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By manipulating the clustering coefficient of a network without changing its degree distribution, we examine
the effect of clustering on the synchronization of phase oscillators on networks with Poisson and scale-free
degree distributions. For both types of networks, increased clustering hinders global synchronization as the
network splits into dynamical clusters that oscillate at different frequencies. Surprisingly, in scale-free net-
works, clustering promotes the synchronization of the most connected nodes �hubs� even though it inhibits
global synchronization. As a result, they show an additional, advanced transition instead of a single synchro-
nization threshold. This cluster-enhanced synchronization of hubs may be relevant to the brain that is scale-free
and highly clustered.
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A key problem in the study of networks is the relation
between network structure and function �1,2�. Among the
attributes most frequently used to characterize network struc-
ture are degree distribution and clustering coefficient. The
latter, defined as the number of triangles divided by the num-
ber of connected triples �3,4�, quantifies the tendency of
neighbors of a node to also be neighbors of each other. We
refer to this property as structural clustering to distinguish it
from frequency or dynamical clustering �6–8�.

A recent algorithm �5� allows one to manipulate the clus-
tering coefficient by rewiring the network, without changing
its degree distribution. Kim used this technique to study the
effect of clustering on the performance of variously struc-
tured Hopfield networks �5�, and we use it here to study its
effect on synchronization.

In search of factors that control the synchronization of
networks of oscillators, researchers have studied the effects
of different structural and statistical attributes �6–21�. These
studies have included systems of coupled maps �6,8–10�,
continuous-time chaotic oscillators �11–14�, spiking neurons
�15�, and phase oscillators �7,16–18�. Unsurprisingly, short-
cuts in small-world networks tend to improve synchroniza-
tion compared to regular lattices �4,9,11,15,16�. However,
other factors such as degree heterogeneity �14�, maximum
betweenness centrality �19�, asymmetry, and weighting of
couplings �20,21� also play a role.

In the present paper we used Kim’s procedure �5� to study
the effects of structural clustering on the synchronization of
networks of Kuramoto-like �22� phase oscillators with Pois-
son and scale-free degree distributions. For both network
types we found that increased clustering impedes global syn-
chronization and magnifies the fluctuations of the global or-
der parameter. Clustering also qualitatively changes the onset
of synchronization. At low clustering �16,17�, the transition
is similar to that in the mean-field or globally coupled Kura-
moto model, where a single subset of oscillators becomes
entrained at a central frequency. With increasing coupling,
this synchronized subset entrains larger portions of the re-
maining oscillators. At higher clustering, on the other hand,
synchronization begins with more than one subset, each syn-
chronized at a different frequency, and continues at increased
coupling through the recruitment of remaining oscillators by

the different subsets. We refer to these subsets as frequency
clusters. In contrast to Poisson networks, characterized by a
single synchronization transition, we find that strongly clus-
tered scale-free networks show a second synchronization
transition that is advanced relative to the principal transition,
i.e., it occurs at a lower value of the coupling strength. Thus,
structural clustering promotes synchronization at low cou-
pling, while inhibiting it at higher coupling. The advanced
synchronization begins with the hubs, or highest-degree
nodes. These results appear to be relevant to natural net-
works, such as the brain �23� and ganglia �2,4,24� that have
higher clustering coefficients than those predicted by simple
growth models. In the brain, the distribution of functional
connections and the probability of finding a link versus dis-
tance are both scale-free �23�.

In contrast to approaches �11,12,14,19� based on the mas-
ter stability function �25�, we consider nonidentical oscilla-
tors and their full dynamics, including states where only
some of the oscillators are synchronized.

We consider networks of oscillators obeying the coupled
differential equations

d�i

dt
= �i +

�

�k��j

aijsin��i − � j� , �1�

where 0��i�2� are N phase variables, �i are the randomly
and uniformly distributed intrinsic frequencies, � is the cou-
pling strength, and aij is the adjacency matrix �1 if i and j are
connected, 0 otherwise�. The coupling strength is scaled by
the average degree �k� of the nodes, averaged over the whole
network. In the globally coupled Kuramoto model �22�
where aij =1, ∀ i� j, this reduces to scaling by the number
of oscillators N. The above form makes the coupling
strengths symmetric and weights all links equally �17�, but in
the case of a nonhomogeneous degree distribution, some os-
cillators may receive a stronger synchronizing signal because
they have more neighbors.

The results are for networks with N=1000 nodes and an
average degree �k��20. Qualitatively similar results were
obtained with N=5000 and �k�=6. We consider a random
�Poisson� network and a scale-free network generated by the
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Barabasi-Albert preferential attachment algorithm �26�, and
families of networks derived from each of these by changing
the clustering coefficient �. To vary �, we use a stochastic
rewiring algorithm �5� that rearranges connections with a
bias toward increased clustering. The procedure is as fol-
lows: �1� Randomly pick two existing links. �2� Compute
whether interchanging these links increases or decreases the
total number of triangles. Perform the interchange only if it
increases that number. �3� Repeat these steps until the de-
sired clustering is achieved. �One can reduce the clustering
coefficient by reversing the acceptance criterion.� Since this
algorithm only rewires connections and does not change the
degree of any node, the degree distribution as well as the
degree sequence is fixed.

The random �i values were uniformly distributed over the
interval 0.9��i�1.1 and the initial phases were also ran-
dom. We ran the dynamics at a series of increasing values of
�, integrating the equations using a simple Euler method
with a step size of 0.02. After 100 time units to allow for
relaxation to a steady state, we measured the time-averaged
�over 500 time units� synchronization order parameter �22�

m 	
� 1

N
�
j=1

N

ei�j�� . �2�

m is of order 1 /N if the oscillators are uncorrelated and
approaches 1 when all are in phase. In addition, we measured
the frequency �i	��̇i� of each oscillator over the same 500-
unit time interval after relaxation. The brackets � � signify
time averaging. This measurement reveals the collective be-
havior in detail.

To study the effect of clustering on the transition to syn-
chronization, we first examine the order parameter m as a
function of the coupling strength �. Figure 1 shows plots of
m vs � for networks with Poisson and scale-free degree dis-
tributions at several values of the clustering coefficient �. In
each plot the data were averaged over time, over several
realizations of the intrinsic frequencies, and over several net-
work rearrangements. The degree sequence, however, was
the same in all cases. Poisson networks �Fig. 1�a�� behave
more simply than scale-free ones. The natural �low-
clustering� random network shows a rapid transition to order
above �=0.12. Increasing clustering inhibits global synchro-
nization and makes this transition less steep. The lowered
mean values of m in the highly clustered networks are asso-
ciated with extremely large temporal fluctuations around the
mean.

FIG. 1. �Color online� Order parameter m vs coupling strength
�, for different values of the clustering coefficient �. �a� The Pois-
son degree distribution. �b�,�c� The scale-free degree distribution.
�c� A close-up of the transition region showing that increased clus-
tering leads to an advanced �lower-�� transition.

FIG. 2. Poisson networks: Scatter plots of average oscillation
frequency � �vertical axis� vs intrinsic frequency � �horizontal�. At
zero coupling, the points all lie on the line �=�. With increasing
coupling, more oscillators line up at synchronized frequencies. For
high clustering, several bands form at different frequencies, rather
than one frequency as in the low-� case.
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In scale-free networks �Figs. 1�b� and 1�c��, clustering has
a more complicated effect. The network with �=0 shows the
onset of synchronization �upward turn in the graph� near �
�0.07 and the transition to full synchronization is not as
steep as in the Poisson case. Surprisingly, increased cluster-
ing slightly enhances the order parameter at weak coupling
but suppresses it at strong coupling. For intermediate � this
results in two separate transitions, an advanced transition
�threshold at ��0.03� to partial synchronization followed by
a delayed one ���0.15� to full synchronization.

For more insight into the synchronization transitions we
examine scatter plots of observed frequency �i vs intrinsic
frequency �i. Each plot in Figs. 2–4 shows the population’s
behavior for one realization of the random variables. In the
absence of interactions, all points would fall along the line
�i=�i. In the globally coupled �mean-field� case �22�, the
nodes differ only by their intrinsic fequencies. Therefore, the
observed frequency is in every case a single-valued function
���� of the intrinsic frequency, whose shape changes with
�. In particular, the curves begin to flatten around ��1, as
oscillators with frequencies closest to the average are the first
to synchronize. The flat portion broadens with increasing
coupling. For Poisson networks �Fig. 2� at low clustering, the
same qualitative picture holds as in the mean-field case ex-
cept that there is more scatter and the curve is blurred. This
is due to the fact that each oscillator’s behavior now depends

not only on its intrinsic frequency and the global average, but
also on the details of its local neighborhood. As in the mean-
field case, the oscillators near the extremes of the � distri-
bution are the last to become fully entrained. Unlike the
mean-field case, some remain unentrained even when the
synchronized group is well established and has recruited
members from the entire intrinsic frequency range. At higher
clustering, the scatter plots differ even more from the mean-
field case, and they do so in two ways. First, the scatter is
more pronounced. Second, the horizontal striations indicate
that the oscillators cluster in subgroups �frequency clusters�
oscillating at different frequencies. As � increases, the fre-
quency clusters converge and eventually merge, but full syn-
chronization requires a stronger coupling compared to net-
works with low clustering. The beating of the different
frequencies accounts for the low value of the global order
parameter and its large fluctuations.

In the scale-free case, the scatter plots �Fig. 3� confirm
that the highly clustered networks begin to synchronize at a
weaker coupling than the less clustered ones. Initially, how-
ever, this synchronization only affects a subset of the nodes,
while the remaining nodes still fall close to the line �=� as
if they were not interacting at all. This is in contrast to the
Poisson scatter plots, which begin to flatten near the center of

FIG. 3. Scale-free networks: Scatter plots of � vs �. Synchro-
nized subsets �horizontal bands� begin to form at weaker coupling
for the more clustered networks. Frequency clustering is evident at
high �.

FIG. 4. Scale-free networks: Average frequency � vs degree k at
several values of clustering � and coupling strength �. The degree
�horizontal axis� is plotted on a logarithmic scale. Synchronization
begins with the hubs �nodes with the highest k� and progresses
downward to those with lower k.
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the frequency range as the transition begins. Since scale-free
networks have a strongly heterogeneous degree distribution,
the entrainment of an oscillator depends strongly on the
number of its inputs. When � is plotted against the degree k
of each node as in Fig. 4, it is apparent that the higher-degree
nodes �hubs� begin to synchronize first, while the lower-
degree nodes synchronize as the coupling continues to in-
crease. One similarity with the Poisson case is that structural
clustering enhances frequency clustering. While clustering
promotes the formation of synchronized frequency clusters
among the hubs, it inhibits the synchronization of the net-
work as a whole. The early hub synchronization accounts for
the slightly enhanced order parameter at weak coupling.

In conclusion, we examined the synchronization of net-
works of nonidentical coupled phase oscillators with both
Poisson and scale-free degree distributions, and studied the
effects of varying the clustering coefficient without affecting
the degree distribution. Our first main result, for both types
of networks, is that clustering encourages the formation of
subpopulations synchronized at different frequencies �fre-
quency clusters�, and thus discourages full global synchroni-
zation at a single frequency. Our second key finding concerns
the scale-free case, where we found that, despite the in-
creased difficulty of full synchronization, higher clustering
actually promotes the onset of partial synchronization of the
hubs. Scale-free networks with high clustering thus appear to
undergo two separate transitions as the coupling strength in-
creases: an early transition to partial synchronization and a

delayed one to full synchronization. The first transition in-
volves only the hubs while leaving the majority almost un-
affected. The hubs seem to form the growth nuclei for the
synchronized state. Interestingly, they are able to synchro-
nize even though many of their inputs come from lower de-
gree nodes that are not yet synchronized. It is known �17�
that in ordinary, low-clustered scale-free networks the relax-
ation time for synchronization of hubs is shorter than that of
less connected nodes, but this does not account for the effect
of structural clustering in promoting their synchronization. It
is possible that increasing clustering may, as a byproduct,
increase the assortativity of degree mixing �29�, so that hubs
become more likely to connect to each other. In other models
of clustered networks it was found that triangles preferen-
tially include higher-degree nodes �27�. Clustering may also
affect the betweenness centrality distributions.

This advanced transition may play a role in highly clus-
tered networks; for instance, in the human brain. In natural,
as opposed to abstract, networks, the cost associated with
long-range connections often gives them a tendency toward
clustering. For the ganglion of C. elegans �24�, the clustering
coefficient is �=0.28. For the human brain �23�, the connec-
tivity is essentially scale-free in different regions, and clus-
tering lies three orders of magnitude above that of equivalent
random networks. This and the weak synaptic coupling
strength in the brain �28,30� point to the potential importance
of cluster-enhanced synchronization of oscillating hubs.
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