2. �A3�

At �c ,Cj�t� scales as Cj�t�� j1−
�.
�iv� The distribution of laminar lengths P�l� is an impor-

tant characterizer of the universality class �10�. The laminar
lengths l are defined as the number of laminar sites between
two turbulent sites. At criticality, the laminar length distribu-
tion shows a power-law behavior of the form

P�l� � l−�. �A4�

� is the associated exponent, �DP being 1.67. Another char-
acterizer is the distribution of the laminar lengths which are
�l �15�. This distribution shows a power-law behavior of the
form

P�l� � l−��. �A5�

2. Dynamical exponents

To extract the dynamical exponents, two turbulent seeds
are placed in an absorbing lattice and the spreading of the
turbulence in the lattice is studied. The quantities associated
with critical exponents at �c are

�i� the number of active sites N�t� at time t, which scales
as N�t�� t
;

�ii� the survival probability P�t� defined as the fraction of
initial conditions which show a nonzero number of active
sites at time t. This scales as P�t�� t−�;

�iii� the radius of gyration R2�t�, which is defined as the
mean squared deviation of the position of active sites from
the original sites of turbulent activity. This scales as R2�t�
� tzs.
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