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Using Monte Carlo methods and finite-size scaling, we investigate surface criticality in the O�n� models on
the simple-cubic lattice with n=1, 2, and 3, i.e., the Ising, XY, and Heisenberg models. For the critical
couplings we find Kc�n=2�=0.454 1659 �10� and Kc�n=3�=0.693 003 �2�. We simulate the three models with
open surfaces and determine the surface magnetic exponents at the ordinary transition to be yh1

�o�

=0.7374 �15�, 0.781 �2�, and 0.813 �2� for n=1, 2, and 3, respectively. Then we vary the surface coupling K1

and locate the so-called special transition at �c�n=1�=0.502 14 �8� and �c�n=2�=0.6222 �3�, where �

=K1 /K−1. The corresponding surface thermal and magnetic exponents are yt1
�s�=0.715 �1� and yh1

�s�=1.636 �1�
for the Ising model, and yt1

�s�=0.608 �4� and yh1
�s�=1.675 �1� for the XY model. Finite-size corrections with an

exponent close to −1/2 occur for both models. Also for the Heisenberg model we find substantial evidence for
the existence of a special surface transition.
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I. INTRODUCTION

In the past decades, surface effects near a phase transition
have been investigated extensively, and many results have
been obtained by means of the mean-field theory, series ex-
pansions, renormalization, and field-theoretic analyses. For
reviews, see, e.g., Refs. �1,2�, and for more recent work see
Refs. �3,4�. In particular, at a second-order phase transition,
where long-range correlations emerge, surface effects can be
significant. The surfaces display critical phenomena which
differ from the bulk critical behavior; several surface univer-
sality classes can exist for one bulk universality class. We
shall refer to the various types of transitions using the termi-
nology of Ref. �1�.

In this work, we investigate surface critical phenomena in
three-dimensional O�n� models, namely the Ising �n=1�, the
XY �n=2�, and the Heisenberg �n=3� model. The reduced
Hamiltonian of these models can be written as the sum of
two parts: a bulk term proportional to the volume of the
system and a surface term proportional to the surface area,
i.e.,

H/kBT = − K�
�ij�

�b�s�i · s� j − H� · �
k

�b�s�k − K1�
�pq�

�s�s�p · s�q

− H� 1 · �
r

�s�s�r, �1�

where the dynamic variable s� is a unit vector of n compo-
nents. The parameters K and K1 are the strengths of the cou-
pling between nearest-neighbor sites in the bulk and on the
surface layers, respectively, and H and H1 represent the re-
duced magnetic fields. The first two sums in Eq. �1� account
for the bulk and the last two sums involve the spins on the
open surfaces. For ferromagnetic bulk and surface couplings
�K�0 and K1�0�, the phase transitions are sketched in Fig.
1 for the case of the Ising and the XY model. In the high-

temperature region, i.e., for bulk coupling K�Kc, the bulk is
in the paramagnetic state, so that the bulk correlation length
remains finite. However, a phase transition can still occur on
the open surface when the surface coupling K1 is sufficiently
enhanced. This phase transition is referred to as the “surface
transition,” and is represented by the solid curve in Fig. 1.
These phase transitions are generally thought to be in the
same universality classes as the two-dimensional Ising and
the XY model, respectively. At the bulk critical point K=Kc,
the line of surface phase transitions terminates at a point
�Kc ,K1c�. At this point, both the surface and the bulk corre-
lation length diverge. Thus, the point �Kc ,K1c� acts as a mul-
ticritical point, and the phase transition is referred to as the
“special transition.” For K1�K1c, the bulk and the surfaces
simultaneously undergo a phase transition at K=Kc. In this
case, the critical correlations on the surfaces arise from the

FIG. 1. Sketch of the surface phase transitions of the three-
dimensional Ising and XY models with ferromagnetic couplings.
The vertical axis is the bulk temperature 1/K, and the parameter
�= �K1−K� /K in the horizontal axis represents the enhancement of
the surface couplings. The “surface,” the “ordinary,” and the “ex-
traordinary” phase transitions are represented by the thick solid, the
thin solid, and the dashed line, respectively. The lines meet in a
point, shown as the black circle, which is referred to as the “spe-
cial” phase transition.
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diverging bulk correlation lengths, and the transition is
named the “ordinary transition.” The ordinary transition re-
mains within the same universality class for a wide range of
surface couplings. The correlation functions on and near the
surface appear to fit universal profiles �5�. The transitions at
K=Kc for K1�K1c are referred to as the “extraordinary tran-
sitions.” For the Ising model, since the surfaces are already
in the ferromagnetic state for a smaller coupling K�Kc, no
surface transition occurs when the bulk critical line K=Kc is
crossed. Nevertheless, owing to the diverging bulk correla-
tion length, the surfaces still display critical correlations at
K=Kc. For the XY model, however, the surface transitions
for K�Kc are Kosterlitz–Thouless-like �6�, i.e., the surfaces
do not display long-range order for K�Kc, in agreement
with results of Landau and co-workers �7�.

For three-dimensional O�n� models with n�2, which in-
clude the Heisenberg model, the line of surface transitions
for K�Kc does not exist; it may thus seem self-evident that
the special and the extraordinary transitions are also absent.
However, this remains to be investigated; for instance, in
two-dimensional tricritical Potts models, a line of edge tran-
sitions is absent, but special and extraordinary transitions do
exist �8�. Thus, even without a line of surface transitions for
K�Kc, rich surface critical phenomena can still occur in the
three-dimensional Heisenberg model. For instance, it was re-
ported �9� that at bulk criticality K=Kc the surface magnetic
exponents depend on the ratio K1 /K for K1 /K�2.0. This
brings up the question whether one can locate a true phase
transition as a function of K1 /K.

Additional surface critical phenomena can occur for the
Ising model, if the surface and/or the bulk couplings are
allowed to be antiferromagnetic. Further, one can allow the
spins on the surface to vanish, such that the surface part of
the Hamiltonian in Eq. �1� is described by the so-called
Blume–Capel model. Such spin-0 states act as annealed va-
cancies on the surfaces. It was observed �10� that, by varying
the fugacity of the vacancies, one can reach a point where the
bulk Ising criticality K=Kc joins the line of surface transi-
tions that belongs to the universality class of the two-
dimensional tricritical Ising model. This point was named
�10� the “tricritical special” phase transition. In short, for
each bulk universality class, surface transitions in various
surface universality classes can occur, including the ordinary,
special, and extraordinary transitions at K=Kc, and the sur-
face transitions at K�Kc.

Apart from the bulk renormalization exponents, additional
surface exponents are needed to describe the above surface
critical behavior. At the ordinary and the extraordinary tran-
sitions, the surface magnetic scaling field is relevant, while
the surface thermal field is irrelevant. At the special transi-
tion, both the magnetic and the thermal surface fields are
relevant.

Since exact information about critical behavior is scarce
in three dimensions, determinations of these surface critical
exponents rely on approximations of various kinds. These
include the mean-field theory �1,11–13�, series expansions
�14�, renormalization group technique �2,3,15–17�, Monte
Carlo simulations �5,7,18–22�, etc.

The surface critical index �1 is defined so as to describe
the asymptotic scaling behavior of the surface magnetization

m1 as a function of the bulk thermal field t, i.e., m1� t�1.
From the scaling relations it follows that this exponent is
related to the critical exponents as �1= �d−1−yh1� /yt, where
yt and yh1 are the bulk thermal and the surface magnetic
exponent, respectively, and d=3 is the spatial dimensionality.
The mean-field analysis and the Gaussian fixed point of the
�4 theory yield the magnetic surface index �1 as �1

�o�=1,
�1

�s�=1/2, and �1
�e�=1, respectively, for the ordinary, special,

and extraordinary transition. Many numerical results also ex-
ist. For the simple-cubic lattice, the special transition of the
Ising model was located as �c=0.5004 �2� �19,20�. Although
the values of critical couplings Kc and K1c are far from the
mean-field predictions, the above result for �c is in agree-
ment with the mean-field value �c=1/2. Further, the surface
critical exponents are determined �19–21,23� as yh1

�o�=0.737
�5�, yh1

�s�=1.62 �2�, and yt1
�s�=0.94 �6�. Compared to the Ising

model, there are fewer investigations for the three-
dimensional XY and the Heisenberg model. In particular, to
our knowledge, numerical determinations of the special tran-
sition and the corresponding surface critical exponents have
not yet been reported for the XY model. Most of the existing
results for the Ising, the XY and the Heisenberg model will
be tabulated below, together with results of the present work.

The present work aims to provide an extensive and sys-
tematic Monte Carlo investigation of the phase transitions of
the surfaces of the three-dimensional Ising, XY, and Heisen-
berg models. Compared to numerical investigations one or
two decades ago, one has the following advantages. First, the
bulk critical points of these systems have now been deter-
mined accurately. On the simple cubic lattice, the bulk criti-
cal point of the Ising model was determined as Kc�n=1�
=0.221 654 55 �3� �24�, with the uncertainty only in the
eighth decimal place. The bulk transitions of the XY and the
Heisenberg model were also determined �14,25–30� to occur
at Kc=0.454 167 �4� and 0.693 002 �12�, respectively. In the
present paper, we also simulate these two systems with
periodic boundary conditions, and improve the above
estimations as Kc�n=2�=0.454 1659 �10� and Kc�n=3�
=0.693 003 �2�. Second, the rapid development of computer
technology makes it possible to perform extensive computa-
tions at a limited cost. The present work was performed on
20 personal computers �PCs�; the total computer time is in
the order of 20 CPU months at a processor speed of 2.5 GHz.

The organization of the present paper is as follows. Sec-
tion II reviews the finite-size-scaling properties of the sys-
tems defined by Eq. �1�, with the emphasis on the sampled
quantities required for the numerical analysis of the simula-
tion data. Section III describes the determination of the criti-
cal points of the XY and Heisenberg models. Sections IV, V,
and VI present the Monte Carlo simulations and the results
for the Ising, XY, and Heisenberg models, respectively. Sec-
tion VII concludes the paper with a brief discussion.

II. FINITE-SIZE SCALING AND SAMPLED QUANTITIES

The total free energy of a system with free surfaces can,
in analogy with the Hamiltonian in Eq. �1�, be expressed as
the sum of a bulk and a surface term �1,31,32�:
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F = fbV + f1S , �2�

where fb and f1 are the densities of the bulk and the surface
parts of the free energy, respectively, and V and S represent
the total volume and the surface area, respectively. Near
criticality, the finite-size scaling behavior of fb and f1 is
given by the equations

fb�t,h,L� = L−dfbs�tLyt,hLyh� + fba�t,h� , �3�

and

f1�t,h,t1,h1,L� = L−�d−1�f1s�tLyt,hLyh,t1Lyt1,h1Lyh1�

+ f1a�t,h,t1,h1� . �4�

The functions fbs and fba are the singular and the analytical
parts of fb; f1s and f1a similarly apply to the surface free-
energy density f1. The bulk thermal and magnetic scaling
fields are represented by t and h, and the surface scaling
fields by t1 and h1. The associated exponents are labeled with
corresponding subscripts. As implied by Eq. �3�, the leading
scaling behavior of the bulk does not depend on the presence
of free surfaces, although physical quantities near the sur-
faces can be significantly affected.

On the basis of Eqs. �3� and �4�, the scaling behavior of
various quantities can be obtained as derivatives of fb and f1
with respect to the appropriate scaling fields. Details can be
found in Ref. �1�.

The determination of the bulk critical points used simula-
tions of L	L	L with periodic boundary conditions in
which case f1 vanishes. The sampling procedure involved the
determination of the bulk magnetization density

m� � N−1 �
x,y,z=1

N

s�x,y,z, �5�

where N=L3. This yielded the averages of the magnetization
moments �m� ·m� � and ��m� ·m� �2�. The quantity

Q�K,L� �
�m� · m� �2

��m� · m� �2�
, �6�

which is related to the Binder cumulant �33�, converges to a
universal value Q at the critical point, and was used to de-
termine the critical coupling Kc. The finite-size scaling be-
havior of Q can be found by writing the moments of m� in
terms of derivatives of the free energy with respect to the
magnetic field. After application of a scaling transformation,
the singular powers in Q associated with field derivatives
cancel, as do the powers of the nonuniversal metric factor
relating the physical field and the magnetic scaling field. In
the vicinity of the critical point one obtains, in terms of the
temperature scaling field t and an irrelevant temperaturelike
field u,

Q�t,u,L� = Q̃�tLyt,uLyi� + b2L3−2yh + b3Lyt−2yh + ¯ , �7�

where yi is the leading irrelevant exponent. The correction
term with amplitude b2 is due to the analytic contribution to
the second moment of m� , and that with amplitude b3 to the
second-order dependence of the temperature field on the
physical magnetic field. Apart from corrections, the tempera-

ture field is proportional to K−Kc. Equation �7� will be used
in Sec. III to determine the bulk critical points.

In order to investigate surface critical behavior, we simu-
lated L	L	L simple-cubic lattices with periodic boundary
conditions in the xy plane and free boundaries in the z direc-
tion. First, we sampled the components of the surface mag-
netization and obtained two generalized surface susceptibili-
ties


11 =
L2

2
�m� 1 · m� 1 + m� 2 · m� 2�, and 
12 = L2�m� 1 · m� 2� , �8�

where m� 1 and m� 2 are the magnetization densities at the free
surfaces with z=1 and z=L, respectively. By differentiating
the surface free energy with respect to magnetic fields that
act on either one of the free surfaces, one finds that the
singular parts of these surface susceptibilities scale as
L2yh1−2.

In addition, we computed two surface-surface correla-
tions. To define these, we explicitly label the spins by their
Cartesian coordinates

g11 =
1

2L2 �
x,y=1

L

��s�x,y,1 · s�x+r,y+r,1 + s�x,y,L · s�x+r,y+r,L�� �r = L/2� ,

�9�

and

g12 =
1

L2 �
x,y=1

L

�s�x,y,1 · s�x,y,L� . �10�

Further, we sampled two ratios of surface magnetization mo-
ments

Q11 =
�m� 1 · m� 1�2

��m� 1 · m� 1�2�
and Q12 =

�m� 1 · m� 2�2

��m� 1 · m� 2�2�
. �11�

These quantities are the surface analogs of the bulk ratio Q,
cf. Eq. �7�, and will be used to locate the surface transitions.

III. CRITICAL POINTS OF THE O(2) AND THE O(3)
MODELS

The critical point of the Ising model on the simple cubic
lattice is already known �24� with sufficient accuracy for the
present purposes. We therefore restrict ourselves to the XY
and Heisenberg models. We used a version of the Wolff clus-
ter algorithm �34,35� to simulate these models in a zero field,
on simple-cubic lattices with periodic boundary conditions.
The Cartesian components, sx, sy, and sz, of the spin vectors
are stored in computer memory; they satisfy �sx�2+ �sy�2

+ �sz�2=1, where sz=0 for the XY model. Each cluster is
constructed on the basis of the Cartesian component sy,
which can be inverted by the Monte Carlo algorithm. In this
sense, the spin components are treated as Ising spins. Each
simulation consists of a large number of cycles, each of
which contains several Wolff steps and a data sampling pro-
cedure. The cluster flips do not change the absolute values of
the spin components. Thus, to satisfy ergodicity, each cycle
also includes a random rotation of the whole system of spin
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vectors. For the purpose of sampling the canonical ensemble,
the net result is the same as the application of the Wolff
algorithm in a randomly chosen direction. We simulated a
number of L3 systems whose finite sizes L are listed in Table
I, together with the number of Wolff clusters per cycle and
the total number of cycles per system size.

Most simulations of the XY model took place at K
=0.454 15, and of the Heisenberg model at K=0.693. Both
values are already very close to the final estimates that we
shall report for the respective critical points. To avoid bias
effects associated with short binary shift registers �36,37� we
took two such shift registers, with lengths equal to the
Mersenne exponents 127 and 9689, and added the resulting
two maximum-length bit sequences modulo 2. This proce-
dure leads to a sequence whose leading deviation from ran-
domness is a nine-bit correlation, which is a considerable
improvement in comparison with the usual three-bit correla-
tions �38�.

The simulations yielded data for the Binder cumulant as
described in the preceding Section. Its finite-size scaling be-

havior is found by expanding Q̃ in Eq. �7� and expressing the
temperature deviation from the critical point in K−Kc:

Q�K,L� = Q + a1�K − Kc�Lyt + a2�K − Kc�2L2yt + ¯ + b1Lyi

+ b2L3−2yh + b3Lyt−2yh + ¯ , �12�

where Q is a universal constant and the correction term with
amplitude b1 is due to the irrelevant field. This expression
was used to analyze the numerical data for Q�K ,L� by means
of least-squares fits. The exponents were set to the estimates

obtained by Guida and Zinn-Justin �39�, namely, yt=1.492,
yi=−0.789, and yh=2.482 for the XY model, and yt=1.414,
yi=−0.782, and yh=2.482 for the Heisenberg model. In order
to determine the amplitudes a1 and a2 we included some data
for relatively small �L=8, 16, and 32� systems, taken at val-
ues of K differing up to the order of 1% from Kc.

For the convenience of the reader, we summarize a few
salient points of the multivariate analysis as applied here to
the Binder ratio. In order to obtain satisfactory fits, as judged
by the residual 
2 per degree of freedom, systems with sizes
smaller than a threshold value Lmin were discarded. Natu-
rally, Lmin depends on the number of finite-size corrections,
i.e., the terms with amplitudes b1, b2, … included in the fits.
Including three such correction terms, satisfactory fits were
obtained including all system sizes down to Lmin=4. We have
also included mixed terms proportional to �K−Kc�Lyi+yt;
these terms were found to be insignificant. Furthermore, we
varied the number of temperature-dependent terms in Eq.
�12�, i.e., those with amplitudes a1, a2, … . Including three
such terms, the data for all temperature ranges specified in
Table I could be accommodated. Satisfactory fits with two
such terms could be obtained after narrowing down the tem-
perature range to about one half of the original one. The
behavior of some relevant quantities in these fits, such as the
residual 
2 and the Kc estimate and its error, is illustrated in
Table II for a small subset of the fits actually made.

The final estimates of the critical points and their uncer-
tainty margins are based on the individual results of many
different fits and on their mutual consistency. In other words,
the effect of variation of the fitting procedure is included in
the final error estimates. We have checked that the uncer-
tainty in the exponents in the fit formula does not signifi-
cantly increase the estimated errors. The results for the criti-
cal points are Kc=0.454 1659 �10� for the XY model and
Kc=0.693 003 �2� for the Heisenberg model. The universal
values of the amplitude ratios are Q=0.8050 �2� for the XY
model and Q=0.8776 �2� for the Heisenberg model. The
present results and some recent values taken from the litera-
ture are summarized in Table III.

IV. ISING MODEL

Although the three-dimensional Ising model has not been
exactly solved, considerable information about its critical be-
havior is available from extensive investigations using vari-
ous kinds of approximations. For a review see, e.g., Ref.
�45�. For instance, evidence has been found that the Ising
model is conformally invariant in three dimensions �23,46�.
There is some consensus that the values of the bulk thermal
and magnetic exponents, yt and yh, are 1.587 and 2.482, re-
spectively, with uncertainty only in the last decimal place.
The bulk critical points of a variety of three-dimensional
systems with Ising universality have also been obtained �24�;
the bulk transition of the Ising model with nearest-neighbor
interactions on the simple-cubic lattice was determined as
Kc=0.221 654 55 �3�. The present work conveniently
chooses this model so that no further work to determine Kc is
required. As mentioned earlier, periodic boundary conditions
are imposed in the xy plane and free boundaries along the z
direction.

TABLE I. Description of the simulations of the XY and Heisen-
berg models. The table lists the simulation length in millions of
cycles �#MC� as defined in Sec. III, and the number of Wolff clus-
ters �#Wc/C� per cycle, for each system size L. The data for L=8,
16, and 32 were taken for several values of K in a range �K about
the critical point Kc. The values shown are those for the XY model;
those for the Heisenberg model are approximately the same.

L #MC #Wc/C �K

4 50 2 0

6 50 3 0

8 50 4 0.012

10 20 5 0

12 20 6 0

14 20 7 0

16 80 8 0.004

20 20 10 0

24 20 12 0

28 20 14 0

32 80 16 0.0012

40 20 20 0

48 20 24 0

64 20 32 0

96 15 48 0

160 6.7 80 0
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A. Ordinary phase transition

Using the Wolff cluster algorithm �34,35�, we simulated
the Ising model at bulk criticality, with the surface couplings
chosen equal to the bulk couplings, i.e., K1=K=Kc. The sys-
tem sizes were taken as 16 even values in the range 4�L
�48. During the Monte Carlo simulations, we sampled the
surface susceptibilities 
11 and 
12, and the correlation func-
tions g11 and g12. To estimate yh1

�o�, the universal surface mag-
netic exponent of the ordinary surface transition, we modeled
the Monte Carlo data for the surface susceptibilities 
11 and

12 by expressions of the form


1�L� = 
a + L2yh1
�o�−2�b0 + b1Lyi + b2Lyt1

�o�
+ b3Ly3 + b4Ly4� ,

�13�

where 
a and the bi are nonuniversal and depend on the
characteristics of the surface; 
1 stands for either one of 
11
and 
12. The various parameters in this expression were de-
termined by a least-squares fit. We set 
a=0 to fit 
12.

Similarly, we fitted data for the correlation functions g11
and g12 to expressions of the form

g1�L� = L2yh1
�o�−4�b0 + b1Lyi + b2Lyt1

�o�
+ b3Ly3 + b4Ly4� ,

�14�

Again, g1 can be either g11 or g12; the nonuniversal ampli-
tudes bi are fitting parameters independent of the correspond-

ing amplitudes in Eq. �13�, although we use the same sym-
bols.

The correction terms with amplitudes b1, b2, b3, and b4 in
Eqs. �13� and �14� account for the leading finite-size correc-
tions. The exponent yi=−0.821 �5� �24� is the leading irrel-
evant thermal scaling field in the three-dimensional Ising
universality class. Further, since the thermal surface scaling
field for the ordinary transition is irrelevant, it may also in-
troduce finite-size corrections. From a simple scaling argu-
ment it can be derived that the value of this irrelevant surface
exponent is yt1

�o�=−1 �47�, independent of the spatial dimen-
sionality. In principle, finite-size corrections from other
sources can occur, so that we also include the terms with
amplitudes b3 and b4. We simply took y3=−2 and y4=−3.

Separate fits of the 
11 and 
12 data, employing Eq. �13�,
yield consistent estimates: yh1

�o�=0.736 �2� and 0.738 �2�, re-
spectively.

Fits of g11 and g12 yield yh1
�o�=0.737 �2� and 0.736 �2�,

respectively. A joint fit of both sets of susceptibility data, as
well as one of both sets of correlation function data, employ-
ing a single parameter yh1

�o� and independently variable ampli-
tudes, yielded consistent results but no significant improve-
ment of the accuracy.

We also simulated Ising systems in which the surface en-
hancement is defined as in Ref. �5�. These systems differ
from Eq. �1� as to the couplings between the surface layer
and the second layer. We thus introduce an enhancement pa-
rameter 
 and define couplings K1=
2K between nearest-
neighbor sites on the surface, and couplings K1�=
K between
surface sites and their nearest neighbors in next layer. Using
Cartesian coordinates to label the spins, the latter couplings
between layers 1 and 2 are thus of the form −K1�sx,y,1sx,y,2,
instead of −Ksx,y,1sx,y,2 as implied by Eq. �Ham1�, and simi-
larly for layers L−1 and L. Whenever we parametrize the
surface enhancement by 
 we refer to the Hamiltonian de-
fined in Ref. �5�, which differs from Eq. �1�.

By varying the parameter 
, one can move closer to the
fixed point for the ordinary phase transition so as to reduce

TABLE III. Summary of recent results for the critical coupling
Kc of the three-dimensional XY and Heisenberg models on the
simple-cubic lattice with nearest-neighbor interactions. The error
margin in the last decimal place is shown in parentheses.

Reference Model Year Kc

�40� O�2� 1993 0.454 08 �8�
�28� O�2� 1993 0.454 14 �7�
�41� O�2� 1993 0.454 20 �2�
�42� O�2� 1997 0.454 19 �3�
�30� O�2� 1996 0.454 165 �4�
�29� O�2� 2002 0.454 167 �4�
Present work O�2� 2005 0.454 1659 �10�
�43� O�3� 1993 0.693 035 �37�
�44� O�3� 1993 0.6930 �1�
�42� O�3� 1997 0.693 05 �4�
�30� O�3� 1996 0.693 002 �12�
Present work O�3� 2005 0.693 003 �2�

TABLE II. Some data for typical fits of the Binder cumulant of
the XY and Heisenberg models. Only data for system sizes L
�Lmin were included in the fits. The exponents in the fit formula
Eq. �12� were fixed at values taken from the literature. The param-
eters Kc, Q, a1, a2, a3, and b1 were fitted. In fits with npar=7 or
more parameters, b2 was also fitted, and fits with 8 parameters also
included b3. The following columns show the residual 
2, the num-
ber of degrees of freedom, and the estimated critical point, and its
statistical error.

Model Lmin npar 
2 df Kc

O�2� 10 6 19 26 0.454 1667 �5�
O�2� 14 6 9 22 0.454 1664 �5�
O�2� 20 6 7 14 0.454 1662 �6�
O�2� 6 7 22 35 0.454 1656 �5�
O�2� 8 7 19 33 0.454 1658 �6�
O�2� 10 7 14 25 0.454 1658 �6�
O�2� 4 8 21 36 0.454 1661 �5�
O�2� 6 8 21 34 0.454 1660 �6�
O�2� 8 8 19 32 0.454 1659 �8�
O�3� 6 6 63 41 0.692 9993 �10�
O�3� 8 6 42 39 0.693 0009 �10�
O�3� 10 6 28 31 0.693 0021 �11�
O�3� 6 7 37 40 0.693 0031 �12�
O�3� 8 7 35 38 0.693 0032 �14�
O�3� 10 7 28 30 0.693 0026 �15�
O�3� 4 8 41 41 0.693 0040 �13�
O�3� 6 8 37 39 0.693 0033 �15�
O�3� 8 8 35 37 0.693 0032 �19�
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the amplitudes of finite-size corrections. Systems with 
=1
reduce to those described above. In accordance with Ref. �5�,
in the present work we also chose 
=0.9 and 0.8. The analy-
ses of the data for the surface susceptibilities and the corre-
lation functions again employ Eqs. �13� and �14�; the results
for the surface magnetic exponents are in agreement with
those obtained for the case 
=1. As an illustration, the data

for g12 with 
=0.8 are shown vs L2yh1
�o�

−4 in Fig. 2, where
yh1

�o�=0.737 is taken from the fit.
Finally, a joint fit to the data for 
11 and 
12 for the three

cases 
=1.0, 0.9, and 0.8 yields yh1
�o�=0.7374 �15�; this result

is in good agreement with most of the existing results, as
shown in Table IV.

B. Special phase transition

Since it is known that the special transition is located near
�= �K1 /K�−1=0.5, the simulations were performed with sur-
face enhancements � in the range from 0.46 to 0.54, in steps
of 0.01. The system sizes assumed 18 values in the range 5
�L�95. We sampled several quantities, including the sur-
face susceptibilities 
11 and 
12, and the universal ratios Q11
and Q12. Part of the data for Q11 are shown in Fig. 3, in
which the clear intersection indicates the location �c

�s� of the
special transition. As mentioned earlier, when � deviates
from �c

�s�, the finite-size behavior of Q11 is governed by the
surface thermal exponent yt1

�s�. We fitted the data for Q11 and
Q12 by

Q1��,L� = Q1c
�s� + �

k=1

4

ak�� − �c
�s��kLkyt1

�s�
+ �

l=1

4

blL
yl

+ c�� − �c
�s��Lyt1

�s�+yi + n�� − �c
�s��2Lyt1

�s�
+ r0Lya

+ r1�� − �c
�s��Lya + r2�� − �c

�s��2Lya

+ r3�� − �c
�s��3Lya, �15�

where the terms with amplitude bl account for various finite-
size corrections; and again the subindex 1 in Q1 and Q1c is
shorthand for 11 or 12, whichever the case may be. The
terms with amplitudes ri �i=0, …, 3� are due to the analytic
background. The derivation of Eq. �15� can be found, e.g., in
Ref. �24�. Naturally, we fixed the exponent y1=yi=−0.821
�5� �24�, the exponent of the leading irrelevant scaling field
in the three-dimensional Ising model. In principle, additional

FIG. 2. Surface correlation function g12 vs L−2.526 for the Ising
model with 
=0.8. For the purpose of visualization, the data points
are connected by straight lines, in this as well as in the following
figures. The error margins are of the same order as the thickness of
the lines.

TABLE IV. Summary of the results for the surface critical exponents in the three-dimensional Ising
model, as obtained by different techniques. MF: mean-field theory, MC: Monte Carlo simulations, FT:
field-theoretical methods, CI: conformal invariance. The MF values of yt1 and yh1 have already made use of
the mean-field predictions for the bulk thermal and magnetic exponents, which are yt=3/2 and yh=9/4,
respectively.

Ordinary Special

yh1 �1 yh1 yt1 �1 �

MFa 1/2 1 5/4 3/4 1/2 1/2

MCb 0.72 �3� 0.78 �2� 1.71 �16� 0.94 �5� 0.18 �2� 0.59 �4�
MCc 0.721 �6� 0.807 �4� 1.623 �3� 0.2375 �15�
MCd 0.740 �15�
MCe 0.73 �1� 0.80 �1�
MC+CIf 0.737 �5� 0.798 �5�
MCg 1.624 �8� 0.73 �2� 0.237 �5� 0.461 �15�
FTh 0.737 0.796 1.583 0.855 0.263 0.539

FTi 0.706 0.816

FTj 1.611 1.08 0.245 0.68

Present 0.7374 �15� 0.796 �1� 1.636 �1� 0.715 �1� 0.229 �1� 0.451 �1�

aSee Refs. �1,11�.
bSee Ref. �18�.
cSee Ref. �20�.
dSee Ref. �5�.
eSee Ref. �21�.

fSee Ref. �23�.
gSee Ref. �19�.
hSee Ref. �2,15�.
iSee Ref. �16�.
jSee Ref. �17�.
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corrections due to irrelevant scaling fields can be induced by
the open surfaces, so that we set y2=yi1 as an unknown ex-
ponent. In order to reduce the residual 
2 without discarding
data for many small system sizes, we included further finite-
size corrections with integer powers y3=−2 and y4=−3. The
term with coefficient n reflects the nonlinear dependence of
the scaling field on �, and the one with c describes the
“mixed” effect of the surface thermal field and the irrelevant
field. The terms with amplitudes r0, r1, r2, and r3 arise from
the analytical part of the free energy, and the exponent ya is
equal to 2−2yh1

�s�. As determined later, the surface magnetic
exponent at the special transition is about yh1

�s�=1.636 �1�, so
that we fixed the exponent ya=−1.272. The fits of Q11 yields
Q11c=0.626 �1�, �c

�s�=0.502 14 �8�, and yt1
�s�=0.7154 �14�;

from the fit of Q12, we obtain Q12c=0.2689 �1�, �c
�s�

=0.502 07 �8�, and yt1
�s�=0.715 �4�. Next, we simultaneously

fitted the data for Q11 and Q12 by Eq. �15�, and obtain �c
�s�

=0.502 08 �5�, and yt1
�s�=0.715 �1�. Our estimate �c

�s�

=0.502 08 �5� does not agree well with the existing results
�c

�s�=0.5004 �2� �19,20�. Further, as expected, �c
�s� does not

assume the mean-field value 1/2. Attempts to determine the
unknown exponent yi1 and its associated amplitude by least-
square fitting to the Q11 and Q12 data were unsuccessful.
These corrections, if present, do not exceed the detection
threshold. We also fitted the data for the surface susceptibili-
ties 
11 and 
12 by


1��,L� = L2yh1
�s�−2	a0 + �

k=1

4

ak�� − �c
�s��kLkyt1

�s�
+ b1Lyi + b2Lyi1

+ b3Ly3 + b4Ly4 + c�� − �c
�s��Lyt1

�s�+yi

+ n�� − �c
�s��2Lyt1

�s�
+ r0Lya + r1�� − �c

�s��Lya

+ r2�� − �c
�s��2Lya + r3�� − �c

�s��3Lya

+ c21�� − �c
�s��Lyt1

�s�+yi1 + c22�� − �c
�s��2L2yt1

�s�+yi1
 .

�16�

Again, the correction exponents were taken as yi=−0.821 �5�
�24�, y3=−2, and y4=−3, and the exponent y2=yi1 was left to
be fitted. Other than in Eq. �15�, we have included in Eq.
�16� the combined effect of the surface thermal field and the

irrelevant field with the unknown exponent yi1, as described
by the mixed terms with amplitudes c21 and c22. These terms
lead to a reduction of the residual 
2 of the fits, but do not
significantly modify the result for the surface exponent yh1

�s�.
The surface thermal exponent was fixed at yt1

�s�=0.715 as
found above. The fit of 
11 yields �c

�s�=0.502 09 �9�, yh1
�s�

=1.636 �1�, and yi1=−0.52 �2�. The quoted error margins
include the uncertainty due to the error in yt1

�s�. In this case we
found clear evidence for corrections, introduced by the sur-
faces with an exponent yi1. It is remarkable that such correc-
tions are significant only in combination with �-dependent
terms. The data for the surface susceptibility are shown in
Fig. 4 as 
1�� ,L�L−1.272, where the exponent, which stands
for 2−2yh1

�s�, is chosen such as to suppress the leading L de-
pendence at the special transition. As expected, the data dis-
play intersections approaching the special transition as deter-
mined above.

V. XY MODEL

The bulk critical point of the XY model was determined as
Kc=0.454 1659 �10� in Sec. II. The following simulations
were performed at K=0.454 166. The results in this section
do not significantly depend on the possible difference of
about 10−6 with the actual critical point.

A. Ordinary phase transition

In analogy with the Ising model, we first let the surface
couplings K1 assume the same values of the bulk couplings,
i.e., K1=K=Kc. The system size took 14 values in the range
4�L�48. We sampled the surface susceptibilities 
11 and

12, and the correlation functions g11 and g12, and analyzed
the data as we did for the Ising model at the ordinary phase
transition. For instance, the data for 
11 and 
12 were also
fitted by Eq. �13�, in which the irrelevant exponent was taken
as yi=−0.789 �39�. The estimates of the surface magnetic
exponent yh1

�o� from various quantities agree; the result is
yh1

�o�=0.781 �2�.
As a consistency test, in analogy with the Ising model, we

also simulated the surface-enhanced XY model as defined in
Ref. �5�, with 
=0.9 and 0.8. As expected, the results for
these two cases are in good agreement with the above esti-
mate yh1

�o�=0.781 �2�. However, since the simulations are less

FIG. 3. Surface dimensionless ratio Q11 vs surface-coupling en-
hancement � for the Ising model. The data points +, 	, �, �, �,
�, and * represent system sizes L=21, 25, 29, 33, 41, 49, and 63,
respectively.

FIG. 4. Surface susceptibility 
11L−1.272 vs surface-coupling en-
hancement � for the Ising model. The data points +, 	, �, �, �,
�, and * represent system sizes L=21, 25, 29, 33, 41, 49, and 63,
respectively.
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extensive in comparison with those for the case 
=1, they do
not significantly improve the accuracy of yh1

�o�.

B. Special phase transition

As discussed above, the XY model is a marginal case in
the sense that the line of surface phase transitions for K
�Kc is Kosterlitz-Thouless-like. Still, one would expect that,
for K=Kc, the special and the extraordinary surface transi-
tions occur. Therefore, we performed simulations at the esti-
mated bulk critical point as given above, and varied the sur-
face enhancement from �=0.48 to �=0.68. The system sizes
took on 19 values in the range 5�L�95. The sampled
quantities include the surface susceptibilities 
11 and 
12, the
correlation functions g11 and g12, and the dimensionless ra-
tios Q11 and Q12. Part of the data for Q12 are shown in Fig. 5,
where the intersection clearly indicates that the special tran-
sition occurs near �c=0.622. Further, the increase of the
slope of Q as a function of finite size L strongly suggests that
the surface thermal exponent at �c is larger than 0, i.e., that
the scaling field associated with � is not marginal at the
special transition. The data for Q11 and Q12 were fitted by
Eq. �15�, in which the leading irrelevant exponent was fixed
at yi=−0.789 �39� and the exponent y2=yi1 was left free. We
obtain Q11c=0.840 �1�, Q12c=0.379 �2�, �c=0.6222 �3�, and
yt1

�s�=0.608 �4�. The fits of Q11 and Q12 do not provide clear
evidence for the existence of a term with exponent yi1.

We also fitted the surface susceptibilities 
11 and 
12 by
Eq. �16�. We obtain the surface magnetic exponent as yh1

�s�

=1.675 �1�. Further, we find evidence for new finite-size-
corrections with exponent yi1=−0.44 �4�, the major contribu-
tion to which comes from the mixed terms with amplitudes

c21 and c22 in Eq. �16�. Results for the surface exponents are
summarized in Table V.

C. Extraordinary phase transition

Two-dimensional surfaces of the XY model do not display
spontaneous long-ranged surface order for K�Kc, but they
are in a ferromagnetic state in the low-temperature region
K�Kc. Thus the onset of long-range order on the surface
also occurs at K=Kc. This differs from the Ising model,
where a long-range ordered surface exists for K�Kc if �
��c. We performed simulations at �=1 for the critical XY
model with the system sizes in the range 7�L�95. We
sampled the second moment of the surface magnetization m1

2

and the ratio Q11; the data for these two quantities are shown
in Table VI.

In order to analyze the finite-size data in Table VI, one
first requires the proper scaling formulas. For the extraordi-
nary phase transitions in the XY model, there exists some
ambiguity, because it is not generally clear whether the sur-
faces undergo a first or a second order transition. Neverthe-
less, in either case, the surfaces should display some critical
singularities, arising from the diverging bulk correlation
length. Thus, we fitted the m1

2 data by

m1
2�L� = ma

2 + L−2Xh1
�e�

�b0 + b1Ly1 + b2L2y1� . �17�

If the transition on the surface is first order at K=Kc, the
analytical contribution, ma

2, assumes a nonzero value. First,

FIG. 5. Surface dimensionless ratio Q12 vs surface-coupling en-
hancement � for the XY model. The data points +, 	, �, �, �, �,
and * represent system sizes L=17, 21, 25, 33, 41, 49, and 63,
respectively.

TABLE V. Summary of the results for the surface critical expo-
nents in the three-dimensional XY and Heisenberg models. MC:
Monte Carlo simulations, SE: series expansions.

Ordinary Special

yh1 yh1 yt1

MC �XY�a 0.74

SE �XY�b 0.81

MC �XY�c 0.790 �15�
Present�XY� 0.781 �2� 1.675 �1� 0.608 �4�
MC �Heisenberg�c 0.79 �2�
Present �Heisenberg� 0.813 �2�
aSee Ref. �7�.
bSee Ref �14�.
cSee Ref. �5�.

TABLE VI. Monte Carlo data for the second moment of surface magnetization m1
2 and the dimensionless

ratio Q11 for the three-dimensional XY model with enhancement �=1.

L 7 9 11 13 17 21 25

m1
2 0.5653 �1� 0.5293 �1� 0.5037 �1� 0.4839 �1� 0.4561 �1� 0.4364 �1� 0.4216 �1�

Q11 0.962 42 �6� 0.965 80 �6� 0.968 78 �5� 0.971 38 �4� 0.975 43 �3� 0.978 35 �3� 0.980 65 �3�

L 33 41 49 63 71 81 95

m1
2 0.4004 �1� 0.3859 �1� 0.3747 �1� 0.3601 �1� 0.3540 �1� 0.3473 �1� 0.3397 �1�

Q11 0.983 81 �3� 0.986 01 �3� 0.987 48 �3� 0.989 27 �3� 0.990 04 �3� 0.990 85 �3� 0.991 69 �3�

DENG, BLÖTE, AND NIGHTINGALE PHYSICAL REVIEW E 72, 016128 �2005�

016128-8



we set the exponent y1=yi=−0.789 �39�. Satisfactory fits
were obtained for all the m1

2 data in Table VI, with the terms
ma

2 and those with b0 and b1 only. The results are ma

=0.471 �5�, Xh1
�e�=0.188 �5�, b0=0.65 �1�, and b1=0.35 �5�.

The quality of the fit is shown in Fig. 6. Further, we fitted the
data for the ratio Q11 by

Q11�L� = Qc + b1L−2Xh1
�e�

+ b2L−2Xh1
�e�+y1 + b3L−2Xh1

�e�+2y1

+ b4L−2Xh1
�e�+3y1, �18�

where the irrelevant exponent is fixed at y1=yi=−0.789 �39�.
The presence of the exponent Xh1

�e� is due to the nonzero back-
ground contribution ma in the second moment of the magne-
tization m1

2. We obtain the asymptotic value Qc=0.9998 �4�
�1. From the results for ma and Qc, it seems that the surface
transition at K=Kc and �=1 is first order. However, it seems
also possible that the surface magnetization vanishes only
very slowly as the system size L increases, such that the line
of extraordinary transitions on the surfaces is still Kosterlitz-
Thouless-like. Thus, we set ma in Eq. �17� to zero, and fitted
the unknown parameters including both Xh1

�e� and yi to the m1
2

data. Indeed, we found that our Monte Carlo data for m1
2 in

Table VI can be modeled this way, and we obtain b0=0.40
�1�, b1=0.703 �6�, Xh1

�e�=0.0325 �30�, and y1=−0.545 �14�.
This fit is illustrated by Fig. 7; the approximate linearity
indicates the quality of the fit. We also fitted the Q data by
Eq. �18� with y1 fixed at −0.545, and the result for Qc is
Qc=0.9982 �15�, which is also consistent with 1. In short,
our numerical evidence for the surface magnetization of the
three-dimensional XY model is not sufficient to determine

whether the line of transitions for K=Kc and ���c is first or
second order, but settling this matter convincingly would re-
quire extensive simulations, well beyond the scope of the
present investigation.

VI. HEISENBERG MODEL

The bulk critical point of the three-dimensional Heisen-
berg model was determined as Kc=0.693 003 �2� in Sec. II.
The simulations reported in this section took place at at K1
=K=Kc=0.693 002. We have checked that the possible dif-
ference of about 2	10−6 with the actual critical point affects
the results in this section only in a very insignificant way.

The system sizes were taken in the range 4�L�64. The
data for the surface susceptibilities 
11 and 
12, taken at �
=0, were fitted by Eq. �13�. Using a similar procedure as that
for the XY model, we obtain yh1

�o�=0.813 �2� for the ordinary
phase transition. We also determined the bulk susceptibility

b and the dimensionless ratios Q11 and Q12 for a range of
larger values of the surface enhancement �. The scaled sus-
ceptibility 
bL3−2yh is shown in Fig. 8. The intersections near
��0.8 are very suggestive of a special transition. The results
for Q11, shown in Figs. 9 and 10, display similar behavior.
We mention that, because of finite-size corrections, it is natu-
ral that the intersection points between the data lines in Figs.
8 and 10 do not coincide. Nevertheless, for L→�, the inter-
section points in both figures should converge to the same
value of �. For ��0.8, Q11 converges to a universal constant
characteristic of the ordinary transition. For ��0.8 the data
seem to converge to a �-dependent value. The overall behav-
ior of the results for Q11 resembles that of the ratio Q for
bulk transitions in the Kosterlitz–Thouless universality class,
as reported for the triangular Ising antiferromagnet with
nearest-neighbor and next-nearest-neighbor interactions �48�.
An alternative interpretation would be a special transition
with a relevant exponent yt1

�s� only slightly larger than 0. A
convincing numerical test of the Kosterlitz–Thouless nature
of the special transition would require simulations beyond
the scope of the present work.

FIG. 6. Surface magnetization in terms of the quantity �m1�2

−b1L−1.2 vs L−2Xh1
�e�

for the XY model at �=1, where the values
Xh1

�e�=0.188 �5� and b1=0.35 �5� were obtained from a least-squares
fit �see text�.

FIG. 7. Surface magnetization in terms of the quantity �m1�2

−b1L−0.61 vs L−0.065 for the XY model at �=1.

FIG. 8. Critical bulk susceptibility 
b of the Heisenberg model
vs. surface enhancement �. The data shown along the vertical axis
are scaled with a size-dependent factor L3−2yh where yh=2.482 is
the bulk magnetic exponent. The data points +, 	, �, �, �, �,
and * represent system sizes L=16, 20, 24, 32, 40, 48, and 64,
respectively. According to the theory, the scaled susceptibility

bL3−2yh converges with increasing size L to a value that may still
depend on �. The intersections near �=0.8 suggest the existence of
a special phase transition.
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VII. DISCUSSION

We used Monte Carlo techniques and finite-size scaling in
order to obtain more accurate results for the bulk and surface
critical parameters of the three-dimensional Ising, XY, and
Heisenberg models. At the ordinary phase transitions, we de-
termined the surface magnetic exponents as yh1

�o��n=1�
=0.7374 �15�, yh1

�o��n=2�=0.781 �2�, and yh1
�o��n=3�=0.813

�2�. These values are in a satisfactory agreement with earlier
results �5�, namely, yh1

�o��n=1�=0.740 �15�, yh1
�o��n=2�=0.790

�15�, and yh1
�o��n=3�=0.79 �2�, as shown in Table V. Since the

bulk thermal exponent yt of the O�n� model decreases with
increasing n, these results suggest that the surface exponent
yh1

�o� is a decreasing function of yt. The same seems to hold
true for the two-dimensional and three-dimensional Potts
models, as may be concluded on the basis of the following
evidence. In three dimensions, the surface magnetic expo-
nent for the q→0 and q→1 Potts models are yh1

�o�=2 and
1.0246 �6� �50�, respectively. The former model is generally
referred to as the uniform spanning tree �49�, while the q
→1 Potts model reduces to the bond percolation model. For
the two-dimensional Potts model, from the conformal field
theory, the exponent yh1

�o� is exactly known as yh1
�o�=2−3/ �3

−yt� �51�, which is a decreasing function of the bulk thermal
exponent yt. Further, if one applies the above expression to
the tricritical branch of the Potts model in two dimensions,
one obtains that the surface magnetic scaling field is irrel-
evant at the ordinary phase transition. Starting from this ob-
servation, it was found �8� that rich surface phase transitions
can also occur in some two-dimensional systems, although
their “surfaces” are just one-dimensional edges.

In the present work, we also located the special transitions
of the Ising and the XY model on the simple-cubic lattice,

and obtained numerical estimates of the corresponding renor-
malization exponents. While the surface transition of the
three-dimensional XY model is Kosterlitz-Thouless-like, and
the line of surface transitions connects to the special transi-
tion point, our numerical data did not yield evidence for
corrections to scaling due to a marginal field at the special
transition.

Finally, we note that the surface-critical behavior of the
O�1�, O�2�, and O�3� models is rather dissimilar for large
surface enhancements. For the O�1� model, spontaneous sur-
face order exists even below the bulk critical coupling Kc;
for the O�2� model it exists for K�Kc and possibly for K
=Kc; and for the O�3� model only for K�Kc. In line with the
bulk critical singularity, the O�n� surface critical behavior is
thus seen to become less singular with increasing n. This is
also evident from our analyses of the special transitions,
which yield relevant exponents yt1

�s� for the O�1� and O�2�
models but allow a marginal exponent for the O�3� model.
Since the lower critical dimensionality of the special transi-
tion �1� is 3 for n�2, it seems plausible that the range �
��c corresponds with a line of fixed points and �-dependent
critical surface exponents, in agreement with an analysis of
the surface magnetization by Krech �9�. Indeed, the data in
Figs. 8 and 9 are suggestive of a Kosterlitz-Thouless-like
scenario involving a nonuniversal range of Q values such as
found earlier in the different context of the Ising triangular
antiferromagnet �48�.
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FIG. 10. Surface ratio Q11 in the range 0.65���1.1 for the
O�3� model. The data points +, 	, �, �, �, �, and * represent
system sizes L=8, 16, 24, 32, 40, 48, and 64, respectively. The
apparent convergence of the intersections of the Q11 data with in-
creasing system size indicates a special surface transition near �
=0.80, in agreement with the results in Figs. 8 and 9.

FIG. 9. Surface dimensionless ratio Q11 vs surface-coupling en-
hancement � for the O�3� model. The data points +, 	, �, �, �,
�, and * represent system sizes L=8, 12, 16, 20, 24, 32, and 40,
respectively. For small surface enhancement ��0.5, the ratio Q11

converges with increasing L to a nontrivial value near 0.62, just as
expected for the ordinary phase transition. For large enhancement
��1, it seems that the asymptotic value Q11�L→�� is different
from 1, and dependent on �. In the intermediate range 0.6��
�0.9, the slope of the Q11 data lines increases with L. The inter-
sections of these lines seem to converge to a value near �=0.8. This
figure bears much analogy with that for the bulk ratio Q of transi-
tions in the Kosterlitz–Thouless universality class.
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