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Growth and form of spherulites
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Many structural materials (metal alloys, polymers, minerals, etc.) are formed by quenching liquids into
crystalline solids. This highly nonequilibrium process often leads to polycrystalline growth patterns that are
broadly termed “spherulites” because of their large-scale average spherical shape. Despite the prevalence and
practical importance of spherulite formation, only rather qualitative concepts of this phenomenon exist. It is
established that phase field methods naturally account for diffusional instabilities that are responsible for
dendritic single-crystal growth. However, a generalization of this model is required to describe spherulitic
growth patterns, and in the present paper we propose a minimal model of this fundamental crystal growth
process. Our calculations indicate that the diversity of spherulitic growth morphologies arises from a compe-
tition between the ordering effect of discrete local crystallographic symmetries and the randomization of the
local crystallographic orientation that accompanies crystal grain nucleation at the growth front [growth front
nucleation (GFN)]. This randomization in the orientation accounts for the isotropy of spherulitic growth at
large length scales and long times. In practice, many mechanisms can give rise to GFN, and the present work
describes and explores three physically prevalent sources of disorder that lead to this kind of growth. While
previous phase field modeling elucidated two of these mechanisms—disorder created by particulate impurities
or other static disorder or by the dynamic heterogeneities that spontaneously form in supercooled liquids (even
pure ones)—the present paper considers an additional mechanism, crystalline branching induced by a
misorientation-dependent grain boundary energy, which can significantly affect spherulite morphology. We find
the entire range of observed spherulite morphologies can be reproduced by this generalized phase field model

of polycrystalline growth.
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I. INTRODUCTION

Spherulites are ubiquitous in solids formed under highly
nonequilibrium conditions [1]. They are observed in a wide
range of metallurgical alloys, in pure Se [2,3], in oxide and
metallic glasses [4,5], mineral aggregates, and volcanic rocks
[6,7], polymers [1,8], liquid crystals [9], simple organic lig-
uids [10], and diverse biological molecules [11]. Many ev-
eryday materials, ranging from plastic grocery bags to air-
plane wings and cast iron supporting beams for highway
bridges, are fabricated by freezing liquids into polycrystal-
line solids containing these structures. The properties and
failure characteristics of these materials depend strongly on
their microstructure, but the factors that determine this mi-
crostructure remain poorly understood [1].

While the term “spherulite” suggests a nearly spherical
shape (circular shape in two dimensions where the term
spherulite is still employed), this term is used in a broader
sense of densely branched, polycrystalline solidification pat-
terns [2,9,12-21]. Spherulitic patterns exhibit a diversity of
forms and representative patterns are shown in Fig. 1.

Experimental studies performed over the last century in-
dicate that there are two main categories of spherulites
[20,21]. Category 1 spherulites grow radially from the nucle-
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ation site, branching intermittently to maintain a space filling
character (Fig. 2). In contrast, category 2 spherulites grow
initially as threadlike fibers, subsequently forming new
grains at the growth front (Fig. 2). This branching of the
crystallization pattern ultimately leads to a crystal “sheaf”
that increasingly splays out during growth. At still longer
times, these sheaves develop two “eyes” (uncrystallized re-
gions) on each side of the primary nucleation site [see Fig.
1(h)]. Ultimately, this type of spherulite settles down into a
spherical growth pattern, with eye structures apparent in its
core region. In some materials, both categories of spherulite
occur in the same material under the same nominal thermo-
dynamic conditions [Fig. 1(i)].

Although the widely different systems indicated in Fig. 1
surely involve disparate molecular-scale dynamical pro-
cesses, the similarities of their morphologies (tendency for
space filling, polycrystallinity, elongated fiberlike grains,
etc.) suggest that a general coarse-grained description of this
type of pattern formation can be formulated.

While there is no generally accepted theory of spherulite
crystallization, a number of phenomenological models and
necessary physical conditions for this process have been sug-
gested [1,8—10,22]. The most prevalent conception of their
origin is the qualitative model of Keith and Padden [13], in
which the presence of static heterogeneities (impurities or
molecular defects and mass polydispersity in polymeric ma-
terials) leads to a rejection of these components from the
growth front to form channels similar to those found in eu-
tectics. The observation of spherulitic growth in highly pure
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FIG. 1. (Color online). Various spherulitic morphologies. (a) Densely branched spherulite formed in a blend of isotactic and atactic
polypropylene [12]. (b) “Spiky spherulite” grown in malonamide-d-tartatic acid mixture [13]. (c) Arboresque spherulites forming in poly-
propylene film [14], and (d) and (e) “quadrites” formed by nearly rectangular branching in isotactic polypropylene [15,16]. (f) Spherulite
formed in pure Se [2]. (g) Crystal sheaves in pyromellitic dianhydrite-oxydianilin poly(imid) layer [17]. (h) Typical category 2 spherulites
(a thin film of polybutene) with two “eyes” on the sides of the nucleus [18]. (i) Multisheave and early spherulite structure formed in dilute
long n-alkane blend [19]. (j) Arboresque growth form in polyglycine [20]. To improve the contrast and visibility of the experimental pictures,
false colors were applied. The linear size of the panels are (a) 220 um, (b) 960 wm, (c) 2.4 mm, (d) 2.5 um, (e) 7.6 wm, (f) 550 wm, (g)

2.5 pum, (h) 20 um, (i) 250 wm, and (j) 1.7 wm, respectively.

liquids by Magill and others [1-3], however, indicates that
this cannot be a general explanation of this growth form.
Magill, and others preceding him (e.g. Pirsson [23]), has
emphasized that a critically large viscosity, characteristic of
high supercooling, seems to be required for spherulites to
form. The occurrence of ‘“secondary” nucleation at the
growth front (similar to “sympathetic” nucleation observed
during solid state precipitation [24] or “double nucleation” in
the biological literature [25-28]) has also been emphasized
as an essential feature of spherulite formation in polymeric
fluids [29]. Random lamellar branching with preferred crys-
tallographic misorientation (“noncrystallographic branch-
ing”) is also expected to play an important role [1,15]. Re-
cent experimental studies of spherulitic growth in thin
polymer films by atomic force microscopy strongly support
these views [30].

The present paper generalizes our previous coarse-grained
modeling of polycrystalline growth [31]. Our model incorpo-
rates a set of minimal physical effects that are sufficient to
account for the observed structural diversity of spherulites.
These calculations have established that polycrystalline
growth can originate from the quenching of orientational de-
fects, arising from eirher static heterogeneities (impurities)
or dynamic heterogeneities intrinsic to supercooled liquids.
We termed this secondary nucleation of crystal grains at the
crystal growth front as growth front nucleation (GFN). Both
types of disorder yield strikingly similar effects on crystalli-

Category 1 Category 2

zation morphologies [31]. This model therefore implies that
spherulite formation should occur both in highly impure and
pure supercooled fluids. Of course, spatial heterogeneities
due to phase separation or other sources of fluid heterogene-
ity (e.g., equilibrium polymerization as in Se) can provide
other sources of static disorder, giving rise to spherulitic
growth [32,33]. Given this duality between dynamic and
static heterogeneities, here we focus predominantly on poly-
crystalline growth in particulate-free supercooled liquids. In
this case, the glass-forming nature of the fluid is found to
play a key role in the spherulite formation process and we
briefly review some of the essential aspects of this phenom-
enon.

It is now appreciated that highly supercooled liquids are
characterized by the presence of long-lived dynamic hetero-
geneities. These heterogeneities are associated with the for-
mation of regions within the fluid that have either a much
higher or much lower mobility relative to a simple fluid in
which particles exhibit Brownian motion [1,34-36]. These
nanoscale heterogeneities persist on time scales of the order
of the stress relaxation time, which can be minutes near the
glass transition and eons at lower temperatures. The presence
of such transient heterogeneities leads to dramatic effects on
the dynamics of supercooled liquids [37-41].

Dynamic heterogeneity has numerous consequences for
the transport properties of these complex fluids. The most
important transport properties of relevance to crystallization

FIG. 2. Concepts for the formation of cat-

egory 1 and 2 spherulites. From left to right: Cat-
egory | spherulite formed via central multidirec-
tional growth. Formation of category 2 spherulite
from a folded-chain single crystal (A) to the fully
developed spherulite (E) via unidirectional
growth and low angle branching [15]. Note that
the latter mechanism may lead to the formation of

two “eyes” (uncrystallized holes) on the sides of
the nucleation site.
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are the shear viscosity (7) and the molecular mobilities de-
termined by the translational (D) and rotational diffusion
(D,o) coefficients. These diffusion coefficients characterize
the rate of molecular translation and rotation, directly con-
trolling the manner that molecules attach and align with the
growing crystal [34,39-41]. It is a common property of
highly supercooled liquids that the ratio of the rotational and
translational diffusion coefficients (y=D,,/D,) decreases
sharply (by orders of magnitude) from their nearly constant
high temperature values (x,) [34,37-42]. This “decoupling”
phenomenon means that molecules translate increasingly
large distances before they rotationally decorrelate from their
initial orientation [34,37—41].

Recently we demonstrated that a small y, characteristic of
highly supercooled liquids, enhances the growth of new
grains as misoriented crystal regions at the liquid-solid inter-
face have difficulty aligning with the parent crystal. In other
words, polycrystalline growth will arise if the reorientation
of molecules is slow relative to the interface propagation.
This argument implies that static heterogeneities and the mo-
bility asymmetry (x << x,) of supercooled liquids should give
rise to a common tendency towards polycrystalline growth. It
is emphasized that our simulations do not model the nanos-
cale dynamic heterogeneities explicitly, but instead model
the consequences of these heterogeneities on molecular
transport, as is appropriate for a coarse-grained model.

This specific mode of GFN is expected to explain poly-
crystalline solidification at rather high undercoolings (near
the glass transition temperature). Nonetheless, spherulitic
growth has been observed in pure systems at low undercool-
ings as well (see, e.g., [2,3]), where neither this mechanism
nor the presence of foreign particles can explain polycrystal-
line growth. To handle this case, we incorporate a third
mechanism for GFN: “noncrystallographic branching”
[2,3]—i.e., the formation of new crystalline branches that
have a fixed misorientation relative to the mother crystal
(and a grain boundary in between), a mechanism suggested
by many experimental observations. Analogously to the par-
ticulate induced GFN, this new mode might be active from
small undercoolings to large ones depending on the energet-
ics of grain boundary formation. This phenomenon differs
from the branching due to diffusional instabilities (“crystal-
lographic branching”), which produces branches of the same
crystallographic orientation as the mother crystal.

Here we present a unified model of polycrystalline solidi-
fication that incorporates some essential ingredients (e.g.,
diffusional instabilities and various modes of primary and
secondary nucleation) required to describe this complex
growth process and we explore its ability to recover the mor-
phological variability of polycrystalline spherulites.

II. PHASE FIELD THEORY WITH
NONCRYSTALLOGRAPHIC BRANCHING

Our two-dimensional phase field theory builds on the
phase field models of primary nucleation of crystals from the
melt [43] and multigrain solidification [43,44], which incor-
porate the diffusional instabilities and crystal anisotropies of
the interface free energy and molecule-attachment kinetics,
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and the possibility for trapping orientational defects into the
solid. This model has already been successfully applied to
describe transformation kinetics in alloys [43] and the inter-
action of particulate additives with dendrites [45]. (Recent
reviews on the phase field technique and its application to
polycrystalline solidification are available in Refs. [46-48].)

The novel aspect of the approach used in the present pa-
per is the introduction of branching with a fixed crystallo-
graphic misorientation, realized through an orientation-
dependent grain boundary energy. The combination of these
essential factors provides a general model of polycrystalline
solidification, suitable to describe the formation of complex
polycrystalline patterns, in particular the growth and form of
spherulites.

The local state of matter is characterized by the phase
field ¢. This order parameter describes the extent of struc-
tural change during freezing and melting. The other basic
field variables are the chemical composition ¢ and the nor-
malized orientation field 6 [43], where 6 specifies the orien-
tation of crystal planes in the laboratory frame. The free
energy F consists of various contributions that will be dis-
cussed below:

2
:fd3r{a0 TS

+ [1 _p(¢)]f0ri(|v 6|)

2(0,0|V S+ f(.c.T)

(2.1)

where

[($.e.T) =w(c)Tg() +[1 - p()|fs(c.T) + p(P)fi(c.T),

-
6\27y;6;
at= I (o) = (1= wy+ e,
12'}’1
w;= (i=A or B),
VE(S;‘ i

(=B =07 D=8+ 0,

p(d) =’ (10-15¢+6¢%), p'($)=304(1- ¢)*,

(1=o)f; +cfy+

fs(e,T) = [c In(c) + (1 = ¢)In(1 - ¢)],

fi(e,T)=(1- c)fﬁ + cf§+ R—T[c In(c) + (1 = ¢)In(1 - ¢)],

m

while

Sori = %{xFO"' (1 _x)Fl}’

3
|Sln(27Tm§0|V 0|)| for §0|V 0| <—,
FO = dm

1 otherwise,

011605-3



GRANASY et al.

1

lsin(2mn&)|V )| for &|VE| < —,

Fl = 4l’l
1 otherwise,

s(9,0) =1+ sy cos[k( - 2mO/k)],

¥ = arctan[(V ¢),/(V ¢),].

Here «y is a constant, T the temperature, T;, y;, and &, (i
=A,B) are the melting point, the interfacial free energy, and
interface thickness of the pure components A and B, respec-
tively, while f- and f; are the free energy densities of the
pure components in the solid and liquid phases. R and v,, are
the gas constant and the molar volume.

The gradient term for the phase field leads to a diffuse
crystal-liquid interface, a feature observed both in experi-
ment [49] and computer simulations [50]. The g(¢) “double
well” and p(¢) “interpolation” functions have forms com-
monly used in phase field theory [51,52]. The free energy
densities in the bulk solid and liquid, fs(c,T) and f;(c,T),
are taken here from the ideal solution model, while approxi-
mating the free energy difference f*—f (i=A,B) by Turn-
bull’s linear relationship L; (T;—T)/T;. Thus, the free energy
surface f(¢,c,T) has two minima (=0 and ¢=1, corre-
sponding to the crystalline and liquid phases), whose relative
depth is the driving force for crystallization and is a function
of both temperature and composition. Adaptation of the
model to more complex systems is straightforward.

The dependence of the interfacial free energy on orienta-
tion of the liquid-solid interface is introduced through the
function s(, 6), which multiplies the penalty for gradients in
¢ and depends on the anisotropy parameter s,. (Here ¥ is the
inclination of the normal of the solid-liquid interface in the
laboratory frame.) As s introduces misorientation depen-
dence to the interfacial free energy [53], it is possible to
introduce favored misorientations through this coefficient.
However, it is also possible to introduce misorientation de-
pendencies via a coupling to gradients in 6.

Specifically, preferred crystallographic misfits are intro-
duced into our model through the orientational contribution
to the free energy density f,,;, which represents the excess
free energy density due to inhomogeneities in crystal orien-
tation in space, in particular the misorientation due to a grain
boundary. (Here H is a parameter related to the energy of the
low-angle grain boundaries, while & is the correlation length
of the orientation field.) The present form of f; ensures that
0 takes an essentially constant value (scaled between 0 and
1) in the solid, while in the liquid it fluctuates.

Assigning local crystal orientation to liquid regions, even
a fluctuating one, may seem artificial at first sight. However,
due to geometrical and/or chemical constraints, a short-range
order exists even in simple liquids, which is often similar to
the one in the solid. Rotating the crystalline first-neighbor
shell so that it aligns optimally with the local liquid structure,
one may assign a local orientation to every atom in the lig-
uid. The orientation obtained in this manner fluctuates in
time and space. The correlation of the atomic positions and
angles shows how good this fit is. (In the model, the fluctu-
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FIG. 3. (Color online) Orientational free energy f,; as a func-
tion of misorientation angle (in degree) for twofold symmetry (k
=2), while n=%, m=3, and x=0.2. If the neighboring pixel has a
smaller misorientation than ~20° (local maximum), it can reduce
the free energy by relaxing to the bulk crystal orientation (0°). If
misorientation is larger than this, the closest minimum is 30°. So
neighboring pixels of large misorientation tend to relax to 30°, un-
less fluctuations prevent this. Note that 6 is an angular variable, so
the maximum possible misorientation is A6, =0.5.

ating orientation field and the phase field play these roles.)
Approaching the solid from the liquid, the orientation be-
comes more definite (the amplitude of the orientational fluc-
tuations decreases) and matches that of the solid, while the
correlation between the local liquid structure and the crystal
structure improves. The present f,; recovers this behavior by
realizing a strong coupling between the orientation and phase
fields.

Thus, orientational ordering takes place at the diffuse in-
terface simultaneously with the structural transition. An es-
sential feature of the orientational free energy we have cho-
sen is that it has two local minima as a function of the angle
&|V 6|27/ k, corresponding to no misorientation and a pre-
ferred misorientation (Fig. 3). This means that regions with a
large enough orientation difference from a neighboring par-
ent crystal will relax towards a finite misorientation. This
selection of grain orientation only occurs provided that noise
does not disrupt the process. The branching angle and depth
of this metastable minimum of f,; are specified by param-
eters m, n, and x, where x is the amplitude of the term F, that
determines depth of the metastable minimum. (There are
many ways to produce a metastable minimum in the orien-
tational free energy. Our choice is one of the simplest pos-
sible parametrizations. We expect qualitatively similar results
if f., is taken from experiment or atomistic simulations.)

Our model parameters can be expressed in terms of mea-
surable quantities. According to experiment, the grain bound-
aries are localized on the nanometer scale, and the energy of
low-angle grain boundaries is proportional to the misorienta-
tion angle. In our model, the respective proportionality coef-
ficient scales with HT [54]; i.e., the model parameter H is
related to the angular dependence of the energy of low-angle
grain boundaries.

In any real system there will be many preferred (low-
energy) orientations, a reflection of the underlying crystallo-
graphic symmetries. In our illustrative calculations for two-
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fold symmetry (k=2) of the kinetic coefficient or interfacial
free energy, nzé has been set, while m=1, 2, and 3 corre-
spond to branching with 90°, 45°, and 30°, respectively. We
note that GFN with random orientation of the new grains
[31,48] can also be recovered with an appropriate choice of
the parameters (x=0). Thus, our model contains two homo-
geneous modes of GFN: (a) trapping of orientational disor-
der (expected at high undercoolings) and (b) noncrystallo-
graphic branching with a preferred misorientation. In
addition, we consider a third (heterogeneous) mode of GFN
induced by foreign particles, represented by orientation pin-
ning centers (areas of random but fixed orientation), an eco-
nomical description developed in Ref. [45].

Since we are modeling quasi-two-dimensional systems,
the orientation field is simply a scalar, which is suitable for
the description of transformations in thin layers of thickness
Z, where along thickness (direction z) the system is consid-
ered uniform. The true three-dimensional (3D) free energy
functional would depend on a 3D vectorial orientation field.

A. Governing equations

As wusual in the practice of phase field modeling
[43-48,51-53,55-61], time evolution is governed by relax-
ational dynamics, and Langevin noise terms are added to
model thermal fluctuations (essentially Langevin equations
based on the time-dependent Ginzburg-Landau formalism

[62]):

. SF o \ o

OF J
c= VMCV{g—g}= V{Dc(l—c)V{(a—i)
of
—_ V(avc>_é’]:|}’

. OF
0:—Mg_+§0:M9{V<

&f) of

av e a0

50 } +p (22)

where {; are the appropriate Langevin-noise terms.

The time scales for the three fields are determined by the
appropriate coarse-grained mobilities M4, M., and M, that
appear in the equations of motion. These coarse-grained mo-
bilities can be taken from experiments and/or evaluated from
atomistic simulations [47]. For example, the mobility M, is
directly proportional to the classic interdiffusion coefficient
for a binary mixture and the mobility M, dictates the rate of
crystallization, while M, controls the rate at which regions
reorient.

As discussed in the Introduction, in highly undercooled
liquids, dynamic heterogeneities exist at the nanometer scale,
but we do not model these fluctuations directly, as our model
is coarse grained. Since x/x, is characteristically small in
supercooled liquids, we postulate a corresponding reduction
in the ratio of My/M , to model the average effect of dy-
namic heterogeneity on global relaxation. This assumption is
plausible because these coarse-grained mobilities are func-
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tions of their molecular counterparts. Moreover, a recent ex-
periment has shown that the rate of crystallization in highly
supercooled liquids is proportional to Dy, even under decou-
pling conditions [34,40,41]. In our model, the growth veloc-
ity scales linearly with M, so consistency requires M,
«D,. Since we also expect that My« D, > 1/ 5, we arrive at
XM o/ M 4 Reduction of y enables the formation of new
grains at the perimeter as detailed in [31,48].

1. Phase field

Using the length and time scales & and €/D,, respectively,
where D; is the chemical diffusion coefficient in the liquid,
the anisotropic dimensionless phase field moblhty my,
=my {1+ & cos[k(9-2m6/k)]} and m¢Q—M¢a0 T/D,, the
following dimensionless form emerges:

2 99\ I 9P
d) m({V(s V) - &x{s&ﬁ&j}”}-i-&i{ &ﬁ&x}

_ P OTE (@) +0'(@) {chT> fole.T) - fm}}
€y T

(2.3)

(Here &, is the anisotropy parameter, and as in the case of the
anisotropy of the interface free energy, the angle ¥ is the
inclination of the liquid-solid interface in the laboratory
frame, while k is the symmetry index). Below, quantities
with a tilde are dimensionless, while prime denotes differen-
tiation with respect to the argument.

2. Concentration field

Following previous works (e.g., [52,55]), we choose the
mobility of the concentration field as M,.=(v,,/RT)Dc(1-c),
where D=D+(D;—D,)p(¢) is the diffusion coefficient. This
choice ensures a diffusive equation of motion. Since HT is
assumed independent of concentration, no coupling to the
orientation field emerges. Introducing the reduced diffusion
coefficient A=D/D,, the dimensionless equation of motion
for the concentration field reads as

c=?{;—;m(1 —cﬁ[<w3—wA)Tg(¢)+[1 L
() 2 T)”

3. Orientation field

(2.4)

Introducing the dimensionless correlation length of the

orientation field EO: &/ & and defining the dimensionless ori-
entational mobility as my=M 4HT/D,, the dimensionless
equation of motion is as follows:

< = ~ ~ Vo
O=my| VY [1 = p(p)]alxFym + (1 —x)Fln]r—

Vol
Vol |, (2.5)

where
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- - ~ = 3
7o sgn[sin(2mm&|V 6])Jcos(2mm&)|V 6]) for &|V 6] < am’

otherwise,

_ - ~ = 1
P sgn[sin(2mm&,|V 6])Jcos(2mn&y|V 6)) for &|V 6] < an’
| =

0

This form of f,;, and the noise added to the equation of
motion ensure that the orientation field 6 is random in space
and time in the liquid. This makes it possible to quench
orientational defects into the solid, leading to polycrystalline
growth. Independently, branching with fixed relative misori-
entation may occur; i.e., sharp (steplike) grain boundaries of
fixed orientational misfit (of fixed grain boundary energy)
appear.

The second term on the right-hand side (RHS) of Eq. (2.5)
deserves a closer inspection. Our small-scale simulations
with physical interface thickness (~1 nm) indicate that this
term is negligible. Due to limitations of computer power, in
addressing large-scale solidification morphologies, we em-
ploy a relatively broad interface compared to those found in
metallic alloys. This broad interface leads to artifacts that are
not present in simulations with the physical interface thick-
ness. Therefore, as a practical matter, we adopt one of the
following measures: (a) in most of the simulations, we per-
form the calculations with only kinetic anisotropy (then this
term is exactly zero); (b) in a few cases shown in Figs. 9 and
10, we use an anisotropic interfacial free energy. To avoid the
unphysical effects (e.g., excessive bending of the crystal)
associated with the broad interface, we omit this term.

4. Noise

Gaussian noises of amplitude (={+({—)p(¢p) are
added to the nonconserved fields, where {; and {; are the
amplitudes in the liquid and solid. The noise has been dis-
cretized as described in Ref. [56]. Its amplitude scales with
the spatial and time steps, with the temperature and film
thickness as follows:

= UAXIAX ) (AL IA) YT IT)V(212)?,  (2.6)
where the primed quantities are for the actual simulation and
those without a prime belong to a reference state, in which
the noise amplitude was . As pointed out in Ref. [56], the
noise amplitude varies with the volume of the simulation
cells. In our quasi-2D system, the cell volume is V=2 Ax?%;
i.e., it depends on the choice of the layer thickness. In other
words, the amplitude of the noise might be regarded as an
adjustable variable [63].

By contrast with the nonconserved fields, in the case of
the conserved concentration field, random concentration
fluxes were added to the equation of motion, as discussed in
Ref. [56] in detail.

otherwise.

Note that the noise amplitudes for conserved and noncon-
served fields differ in form and also depend on the respective
mobilities as detailed in Ref. [56].

5. Numerical solution

The governing equations have been solved numerically
using an explicit finite difference scheme on a rectangular
NXN grid, whose linear size varied between N=500 and
5000. Periodic boundary conditions were applied. The time
and spatial steps were chosen to ensure stability of our solu-
tions. As the computed morphologies are fundamentally de-
termined by thermal fluctuations at the growth front, conver-
gence to a particular morphology, as we refine the grid and
time step, is possible only in a statistical sense (i.e., the rate
of GFN, branching frequency and the solid fraction inside
the solidification envelopes). We note that accurate solutions
to the orientation equation require approximately 1/50 of the
time step required for the stable solution of the other fields.

A parallel code has been developed that relies on the mes-
sage passing interface (MPI) protocol and was run on a PC
cluster built up at the Research Institute for Solid State Phys-
ics and Optics, Budapest, exclusively for phase field calcu-
lations. This cluster consists of 75 nodes and a server ma-
chine with 512 MB memory each. The present paper is based
on computations whose overall length exceeds 40 CPU years
on a single 2-GHz processor. This includes extensive stabil-
ity analyses and morphological mapping of the parameter
space. (Less than 10% of all these simulations is presented in
this paper.) Parallelization of the code was essential (a) to
shorten the individual calculations used in searching the con-
ditions for various morphologies, in mapping of the param-
eter space, and (b) for providing sufficient memory for the
largest simulations.

We expect the physical systems of interest to have inter-
face thickness of about 1 nm. Using the algorithms we have
implemented for our parallel code, we are constrained to use
a significantly thicker interface. Indeed, these already ambi-
tious calculations would take about 1 000 000 times longer
using a physical value of the interface thickness. However,
our own examination of the behavior of the model equations,
as well as the experience of many others doing phase field
research, implies that the structures obtained by these meth-
ods are not only qualitatively correct, but also have predic-
tive power. Specifically, the calculations provide insight and
understanding into the mechanisms controlling spherulite
formation, as well as demonstrating the factors that influence
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this type of pattern formation. We are confident that, as hap-
pened in the case of dendritic solidification in metals [47],
future (theoretical and algorithmic) developments will ulti-
mately enable quantitative computations of the complex
polycrystalline patterns investigated herein.

B. Nucleation processes

Considering the multiplicity of the homogeneous and het-
erogeneous nucleation processes our model allows for, it is
appropriate to give here a brief review of them.

Our model incorporates homogeneous and heterogeneous
modes of primary nucleation of single crystallites or poly-
crystalline growth centers. Homogeneous primary nucleation
is incorporated by adding noise to the governing equations as
done in a large number of previous works
[31,43,45,48,57-61]. Polycrystalline nuclei were found to
appear if y is sufficiently low. Particle-induced heteroge-
neous nucleation has been incorporated (see Ref. [48]) by
inserting particles defined by walls with no-flux boundary
conditions as proposed by Castro [61]. (This option is not
utilized in the present study.)

Secondary nucleation of new grains at the perimeter
(=growth front nucleation=GFN) may occur via three
mechanisms: (i) interaction with foreign particles repre-
sented by orientation pinning centers [45], (ii) trapping of
orientational defects into the solid due to reduced ratio y of
the rotational and translational diffusion coefficients [31],
and (iii) noncrystallographic branching due to preferred mis-
orientation, represented by a metastable minimum in the ori-
entational contribution to the free energy.

While mechanism (i) is a heterogeneous process (needs
foreign particles), mechanisms (ii) and (iii) are based on in-
ternal fluctuations of the orientational field in the liquid and
can thus be regarded as homogeneous processes.

In the present work, polycrystalline growth forms will be
shown to form via processes (i)—(iii) and their combina-
tions. Impingement of polycrystalline growth forms will be
studied for combinations of modes (ii) and (iii) with homo-
geneous primary nucleation.

C. Materials and simulation parameters

For specificity, we employ the well-studied, ideal solution
phase diagram of the Ni-Cu alloy (for relevant properties see
Table 1.). This choice is not particularly restrictive, as it is
formally equivalent to a pure material [52], where thermal
diffusion replaces solute diffusion as the dominant transport
mechanism. Moreover, the model is no way restricted to met-
als as our application to polymer materials below demon-
strates. Unless stated otherwise, we fix the temperature to be
1574 K, as in previous studies. The orientation dependence
of the molecular attachment kinetics is modeled via an an-
isotropic phase field mobility m (%, 6) (see Sec. I A 1). The
fiberlike crystallites forming in many of the polymeric matter
imply a twofold symmetry (k=2) and a large kinetic aniso-
tropy, which was chosen as §,=0.995. A similar anisotropy
function has been used for the interfacial free energy y=1,.
Crystal growth is sensitive to both kinetic and interfacial free
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energy anisotropies, where increasing either yields sharper
needle crystal morphologies.

Our calculations were performed with supersaturations S
in the range of 0.75<S=(c;—c)/(c,—cg)<1.2, where ¢,
=0.466 219, ¢g=0.399 112, and c are the concentrations at
the liquidus, solidus, and the initial homogeneous liquid mix-
ture, respectively.

Since the physical thickness of the interface is in the na-
nometer range and the typical solidification structures are far
larger (um to mm), a full simulation of polycrystalline so-
lidification from nucleation to particle impingement cannot
be performed even with the fastest of the present supercom-
puters. Since we seek here a qualitative understanding, fol-
lowing other authors [53,54], the interface thickness has
been increased by a factor of 20.8 and the interface free
energy has been divided by 6, while the diffusion coefficient
has been increased by a factor of 100. This allows us to
follow the life of crystallites from birth to impingement on
each other. The dimensionless time and spatial steps were
Ar=475X10° and Ax=625X%1073, &=2.1X10"*cm,
&/Eé=Ax, and D;=107 cm?/s. Unless stated otherwise, di-
mensionless mobilities of m4,=1.0, mg,;=360, and m,,=0
were applied, while D;=0 was taken in the solid. Gaussian
white noises of amplitudes 0.0025, 0.001 25, and 0.0375
were used for the three fields ¢, c, and 6, respectively, except
in the nucleation runs, where the phase field noise was en-
hanced to 0.0125 to speed up the process. Exceptions are the
simulations shown in Sec. III D, where due to the different
mobility values, different noise amplitudes have been used.

III. RESULTS
A. Growth of spherulites

First, we explore the fundamental question “how can a
crystal grow as a sphere?” Theoretically, one can grow a
“ball” with growth kinetics consistent with simple diffusion
(i.e., the radius R of the crystal increases as "> with time) at
low driving forces (supersaturations). For such a shape, the
solute rejected from the growing crystal is incorporated into
a boundary layer that extends far into the liquid. However,
this situation is essentially never observed in real systems,
except as a transient.

At larger driving forces, where the system is far from
equilibrium, the liquid-solid interface becomes unstable (the
Mullins-Sekerka instability [64]) and the crystallization pat-
tern breaks up into a fingered structure commonly termed
“seaweed” [Fig. 4(a)]. The length scale of the fingers is de-
termined by a competition between diffusion and the surface
energy [64]. If there is sufficient anisotropy, then the growth
form leads to “symmetric” dendritic growth [Fig. 4(b)].
From a mathematical perspective, this instability is a conse-
quence of the nonlinear contributions to the equations of
motion, which convert the spreading of the crystallization
pattern from a diffusive (R~ ") to wavelike (R~ 1) propa-
gation. Physically, this dramatic increase in front speed re-
sults from a drastic reduction in distance that the solute re-
jected by the interface must diffuse, because the liquid
channels between the fingers act as a local solute sink. The
highly enriched liquid is thus incorporated (trapped) into the
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TABLE 1. Physical properties of Cu and Ni.

Cu (i=B) Ni (i=A)
T; (K) 1358 1728
L; (J/cm?) 1728 2350
¥ (mJ/m?) 247 315
&; (nm) ~1 ~1
D, (cm?/s) 1073 1073

growing crystal, in accordance with the Keith-Padden picture
of spherulitic growth. Such structures are also obtained in
eutectic crystallization, where the second phase plays an
analogous role to the liquid channels [57,58,65,66].

Spherical crystallization patterns also arise when “solute
trapping” occurs, as manifested by the absence of solute re-
jection at the liquid-solid interface. This phenomenon occurs
when the diffusion length approaches the interface width so
that chemical diffusion and associated morphological insta-
bilities are suppressed. Examples of this basic effect are il-
lustrated in Figs. 4(d) and 4(e), which show single crystals
growing under efficient solute trapping (extreme supersatu-
ration) with and without anisotropy. Such regular single-
crystal patterns are relatively rare.

Most spherical growth patterns observed in nature are
polycrystals. The disorder of these structures emerges via
growth front nucleation, which leads to a randomization of
the local crystallographic orientation while retaining isotropy
at large scales. Regardless of what growth form is dictated
by crystallographic symmetry, these spherical growth forms
occur robustly if the disorder is sufficiently large. In our
view, this is the essence of spherulite formation.

The transition from crystalline to polycrystalline growth
is illustrated in Fig. 4. The supersaturation S is 0.8 or 1.0 in
the upper and lower rows, respectively. The transition be-

b
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tween the symmetric dendrite shown in Fig. 4(b) and the
polycrystalline dendrite in Fig. 4(c) occurs as y is reduced to
model the influence of dynamic heterogeneities [31]. If we
additionally increase the supersaturation, we obtain a highly
branched polycrystalline crystallization pattern with an aver-
age circular shape, as shown in Fig. 4(f). This is a spherulite
of category 1. Note the radially elongated grain structure,
forming due to the self-organized selection of grains that
have their fast growth direction perpendicular to the inter-
face. Polycrystalline spherulites thus form when the driving
force is large and the orientational mobility is small, a situ-
ation characteristic of highly undercooled complex liquids.

Regardless of the imposed crystallographic symmetries
(twofold, fourfold, and sixfold were investigated), polycrys-
talline spherulites form with the same general structure. The
fineness of the needlelike internal structures of the spheru-
lites increases with increasing supersaturation.

Category 1 spherulites have also been seen to form from
transient single-crystal nuclei [67]. Our model captures the
gradual transition from square-shaped single crystals to cir-
cular shape under isothermal conditions. As seen in simula-
tion, square-shaped single crystals nucleate after an initial
incubation period. After exceeding a critical size (that de-
pends on the ratio y of the rotational and translational diffu-
sion coefficients), the growing crystal cannot establish the
same crystallographic orientation along its perimeter. Thus
new grains form by growth front nucleation [31] as described
in the Introduction. This process gradually establishes a cir-
cular perimeter for large particles (Fig. 5).

Many studies of the early stages of spherulite growth,
especially in polymers, indicate that these structures initially
grow as slender threadlike fibers [15,21,30]. These structures
successively branch to form space-filling patterns. We thus
adopt a strong twofold symmetry for the kinetic coefficient,
ensuring fibrillar growth, and include a preferred misorienta-
tion angle of 30° (m=3 and x=0.15). The resulting growth

C

FIG. 4. (Color online). From single crystals to category 1 spherulites. Single-crystal growth forms for (a), (d) isotropic (so=0) and (b),
(e) anisotropic interfacial free energy (so=0.1). (c), (f) Polycrystalline morphologies obtained by repeating the anisotropic calculations while
reducing the orientational mobility by a factor of 0.15. Composition maps (odd columns) and orientation maps (even columns) are shown.
All calculations were performed on a 500X 500 grid (6.6 um X 6.6 um). Computations performed at two supersaturations are presented
(upper row, S=0.8; lower row, S=1.0). The phase field mobility is assumed isotropic. No metastable branching orientation is offered [the
orientational free energy has only a single minimum (x=0)]. Crystallization was initiated by inserting a slightly supercritical fluctuation at
the center of the simulation window without orientational preference. The final crystallographic orientation develops from the fluctuating
local orientation as determined by the governing equation. Since the same random noise was used in all cases, the “yellow” direction
nucleated when single crystals formed. In contrast, several orientations nucleated simultaneously, when reducing the orientational mobility.
(Coloring: Composition maps: dark blue, ¢y ; yellow, cg. Orientation maps: When the fast growth direction is upwards on 30° or 60° to the
left, the grains are colored blue, yellow, or red, respectively, while the intermediate angles are denoted by a continuous transition among
these colors. Owing to the fourfold symmetry, orientations that differ by 90° multiples are equivalent.)
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FIG. 5. (Color online). Isothermal transition between a square-
shaped single crystal and a category 1 spherulite induced by growth
front nucleation, as predicted by the phase field theory. Note the
gradual morphological transition and the lack of a sharp demarca-
tion line between areas solidified with square and spherulitic mor-
phology in the fully grown spherulite. With increasing size, the
shape becomes more isotropic due to the randomizing effect of the
newly formed grains. Note also the self-organized selection of
grains whose maximum growth direction is perpendicular to the
interface, yielding a crosslike pattern of grains with equivalent crys-
tallographic orientations. 4000X 4000 grid. Snapshots taken at
1000, 2500, 5000, and 13 500 dimensionless time steps crespec-
tively, are displayed. Panels (a)-(d) show the central 2000 X 2000
section of the simulation while panel (d) shows the full 4000
X 4000 simulation.] Upper row: composition maps (a grayscale col-
ormap was employed to increase contrast: black, c; white, cg).
Lower row: orientation maps (coloring as in Fig. 4).

morphologies are shown as a function of supersaturation in
Fig. 6. As in Fig. 4, the crystal evolves from a symmetric
single crystal to a spherulite as the supersaturation is in-
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creased. We observe that with increasing driving force there
is an increased branching frequency, yielding more space-
filling patterns. Thus we obtain an array of patterns: fibrils,
sheaves, spherulites with partially formed eyes, and fully de-
veloped category 2 spherulites. We see (second row Fig. 6)
that the “eyes” become increasingly small with increasing
supersaturation, due to the increase in GFN.

The consequence of our imposed misorientation is evident
in the third row of Fig. 6, where there are six preferred ori-
entations, corresponding to the imposed 30° misorientation
preference. This effect is especially pronounced at low su-
persatuations, while at high supersaturations noise-driven
faults randomize the local orientation.

Next, the time evolution of a category 2 spherulite is con-
sidered at a fixed supersaturation (Fig. 7). First, fibrils form
and then secondary fibrils nucleate at the growth front to
form crystal “sheaves.” The diverging ends of these sheaves
subsequently fan out with time to form eyes [Figs. 1(g) and
1(h)], and finally a roughly spherical growth form emerges.
This progression of spherulitic growth is nearly universal in
polymeric materials [15,21].

What characterizes the difference between category 1 and
2 spherulites? For category 1 spherulites, isotropy is
achieved rapidly. In Fig. 4(f), we observe that the initial crys-
tal had a fourfold symmetry, and the high frequency of GFN
and the associated branching lead to isotropic growth. Thus,
disorder disrupts the crystalline anisotropy early in the
growth process, yielding category 1 spherulites. In Fig. 7 the
initial growth is fibrillar, in contrast with Fig. 4, and it takes
much longer, at the same level of supersaturation (and con-
sequent GFN), for this randomization to occur. The occur-
rence of category 2 spherulites is directly related to the

=

FIG. 6. (Color online). Polycrystalline morphologies formed by noncrystallographic branching with a misfit of 30°. The kinetic coeffi-
cient has a twofold symmetry and a large, 99.5%, anisotropy, expected for polymeric substances. Simulations were performed on a 500
X500 grid (6.6 wm X 6.6 wm). Upper row: composition map (dark blue, ¢ ; yellow, cg). Central row: grain boundary map [gray scale in
solid (crystal) shows the local orientational free energy density f,;]. Lower row: orientation map. (The coloring of the orientation map is an
adaptation of the scheme shown in previous figures for twofold symmetry: When the fast growth direction is upwards on 60° or 120° to the
left, the grains are colored red, blue, or yellow, respectively, while the intermediate angles are denoted by a continuous transition among
these colors. Owing to twofold symmetry, orientations that differ by 180° multiples are equivalent.) Unless noise intervenes, six different
orientations are allowed, including the orientation of the initial single-crystal nucleus, which was set common for all simulations 30°
off-horizontal direction (yellow). In the present color code, yellow, gray, blue, purple, red, and orange stand for them. In order to make the
arms better discernible, in the orientation map, the liquid (which has random orientation, pixel by pixel) has been colored black. The
supersaturation varies from left to right as §=0.75, 0.85, 0.90, 0.95, 1.00, and 1.10. Note the chain of transitions that links the needle crystal
forming at low supersaturation, to “axialites,” crystal “sheaves,” and eventually to the spherulites (with and without “eyes” on the two sides
of the nucleus).

011605-9



GRANASY et al.

PHYSICAL REVIEW E 72, 011605 (2005)

FIG. 7. (Color online). The birth of a category 2 spherulite at S=1.0, in the phase field theory. Time increases from left to right.
(Snapshots taken at 4.2, 8.4, 12.6, 21, 33.5 us after nucleation are shown. The dimensionless time used in the calculations has been
transformed to real time using the diffusion coefficient of liquid Ni—Cu: Dy, =107 cm?/s. For other diffusion coefficients D, the times
presented here have to be multiplied by Dy;c,/D.) Upper row: composition map. Lower row: orientation map. Coloring and other conditions

are as for fifth column in Fig. 6.

prevalence of early-stage fiber-type growth in comparison
with the branched growth. In addition, as we increase the
driving force, the time at which the growth becomes isotro-
pic on average decreases and the structural differences be-
tween category 1 and 2 spherulites diminish.

We wish to specify in which systems these growth pat-
terns are prevalent. Category 1 spherulites are a normal mode
of growth in metallic and mineral systems, where fibrous
growth is relatively rare. On the other hand, category 2
spherulites are ubiquitous in polymeric systems. In such flu-
ids, high supercoolings are readily attained due to their com-
plex molecular structure, and the fiber growth habit is char-
acteristic of the chain-folding mechanism by which polymers
crystallize [12-21,68-70].

Category 1 and 2 spherulites may form under the same
experimental conditions. How can this be understood? The
early stage of growth strongly influences the late-stage mor-
phology of the spherulite. Under circumstances where the
initial growth form is perturbed by fluctuations, an admixture
of category 1 and 2 spherulites is obtained. For example,
simultaneous nucleation of several orientations within the
same nuclei should generally yield category 1 spherulites,
but such events may be rare, and so the structures will coex-
ist with category 2 spherulites. Such multiorientation nucle-
ation events have been found in experiments on silica em-
bedded silver particles [71] and by atomistic simulations for
simple liquids [72]. Multiple nucleation events have been
observed in atomic force microscopy measurements of poly-
mer spherulite formations in thin films [73-75].

B. Transformation Kinetics

In the growth of compact space-filling spherulites chemi-
cal or thermal diffusion plays a negligible role. Under these
conditions, the time evolution of the extent of crystallization
X follows the Johnson-Mehl-Avrami-Kolmogorov (JMAK)
scaling

X=1-exp{-[(t-1)/7)}, (3.1)

where £, is an incubation time due to the relaxation of the
athermal fluctuation spectrum, 7 is a time constant related to
the nucleation and growth rates, and p=1+d is the Kolmog-

orov exponent, while d is the number of dimensions [76].
This relationship is exact if (i) the system is infinite, (ii) the
nucleation rate is spatially homogeneous, and (iii) either a
common time-dependent growth rate applies or anisotropi-
cally growing convex particles are aligned in parallel [for
derivation of Eq. (3.1) by the time cone method, see Refs.
[77,78]. For constant nucleation and growth rates in an infi-
nite 2D system p=3 applies. We investigated the transforma-
tion kinetics for noise-induced nucleation under the condi-
tions shown in Fig. 4(f) for a relatively large system (5000
X 5000 grid). To avoid the unnatural starting transient
emerging from noiseless initial conditions (constant phase
and concentration fields), first we heat-treated the system at
1595 K (above the liquidus curve) for 10 000 time steps;
then, we quenched it to 1574 K. The results are shown in
Fig. 8. Fitting Eq. (3.1) to the simulation data between
0.01 <X<0.95 (where the data are the least noisy), we find
p=3.04+0.02 (and 7=0.0106+0.000 05, 1y
=0.00178+0.000 05), which is reasonably close to the p=3,
expected for such a transition [76]. To show the scattering of
the p values, we calculated p from the actual X(z) values
using the corrected time -7, and the time constant 7 (lowest
panel in Fig. 8). The scattering of p is large at early (X
<1) and late stages (X=1), where the scattering of X is
amplified by the JMAK expression.

C. Multistep heat treatments

There is a great deal of interest in how temporal variations
in processing conditions (temperature, pressure, etc.) influ-
ence spherulitic growth morphology. Multistage heat treat-
ments on polymeric substances have demonstrated that that
both the local growth morphology and growth rate depend on
the temperature, but are independent of previous thermal his-
tory [1,10,67]. For example, cycling between two tempera-
tures reversibly switches between faceted and spherulitic
growth morphologies both in experiment [1,10] and simula-
tion [Figs. 9(a)-9(c)]. The predominance of either growth
morphology depends on the cycling time, and complex pat-
terns are generated in this fashion. For example, following
experiment [67], we can simulate either a direct quench to
the temperature of spherulitic solidification from above the
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FIG. 8. (Color online). Nucleation and growth of polycrystalline
spherulites in the phase field theory. (1000X 1000 section of a
simulation on a 5000 5000 grid). Upper row: left concentration
map, right orientation map. Center: transformed fraction vs dimen-
sionless time (dashed line), JMAK curve with the best-fit param-
eters (solid line). Bottom: Kolmogorov exponent as a function of
crystalline fraction. The dash-dotted line shows the value expected
for constant nucleation and growth rates in two dimensions (p=3).

melting point or instead simulate a deeper quench followed
by heating to the same final temperature. As shown in Figs.
9(d) and 9(e) these different histories yield much the same
late stage growth form, but a larger number of spherulites in
the latter deep quench case (due to enhanced nucleation at
lower temperatures). Finally, other experiments [67] show
that spherulitic overgrowth occurs on square-shaped crystals
grown at small undercoolings, while, simultaneously, normal
spherulites fill the remaining space. This behavior is recov-
ered by our phase field simulations [Figs. 9(f)-9(h)]. The
ability of this theory to reproduce such complex sequences
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suggests that our field theory contains the essential (coarse-
grained) physics necessary to describe a broad range of real
materials.

D. Morphological variability

We now return to the wide range of spherulitic crystalli-
zation patterns shown in Fig. 1. Can the current model ex-
plain this variability? Figure 10 shows a selection of simula-
tions that bear resemblance to the morphologies displayed in
Fig. 1. In addition to the category 1 and 2 spherulites de-
scribed above, we observe structures ranging from spiky and
arboresque spherulites to “quadrites” [15,16] exhibiting a
crosshatching fine structure [see Fig. 1(d)] to undulating
branched patterns. These simulations differ only in the driv-
ing force, anisotropies, branching angle, and mobilities, in-
dicating that the essential features of a broad variety of
spherulitic morphologies can be captured, using only a few
model parameters (Table II). Since the model parameters we
use are unavailable for most of these substances, we have
chosen them so that the particular morphology is reproduced.
Microscopic studies and atomistic simulations, however,
may give clues how these parameters should be chosen. (For
example, in the case of quadrites, the branching angle was
known from microscopic studies [16].) It is expected that, as
in the case of metallic dendrites [47], a parameter-free ap-
proach may become feasible in the future.

We note, finally, that while the anisotropy for the interfa-
cial free energy (sp) in some of these calculations signifi-
cantly exceeds the missing orientation threshold (1/3, for
twofold symmetry), we do not expect the results to be quali-
tatively different if this issue is addressed through a convexi-
fication approach such as that of Eggleston ef al. [79].

E. Spherulites: Duality of static and dynamic heterogeneities

In a recent paper [31], we have shown that particulate
additives and quenched-in orientational disorder may lead to
similar growth morphologies and morphological transitions.
Examples of the analogous roles played by static and dy-
namic heterogeneities (foreign particles and quenched-in ori-
entational defects) in spherulitic growth are displayed in Fig.
11: The conversion of a single-crystal spherulite into poly-
crystalline ones and the transition between a needle-shape
single crystal and a densely branched spherulitic morphol-
ogy, termed loosely as “fungus,” are shown. The foreign par-
ticles are represented by orientation pinning centers. These
examples show that the duality outlined in Ref. [31] is valid
also for the spherulitic structures. Whether this remains so
during the multistage heat treatments is uncertain and needs
further investigation.

IV. DISCUSSION

Spherulite formation arises from a variety of mechanisms
that lead to nucleation at the crystallization growth front.
Heterogeneities, either static (dirt, phase separation, molecu-
lar structure heterogeneity in macromolecules such as tactic-
ity and mass polydispersity, etc.) or those intrinsic to super-
cooled liquids, result in growth front nucleation of new
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7

FIG. 9. (Color online). Multistage heat treatments involving spherulitic solidification, as predicted by the phase field theory: (a)—(c)
Transition between a faceted crystal habit [(a) nucleated at 1575 K] and (b) a spherulitic array after the sample is quenched to and
crystallized isothermally at 1571 K (M|, is reduced by a factor of 20) and back to faceted growth (c) after returning to 1575 K. (Compared
to polymers, this system requires a relatively small temperature cycling range due to the ideal solution behavior of the Ni—Cu system.) Note
the formation of new crystal grains due to GEN during the low-temperature stage of the cycling. The computations were performed with 5%
anisotropy of the interface free energy (of sixfold symmetry) and 85% anisotropy of the phase field mobility (of twofold symmetry) on a
1000 X 1000 grid. In (d) and (e) we show two thermal histories with the same final temperature. In (d) spherulitic solidification occurs at
1574 K after direct quenching from above the melting point (1595 K). In (e) spherulitic solidification occurs at 1574 K, after deep quenching
first to 1350 K. Note the similarity of the growth forms and the enhanced number of crystallites in the latter case. The computations were
performed with 10% anisotropy of the interface free energy (of fourfold symmetry) on a 500X 500 grid. In (f)—(h) spherulitic overgrowth
occurs on preexisting square crystals with parallel nucleation and growth of spherulites. Square crystals were formed at 1574 K isothermally,
then quenched to 1564 K where crystallization completed. The computations were performed with 15% anisotropy of the interface free
energy (of fourfold symmetry) on a 1000 X 1000 grid. Left: composition maps (coloring: blue, ¢ ; yellow, cg, except the last row, where a
grayscale color map was employed to increase contrast: black, cp; white, ¢g). Right: orientation maps (coloring as in Figs. 6 and 7 of the

paper).

grains and associated branching of the growing crystal. We
have modeled the effects of these dynamic heterogeneities by
appropriately reducing y, the ratio of the rotational to trans-
lational mobilities. In this paper, we added to the model a
third mode of growth front nucleation, “noncrystallographic
branching” with fixed misorientation, a phenomenon that is
consistent with morphologies observed in polymeric systems
[1]. Ultimately, all these modes of growth front nucleation

(otherwise termed “symphathetic” [24], “double” [25-28], or
“secondary” nucleation [68—70]) randomize the local crystal-
lographic orientation, leading at long times to structures hav-
ing an isotropic (spherical and circular in 3D and 2D, respec-
tively) average large-scale structure. The variety of
spherulites derives from the variability in the crystallo-
graphic symmetries of the parent crystal, the rate at which
thermal fluctuations cause the crystallization front to branch,

a b

N
7N

FIG. 10. (Color online). Spherulitic morphologies as predicted by the phase field theory. The contrast of the composition maps was
changed to enhance the visibility of the fine structure. Compare the predicted morphologies to the patterns in Fig. 1. The kinetic or interfacial
free energy anisotropies have a twofold symmetry in all cases; other conditions for these simulations are presented in Table II. In most cases
noncrystallographic branching with fixed misfit is the dominant GFN mechanism (x> 0). Exceptions are (b), (g), and (i), where the trapping
of orientational defects into the solid leads to the nucleation of grains with new orientations.
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TABLE II. Conditions for simulations shown in Fig. 10.

Panel S K & X @ Mg my, N
(a) 1.0 0.335 0.75 0.1 30° 1.0 144 1000
(b) 0.75 0.5 0.5 0.0 — 0.9 108 2000
(c) 0.95 0 0.995 0.275 15° 1.0 360 1000
(d) 0.9 0 0.995 0.15 90° 1.0 360 2000
(e) 0.9 0.75 0.995 0.15 90° 1.0 1440 500
() 1.1 0 0.995 0.2 30° 1.0 360 1000
(2) 0.9 0.5 0 0.0 — 0.9 360 2000
(h) 1.1 0.5 0 0.2 15° 1.0 360 500
() 0.9 0.5 0 0.0 — 0.8 180 1000
0] 0.875 0 0.995 0.2 15° 1.0 18 3000

constraints on the orientation of newly formed grains, and V. SUMMARY

ordinary side-branching initiating from the growing dendritic
tips. This competition between these basic processes leads to
a rich variety of spherulitic patterns that are captured by our
phase field modeling.

It is remarkable that our coarse-grained model yields such
morphological diversity, given its reliance on such a small
set of thermodynamic and transport properties. We have sim-
ply assumed the existence of a first-order phase transition
coupled to chemical diffusion and included thermal fluctua-
tions and a description of the underlying crystalline anisotro-
pies. The molecular-scale details are captured by coarse-
grained physical properties, such as the surface free energy
anisotropy, diffusivities, etc. Despite the minimal nature of
the model, we are able to reproduce much of diversity and
structural complexity of spherulitic growth forms.

We have presented a phase field theory that incorporates
diffusional instabilities and three modes for the nucleation of
new grains at the growth front: (i) due to foreign particles,
(ii) trapping of orientational disorder due to reduced rota-
tional diffusional coefficient, and (iii) noncrystallographic
branching. We have demonstrated that our model (1) gives
rise to category 1 and 2 spherulites, (2) yields the proper
transformation  kinetics, (3) reproduces morphological

changes seen in multistage heat treatments, and (4) captures
spherulite morphological variability with only a limited num-
ber of model parameters.

Extension of the treatment to other complex polycrystal-
line morphologies is underway.

FIG. 11. (Color online). Spherulitic structures and the duality of static and dynamic heterogeneities in the phase field theory: Block on the
left: single-crystal spherulite (left column) and polycrystalline spherulites produced by introducing foreign particles (center) and by reducing
the orientational mobility (right), respectively. The orientational mobility is the same for all but the third column, where it has been reduced
by a factor of 4. There are 15 000 five pixels sized foreign orientation pinning centers that have been introduced into the simulations shown
in the second column. The calculations were performed on a 1000 X 1000 grid (13.2 wm X 13.2 um). The interface free energy is assumed
isotropic while the anisotropy of the phase field mobility is 5%. Block on the right: single-crystal needle (left column) and polycrystalline
spherulitic “fungi” produced by introducing foreign particles (center) or by reducing the orientational mobility (right). The orientational
mobility is the same for all but the third column, where it has been reduced by a factor of 5. N=250 000 single-pixel-sized orientation
pinning centers have been introduced into the simulation shown in the second column. The calculations were performed on a 2000
X 2000 grid (26.4 um X 26.4 um). The interface free energy is assumed isotropic while the anisotropy of the phase field mobility is 99.5%

and has a twofold symmetry (k=2). Coloring as for Fig. 8.
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