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We derive a microscopic equation of motion for the dynamical orientational correlators of molecular crys-
tals. Our approach is based upon mode coupling theory. Compared to liquids we find four main differences: �i�
the memory kernel contains Umklapp processes if the total momentum of two orientational modes is outside
the first Brillouin zone, �ii� besides the static two-molecule orientational correlators one also needs the static
one-molecule orientational density as an input, where the latter is nontrivial due to the crystal’s anisotropy, �iii�
the static orientational current density correlator does contribute an anisotropic, inertia-independent part to the
memory kernel, and �iv� if the molecules are assumed to be fixed on a rigid lattice, the tensorial orientational
correlators and the memory kernel have vanishing l,l�=0 components, due to the absence of translational
motion. The resulting mode coupling equations are solved for hard ellipsoids of revolution on a rigid sc lattice.
Using the static orientational correlators from Percus-Yevick theory we find an ideal glass transition generated
due to precursors of orientational order which depend on X0 and �, the aspect ratio and packing fraction of the
ellipsoids. The glass formation of oblate ellipsoids is enhanced compared to that for prolate ones. For oblate
ellipsoids with X0�0.7 and prolate ellipsoids with X0�4, the critical diagonal nonergodicity parameters in
reciprocal space exhibit more or less sharp maxima at the zone center with very small values elsewhere, while
for prolate ellipsoids with 2�X0�2.5 we have maxima at the zone edge. The off-diagonal nonergodicity
parameters are not restricted to positive values and show similar behavior. For 0.7�X0�2, no glass transition
is found because of too small static orientational correlators. In the glass phase, the nonergodicity parameters
show a much more pronounced q dependence.
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I. INTRODUCTION

The experimental and theoretical investigation of systems
with self-generated disorder has mainly been devoted to
simple and molecular liquids �1,2�. In their supercooled state
at low temperatures or high densities, liquids exhibit non-
trivial dynamics, often called glassy dynamics. Decreasing
the temperature T or increasing the number density n may
result in a glass transition. The physical origin of glassy dy-
namics and the glass transition is the formation of a cage by
the particles. For not too low temperatures and not too high
densities, the cage’s lifetime is finite, i.e., a particle can es-
cape with a finite probability. However, if the lifetime di-
verges, e.g., at a critical temperature, the particles remain
localized in their cages. In that case an ideal glass transition
occurs at that temperature.

There is no general agreement about the theoretical de-
scription of the glass transition. From a practical point of
view one often considers the so-called calorimetric glass
transition temperature Tg as the temperature at which a su-
percooled liquid becomes a structural glass. But Tg depends
on the cooling process. Therefore, it is not well defined. Be-
sides Tg, there exist two better defined characteristic tem-
peratures, which are Tc, the mode coupling transition tem-
perature, and TK, the Kauzmann temperature. At TK the
excess entropy of a supercooled liquid with respect to its
crystalline phase disappears. This is a very old concept

which only recently has been put onto a microscopic basis by
the replica theory for structural glasses �see �3� and refer-
ences therein�. The existence of a purely dynamical glass
transition at a critical temperature Tc has been suggested
about two decades ago �4�. This approach is based on mode
coupling theory �MCT�. MCT describes the cage effect �as
explained above� in a self-consistent way. At Tc a transition
from an ergodic to a nonergodic phase occurs. Close to Tc
the relaxational dynamics of, e.g., the density fluctuations,
exhibits two time scaling laws with relaxation times which
diverge at Tc. For more details and comparison of the MCT
predictions with experimental and simulational results the
reader is referred to Refs. �5–9�. A review of MCT, replica
theory of structural glasses and a selection of phenomeno-
logical theories is given in Ref. �10�.

Glassy behavior of systems with self-generated disorder is
not restricted to liquids. There exist so-called molecular crys-
tals �11� where molecules are located at sites of a periodic
lattice. At higher temperatures their orientational degrees of
freedom �ODOF� may be dynamically disordered, i.e., er-
godic. This phase is called the plastically crystalline phase
�12�. Decreasing temperature lowers the lattice constants
which in turn leads to an increase of the steric hindrance
between the ODOF. This may result in the formation of an
“orientational” cage in which the orientation of a molecule is
captured on a certain time scale, quite similar to liquids. If
this time scale diverges the plastic crystal undergoes an ideal
orientational glass transition. The corresponding phase is
called glassy crystal. That such a glass transition really oc-
curs has been proven experimentally several decades ago.
First systematic experimental indication for the formation of
glassy crystals has been given in 1974 for several molecular

*Electronic address: mricker@uni-mainz.de
†Electronic address: rschill@uni-mainz.de

PHYSICAL REVIEW E 72, 011508 �2005�

1539-3755/2005/72�1�/011508�16�/$23.00 ©2005 The American Physical Society011508-1

http://dx.doi.org/10.1103/PhysRevE.72.011508


crystals �13�. Since then a lot of glassy crystals were found.
Without claiming completeness the most intensively studied
molecular crystals are cyanoadamantane �14–17�, chlorada-
mantane �18� and ethanol �19,20�. Ethanol has the big advan-
tage that it can form either a supercooled liquid, a structural
glass, a plastic crystal, a glassy crystal and an orientationally
ordered crystal within a small temperature interval around
100 K. Therefore, it has been investigated experimentally to
explore the role of translational degrees of freedom �TDOF�
and ODOF for glassy behavior �20�. These experiments have
shown that the ODOF of molecular crystals exhibit quite
similar glassy behavior than conventional supercooled liq-
uids. Additionally, comparing different molecular crystals
with each other, similar glassy behavior was found �15�.
These similarities also include dynamical heterogeneities
�21�. The largest deviations of molecular crystals from super-
cooled liquids were observed in dielectric spectroscopy. The
former exhibit a rather weak excess wing, or even no such
wing, in contrast to supercooled liquids �15�.

An interesting model for molecular crystals has been stud-
ied some years ago. The molecules were approximated by
infinitely thin hard rods with length L which were either
fixed with their centers on a fcc lattice �22� or with their end
points on a sc lattice �23�. Molecular dynamics �MD� �22�
and Monte Carlo �MC� simulations �23�, respectively, have
shown the existence of glasslike dynamics. Particularly a
critical length lc=L /a �a is the lattice constant� has been
determined at which an orientational glass transition occurs
�22,23�. However, this transition is not sharp, in close anal-
ogy to supercooled liquids. The system of infinitely thin hard
rods is particularly interesting since there are no static orien-
tational correlations. Consequently, glassy behavior does not
originate from growing static correlations, but results from
entanglement which leads to a “dynamical cage.”

As far as we know there is no microscopic theory which
describes glassy behavior of molecular crystals with self-
generated disorder. For mixed crystals �24�, i.e., crystals with
quenched disorder, a microscopic theory for the glass transi-
tion has been worked out �25�. This theory is based on MCT
and takes into account ODOF and TDOF, i.e., lattice dis-
placements, as well as translation-rotation �26� coupling. The
displacements are crucial, since the statistical substitution,
of, e.g., CN molecules in KCN by Br atoms, leading to the
well-known mixed crystal compound �KBr�1−x�KCN�x �24�,
generates random displacements. Due to the translation-
rotation coupling, these random displacements induce ran-
dom fields acting on the ODOF. MCT was also applied to
spin glass models, where the coupling constants between
spins are at random �27�. Unfortunately, the quality of MCT
predictions for mixed crystals and spin glasses has not really
been tested, in contrast to supercooled liquids �5–9�.

Since MCT has been very successful �5–9� to describe
glassy dynamics of supercooled liquids, and since it has also
been applied to mixed crystals and spin glasses, it is natural
to derive MCT equations for plastic crystals, as well. This
will be done in Sec. II. The calculation of the glass transition
line and the critical nonergodicity parameters from the MCT
equations will be presented in Sec. III for hard ellipsoids on
a sc lattice. The final section contains a discussion of the
results and some conclusions. More technical details are put
into four Appendices.

II. THEORETICAL FRAMEWORK

In this section we will describe how MCT equations can
be derived for molecular crystals. The strategy is quite simi-
lar to that for simple liquids �5,6�, molecular liquids of linear
molecules �28,29� and arbitrary molecules �30�. The intro-
duction of the microscopic orientational density, the corre-
sponding current density and their time-dependent correla-
tors will be described in Sec. II A. Then, in Sec. II B, we
apply the Mori-Zwanzig projection formalism �31,32� to de-
rive an equation of motion for the time-dependent orienta-
tional correlators. Following MCT for liquids, the memory
kernel is then approximated by a bilinear superposition of the
time-dependent orientational correlators.

A. Microscopic orientational densities and their correlators

We consider a Bravais lattice with N lattice sites. Since
the experimental and simulational results for supercooled
molecular crystals �14–21� have demonstrated that glassy be-
havior can occur due to steric hindrance of the ODOF, we
restrict ourselves to a rigid lattice, i.e., we neglect the
translation-rotation coupling. Then, the increase of steric hin-
drance by decreasing temperature can be accounted for by
either a variation of the lattice constant or equivalently by an
increase of the size of the molecules. At each lattice site we
fix a molecule. The natural way is to fix its center of mass.
All molecules are assumed to be identical and rigid, as well.
We will consider linear molecules only. Generalization to
arbitrary molecules can be performed like for molecular liq-
uids �30�.

It is also obvious that the ODOF are best described in a
molecule-fixed frame with its origin coinciding with the lat-
tice site. In principle one could choose any other reference
point �29�. But this would artificially introduce TDOF, be-
sides the ODOF. Using the former choice, the ODOF of the
nth molecule at the site with lattice vector xn is given by the
angles �n= ��n ,�n�. The third angle 	n with respect to the
symmetry axis is irrelevant for the glassy dynamics. The
moment of inertia for the axes perpendicular to the symmetry
axis is denoted by I. The interaction between the molecules
is given by V��1 ,… ,�N� and the classical dynamics follows
from the classical Hamiltonian

H���n,�n�,�p�n
,p�n

�� =
1

2I
�
n=1

N �p�n

2 +
p�n

2

sin2 �n
	 + V���n,�n�� ,

�1�

where p�n
and p�n

are the momenta conjugate to �n and �n,
respectively.

Next we introduce the microscopic, local orientational
density


n��,t� = �„�
�n�t�… , �2�

with ��� 
���= �sin ��−1���−������−��� and �n�t� the
classical trajectory of the nth molecule. The one-molecule
orientational density 
�1���� is given by
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�1���� = ��„�
�n�t�…� , �3�

which is independent on t and, for identical molecules, also
on n. ��·�� denotes canonical averaging with respect to initial
conditions in the 4N-dimensional phase space.

Taking the time derivative of 
n�� , t� leads to the conti-
nuity equation.


̇n��,t� = iL̂�n
· jn��,t� . �4�

Here, L̂�n
is the angular momentum operator acting on �n,

and

jn��,t� = �n�t��„�
�n�t�… 
 �n�t�
n��,t� �5�

is the corresponding orientational current density, which in-
volves the angular velocity �n�t�. We also introduce the
“longitudinal” orientational current density

jn��,t� = L̂�n
· jn��,t� . �6�

With these quantities we can define the time-dependent ori-
entational correlators:

Gnn���,��,t� = ��
n��,t��
n������ �7�

of the local orientational density fluctuations

�
n��,t� = 
n��,t� − �
n��,t�� = 
n��,t� − 
�1���� , �8�

as well as

Jnn���,��,t� = 4��jn��,t�jn������ . �9�

Here, �
n���
�
n�� ,0� and jn���
 jn�� ,0�.
Similar to molecular liquids �28,29�, we expand the

orientation-dependent functions with respect to spherical har-
monics Y
���, 
= �lm�, as already done for the static corr-
elators and for 
��� �33–35,51�. This allows us to represent
any functions fn�� , t� and Fnn��� ,�� , t� by their 
 and Fou-
rier transforms. The corresponding transform of
Gnn��� ,�� , t� leads to the intermediate scattering functions

S

��q,t� =
4�

N
��



*�q,t��

��q�� �10�

and the corresponding current density correlators

J

��q,t� =
4�

N
�j


*�q,t�j
��q�� . �11�

These correlators form matrices S�q , t�= �S

��q , t��, etc. The
wave vectors q are restricted to the first Brillouin zone
�1BZ�, due to the lattice translational invariance. The corr-
elators S

��q , t� form a complete set. For example the neu-
tron scattering function Sneutron�q , t� can be expressed by
�S

��q , t�� using the scattering lengths of the molecular sites
�36�.

Note that the correlators �10� and �11� vanish for l=0
and/or l�=0, due to the absence of TDOF. The symmetries of
the orientational correlators discussed in Ref. �33� also hold
for the time dependent quantities. They will be applied to
reduce the number of independent correlators.

B. Mode coupling theory

The goal of this subsection is to derive an approximate
equation of motion for the intermediate scattering functions
S

��q , t� of molecular crystals. Due to the rigid lattice, only
ODOF are involved. In case that the steric hindrance is large
enough the orientational density fluctuations �

�q , t� con-
tain slow parts. Choosing �

�q , t� and the “longitudinal”
current density j
�q , t� as slow variables, we can apply the
Mori-Zwanzig formalism �31,32� to derive an equation of
motion for S�q , t�:

S̈�q,t� + J S−1�q�S�q,t� + �
0

t

dt�M�q,t − t��J−1Ṡ�q,t�� = 0 .

�12�

The notation −1 means the inverse of the l,l��0 block of the
respective matrix, i.e., the inverse with respect to the sub-
space of nonconstant functions in angular space. This is be-
cause the first rows and columns of these matrices vanish.
The only exception from this rule is d−1 in Appendix D. The
prefactor JS−1�q� in Eq. �12� is related to

�2�q� = S−1/2�q�JS−1/2�q� , �13�

which is the square of the symmetric microscopic frequency
matrix ��

��q��. It depends on the static orientational corr-
elators S�q� and on J
�J

��q��, which is independent of q
�see Appendix A�. The matrix elements of the memory ker-
nel M�q , t� are given by

M

��q,t� =
4�

N
�„Lj
�q�…*
Qe−iQLQtQ
Lj
��q�� , �14�

the correlations of the fluctuating forces Q
Lj
�q��. L is the
Liouville operator and Q=1− P
− Pj �see Eq. �B3�� projects
perpendicular to the slow variables �

�q� and j
�q�.

In a final step we perform the mode coupling approxima-
tion for the slow part m�q , t� of J−1M�q , t�J−1, which enters
Eq. �23�, yielding �see Appendices B–D�

m

��q,t� �
1

2N
�
Q

�
q1,q2
�1BZ

� �

1
1�
2
2�

�V�q

�
q1
1
1�;q2
2
2��

�S
1
1�
�q1,t�S
2
2�

�q2,t� . �15�

The vertices are

V�q

�
q1
1
1�;q2
2
2��

=
1

�4��2 �

3
3�

��J̃−1�

3��

�

�v�q
3
q1
1;q2
2;
��	
� ��


�

�v�q
3�
q1
1�;q2
2�;
��	*
�J̃−1�
3�
�, �16�

where

v�q

q1
1;q2
2;
�� = b�l�l2l�C�l�l2l,m�m2m�c
�
1
�q1�

+ �1 ↔ 2� , �17�
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b�ll�l�� =
1

2
il+l�−l�� �2l + 1��2l� + 1�

2l� + 1
	1/2

�1 + �− 1�l+l�+l��

��l�l + 1��l��l� + 1�C�ll�l�,101� , �18�

and

J̃

� =
I

kT
J

�, �19�

is the inertia and temperature-independent part of J

�.
�q1,q2

� denotes summation such that q1+q2=q+Q, with Q a
reciprocal lattice vector, and �
� indicates summation over
all 
� �00�. C�ll�l� ,mm�m�� are the Clebsch-Gordon coeffi-
cients and c

��q� the direct correlation function matrix ele-
ments.

The result, Eqs. �15�–�19�, has a striking similarity to the
slow rotational part m

�

RR �q , t� of the memory kernel for mo-
lecular liquids �28,29�. This is not surprising. Particularly
��q
 
q1
1 ;q2
2 ;
�� are identical, up to a factor �l�l+1�.
This similarity originates from the factorization of a static
three-point correlator described in Appendix D. It is this ap-
proximation which leads to the rather simple result, Eqs. �16�
and �17�, for the vertices. Of course, taking the static three-
point correlator from a simulation would make this factoriza-
tion approximation unnecessary. However, we do not expect
any qualitative influence using our approximation instead of
the correct simulational result. Such an influence is only to
be expected for systems which interact through three-, four-
… body potentials. Since the molecules are fixed on lattice
sites, such covalent bonds may be less important for molecu-
lar crystals.

There are four main differences with respect to MCT for
molecular liquids. First, the tensorial MCT equations for mo-
lecular liquids are first order integro-differential equations
which cannot be transformed to a second order integro-
differential equation, like Eq. �12�. Second, for molecular
crystals m

��q , t� contains a sum over reciprocal lattice vec-
tors Q. Therefore, the sum over q1,q2 involves umklapp pro-
cesses. Third, due to the rigid lattice, only the l,l��0 matrix
elements are nonzero. Fourth, the static current density cor-
relator J

� in Eq. �15� does not cancel completely, as it does
for a molecular liquid. There remains an anisotropic part

J̃

�, which equals l�l+1��

� for a liquid and is defined in

Eq. �19�. J̃

�, can be related to the 
 transform 


�1� of the

one-molecule orientational density 
�1����, which is needed
as an input �for details, see Appendix A�.

There is no explicit dependence of the kernel m�q , t� on T

and I. On a large time scale we can neglect S̈�q , t� in Eq.
�12�. The remaining equation does not involve any inertia
effect, i.e., the glassy dynamics depends not on I, except for
fixing the time scale.

The vertices V�q

� 
q1
1
1� ;q2
2
2�� depend on J̃ and
the direct correlation function c�q� only, where c�q� is re-
lated to the static orientational correlators S�q� by the
Ornstein-Zernike �OZ� equation for molecular crystals �33�:

S�q� = �D−1 −
1

4�
c�q�	−1

. �20�

This equation is similar to that for molecular liquids
�28,37,52�, with exception of the appearance of D. D

�
is the 
 transform of D�� ,���=4��
�1������� 
���
−
�1����
�1������ and can be expressed by the 
 transform
of 
�1����, too.

This discussion makes clear that the closed set of MCT
equations �12�–�19� requires two different static input quan-

tities, the one-molecule quantities D

�, J̃

� which can be
expressed by �



�1�� and the two-molecule correlators S

��q�,
or c

��q�. Note also that we have neglected contributions to
m

��q , t� coming from the fast part of �
�q , t� which leads
to a damping term in Eq. �12�. On a long time scale this has
no influence.

Here we restrict ourselves to the investigation of the ori-
entational glass transition itself. For this we introduce the
nonergodicity parameters �NEP, not normalized�

F

��q� = lim
t→�

S

��q,t� . �21�

In the limit t→�, Eq. �12� leads to

S−1�q�F�q��S�q� − F�q��−1 = F�F�q�� , �22�

where

F�F�q�� = lim
t→�

m�q,t� . �23�

Equations �22� and �23� are matrix equations for l,l��0,
since the first columns and rows of the involved matrices
vanish, due to the rigid lattice.

III. RESULTS FOR HARD ELLIPSOIDS

After having derived equations of motion for the orienta-
tional correlators S

��q , t�, their time dependence could be
calculated numerically. Although the mathematical structure
of the MCT equations �12� and �15�–�19� is identical to that
of more-component liquids, the numerical solution is ham-
pered due to the anisotropy of the lattice, in contrast to liq-
uids. Because of this anisotropy the correlators also depend
on the direction of q. For liquids it has turned out that the
restriction to several hundreds of values for q= 
q
 leads to
rather precise solutions of the MCT equations. We will see
below that we have to choose several thousands of q vectors
within the first Brillouin zone. In addition, in comparison to
molecular liquids, there are more independent correlators for
each pair �l , l��, increasing the number of equations even
more. Consequently, a numerical solution will require either
an improvement of the numerical code �38� usually used for
the numerical solution of the MCT equations and/or further
simplification of S

��q�, e.g., neglecting the dependence on
q / 
q
. Since we want to avoid such type of approximations
we will restrict ourselves to the calculation of the glass tran-
sition point and the corresponding critical nonergodicity pa-
rameters and leave the solution of the time-dependent equa-
tions for the future. Nevertheless, their identical structure to
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that of liquids already ensures the validity of, e.g., the two
time scaling laws �5� for molecular crystals as well.

In order to solve Eq. �22� we have chosen hard ellipsoids
of revolution, fixed with their centers on a sc lattice with
lattice constant equal to one. The symmetry axis of the ellip-
soids has length a and the length of the perpendicular axes is
b. Replacing linear, rigid molecules by hard ellipsoids is
probably not a bad approximation since the steric hindrance
is qualitatively the same. In addition, the choice of hard el-
lipsoids has two advantages: First, we have already calcu-
lated the static orientational correlators S

��q� for l,l��4
within the Percus-Yevick �PY� approximation, and 



�1�

�which yields J̃

� and D

�� for l�8 by MC simulations.
Second, we have recently solved the MCT equations for a
molecular liquid of hard ellipsoids �39� which allows us to
compare the conditions for the appearance of the ideal glass
transition for the ellipsoids on a lattice and in their liquid
phase. This comparison will allow us to estimate the quali-
tative or quantitative role of TDOF for the freezing of the
ODOF. Furthermore, the ellipsoids’ head-tail symmetry leads
to a decomposition of Eq. �12� and therefore of Eq. �22� into
a closed set of equations for S

��q , t� and F

��q�, respec-
tively, for l,l� both even and a set of these quantities for l,l�
both odd. All correlators with l even and l� odd or vice versa
are zero. The set of equations for l,l� both even is closed
because the memory kernel only contains correlators with l
and l� even. This is in contrast to the equations for l,l� odd.
The corresponding memory kernel contains a bilinear cou-
pling of correlators with l,l� even with those where l,l� are
odd. It is easy to prove that

S

�
�s� �t� 
 S

��q,t� , �24�

for l,l� both odd. The “self” correlator S


�
�s� �t� is the 
 trans-

form of Gnn�� ,�� , t�, up to a prefactor. In contrast to this the
“self” correlator with l,l� even is given by

S

�
�s� �t� =

1

N
�

q�1BZ
S

��q,t� . �25�

Similar relations hold for the NEP.
There is a technical disadvantage connected with the hard

body potential between the ellipsoids. The inversion of the
static correlators, occurring, e.g., in the projectors �cf. Eq.
�14� � and vertices �cf. Eq. �16��, needs some caution. Read-
ers interested in this point are referred to Refs. �33,40�. We
stress that the second paper cited in Ref. �33� and Ref. �40�
contain additional technical information, particularly the dis-
cussion of those mathematical problems related to hard core
interactions. However, these details will not be needed in the
following.

The numerical solution of Eqs. �22� and �23� requires a
restriction of the matrices to l,l�� lmax. We have chosen
lmax=4. The q vectors are discretized, i.e., for the � compo-
nent of q we have chosen q�=���2� /M�, ��=−M /2 ,
−M /2+1,… ,0 ,… ,M /2−1 with M =32, which makes a to-
tal of 32768 q vectors. Due to the point symmetry of the
lattice, the number of independent F

��q� can be reduced.
For more details the reader is referred to Refs. �33,40�. The

solution of Eqs. �22� yields the NEP F

��q� and the corre-
sponding normalized quantities f

��q�, where the normal-
ization f

��q�=F

��q��S

�q�S
�
��q��−1/2 has been chosen.
Varying the aspect ratio X0=a /b and the volume fraction �
= �� /6�ab2, we have located the glass transition line, at
which for l,l� both even a nontrivial solution for F

��q�
bifurcates.

This has been done by approaching the glass transition
point from the glass side. Figure 1 shows an example where
F21,21�q=0� is represented as function of a for fixed b. The
fit with a square root, predicted by MCT for a type B tran-
sition �5� allows us to locate the glass transition point ac�b�
for fixed b=0.24 up to a relative deviation better than 10−4.
The NEP F21,21�0� for a=5.857 �see Fig. 10� deviates less
than ten percent from the critical NEP F21,21

c �0�=47 at ac

=5.85688, and no qualitative change is to be expected on
further approach towards ac.

A. Phase diagram

The glass transition line �c�X0� obtained in this way is
shown in Fig. 2. Figure 2 also contains the equilibrium phase
transition line �eq�X0� from MC simulations, and the line
�PY�X0�. Also shown is the curve �extra�X0� where the ex-
trapolated OZ/PY static orientational correlators for X0�4 at
the zone center diverge. �eq�X0� and �PY�X0� were obtained
from the corresponding lines aeq�b� and aPY�b� of Ref. �33�.
Finally, the solid line with the cusp at X0=1 is the location of
all ��X0� at which the rotators start to interact.

At �eq�X0�, an equilibrium phase transition from a �dy-
namically� disordered to an orientationally ordered phase oc-
curs. The line �PY�X0� locates the �X0 ,�� pairs for which the
iterative numerical procedure to solve the OZ/PY equations
becomes unstable. This is associated with some of the
maxima of S�q� becoming very large, giving evidence of a
divergency. Since the X0 dependence of �eq and �PY is quali-
tatively similar, this behavior may indicate an equilibrium
phase transition, as speculated for a liquid of hard ellipsoids
�41�. However, in contrast to the latter, the deviation of

FIG. 1. a dependence of the NEP F21,21�q=0� in the vicinity of
the glass transition point for fixed b=0.24 and different values of a
�squares�. Also shown is the square root fit 47+400�a−5.85688,
leading to the critical values �ac ,F21,21

c �0�� �black dot�. Note the
rather large prefactor of the square root.
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�PY�X0� from �eq�X0� is much larger, especially for prolate
ellipsoids. Using the static correlators from OZ/PY theory as
an input for the calculation of the NEP from Eqs. �22� and
�23� we have found a glass transition for X0�0.7 and 2
�X0�2.5, only. For 0.7�X0�2 and X0�4 the system is
ergodic for all ���PY�X0�, because the static correlators at
the Brillouin zone center and/or edge are too small. Unfor-
tunately, the iterative procedure to solve the OZ/PY equa-
tions for 0.7�X0�2 and X0�4 becomes unstable for �
��PY�X0�. Therefore, we have decided to extrapolate the
static correlators to ���PY�X0�. This extrapolation is guided
by the physical assumption that long range orientational or-
der should occur at the line �extra�X0�. It only works for X0
�4, but not for the gap in between X0�0.7 and X0�2.
Accordingly, the missing glass transition line for 0.7�X0
�2 first of all is based upon the lack of the static input.
Since the ergodic and nonergodic phases are separated by a
critical line of type-B transitions �5,6�, �c�X0� cannot termi-
nate at X0�0.7 or X0�2. There exist two possible scenarios
for �c�X0� within this gap. First, �c�X0� converges to �c�X0

=1� from above and below X0=1, with a possible cusp at
X0=1. Second, �c�X0�→�max�X0

±� for X0→X0
± with 0.7

�X0
−�1 and 1�X0

+�2, where �max�X0� is the maximum
possible volume fraction of an orientationally disordered
configuration for given X0. The second scenario would imply
that there is no glass transition for X0

−�X0�X0
+, i.e., for

ellipsoids which are not sufficiently aspherical.
The nonmonotonous behavior of �PY�X0� for prolate el-

lipsoids with 1�X0�4, which induces a nonmonotonicity of
�c�X0�, seems to be an artifact of the PY approximation, as
our MC results for hard prolate ellipsoids suggest, though the
static orientational correlators from OZ/PY theory are quali-
tatively correct, anyway �33�.

If it is true that the divergence of the PY solutions corre-
sponds to an equilibrium phase transition, this implies that
the ideal glass transition is driven by the growth of some
S

��q� at the zone center or/and edge due to the growth of
the orientational order, as will be seen in the following fig-
ures. This is quite similar to the central peak phenomenon
above the equilibrium transition temperature at structural
phase transitions of first and second order �42�. The central
peak can be interpreted as a quasinonergodic behavior and
has also been described by MCT �43�.

The freezing of the l,l� odd correlators occurs beyond the
l,l� even glass transition line and is treated in Sec. III D.

B. Critical nonergodicity parameters

The critical NEP F

�
c �q� and the normalized critical NEP

f

�
c �q� together with the static orientational correlators are

shown in Figs. 3, 6, 7, 9, and 10 for oblate and prolate
ellipsoids, respectively, along the three highly symmetric di-
rections in reciprocal space from the zone center to its edge.
For each of the three directions and each matrix element, a
separate subfigure is provided, where the indices lml�m� are
displayed at the top of each figure. We have restricted our
illustrations to the diagonal elements l= l�=2, m=m�=0,1,2
and l= l�=4, m=m�=0,1,2,3,4, and the off-diagonal elements
l=2, l�=4, m=m�=0,1,2. By the symmetries of the cubic
lattice, these correlators are all real. The scales on the left-
hand side �LHS� of each tableau belong to S

��q� and
F

�

c �q�, those on the RHS to f

�
c �q�. Note the different

FIG. 2. Phase diagram of hard ellipsoids on a sc lattice. Shown
is the curve below which the ellipsoids are free rotators �full line
with cusp at X0=1�, the equilibrium phase transition line �eq�X0�
from MC simulations �full thin lines�, the line �PY�X0� of highest
densities to be reached by numerical solution of the OZ/PY equa-
tions �dash-dotted lines�, the line �extra�X0� for X0�4, where the
extrapolated OZ/PY results diverge �dotted line� and the MCT glass
transition line �c�X0� �full thick lines�. For X0�8, �extra�X0� and
�c�X0� are almost identical. � denote the five state points for which
the nonergodicity parameters presented in Figs. 3–12 were
calculated.

FIG. 3. q dependence of the nonergodicity parameters F

�
c �q�

�dotted lines�, the normalized ones f

�
c �q�=F

�

c �q�
��S

�q�S
�
��q��−1/2 �thick gray lines� and of the static structure
factors S

��q� �solid lines� for l= l�=2 and m=m�=0,1,2. Results
are shown within the first Brillouin zone along the three highly
symmetric reciprocal space directions for oblate ellipsoids with a
=0.08 and b=1.412, i.e., �X0 ,����0.0567,0.0835�.
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scales of the axes for different values of m=m�.
For two pairs �a ,b� we also present the corresponding

tensorial quantities in real space. Figures 4 and 8 show log-
lin representations of the direct space static orientational cor-
relators Gxyz,

� and the corresponding NEP Fxyz,

�

c

=limt→�Gxyz,

��t� along lattice directions of high symmetry,
i.e., xyz=00n, 0nn and nnn for n=0,1,…,8. Along these di-
rections, all Gxyz,

� and Fxyz,

�

c are real, too, for 

� as
above. Note that a step �n=1 corresponds to different
lengths in direct space, namely 1, �2 and �3 for the different
lattice directions. For each m=m� and each lattice direction,
a separate figure is provided and a logarithmic plotting has
been chosen for positive and negative values of Gxyz,

� and
Fxyz,

�

c separately, i.e., the negative values are presented as
−ln
Gxyz,

�
 and −ln
Fxyz,

�

c 
, respectively. The values of xyz,
lml�m� are included in each subfigure.

Figures 3–6 present the NEP for l= l�=2 and l�=2,4 for
oblate ellipsoids with a=0.08 and b=1.412, which yields
�X0 ,����0.0567,0.0835�. In comparison to liquids, the NEP
possess less structure in q space. For l= l�=2, they are maxi-
mum exclusively at the zone center. A similar behavior is
found for l� l� �cf. Fig. 6�, but here, e.g., for m=m�=2,
minima appear instead of maxima. None of the maxima of
the static structure factors S2m,2m�q� and maxima or minima
of S2m,4m�q� at the zone boundary persits in the limit t→�.
Since these maxima belong to alternating orientational den-
sity fluctuations, this proves that such alternating local ar-
rangements of the particles do not arrest. This can also be
seen in real space. Figure 4 exhibits the static orientational
density correlators Gxyz,2m,2m and the Fxyz,2m,2m

c for a=0.08
and b=1.412. Indeed, the oscillations in the correlators

G00n,20,20 and G0nn,20,20 vanish completely in the long time
limit, while the monotonous decay with n of the m=m��0
quantities is rather stable, even for infinite time. The almost
vanishing of some critical NEP, however, does not require
oscillations in the corresponding Gxyz,

�, as can be seen
from Gnnn,20,20 and Fnnn,20,20

c . Another remarkable feature is
the behavior at small n, particularly at n=0. Figure 4 dem-
onstrates that, e.g., the magnitude of F000,2m,2m

c for m=1,2 is
only a few percent or even less of that of G000,2m,2m. Figure 5
shows that the ratio F00n,21,21

c /G00n,21,21 becomes very small
as n is lowered. A similar behavior has been found for all
values �X0 ,�� on the glass transition lines we have investi-
gated. The dips in Fxyz,

�

c /Gxyz,

� at n=0 demonstrate that
the relaxation of the “self” part of the orientational correla-
tors is practically not arrested by an orientational cage.

Moving for oblate ellipsoids along the glass transition line
towards the spherical limit X0=1, no qualitatively new be-
havior of the critical NEP is found, but it resembles always
the characteristics of Figs. 3 and 6. However, this picture will
change as we turn for oblate ellipsoids into the glass phase,
as will be seen in Sec. III C.

FIG. 4. The nonergodicity parameters Fxyz,

�
c in real space

�solid circles� and the static orientational density correlators Gxyz,

�
�squares; dashed lines are a guide to the eye� along the three highly
symmetric direct lattice directions for oblate ellipsoids with a
=0.08 and b=1.412, i.e., �X0 ,����0.0567,0.0835�. Shown are the
diagonal correlators for l= l�=2, m=m�=0,1,2 and xyz=00n, 0nn or
nnn for n=0,1,…,8.

FIG. 5. n dependence of the ratio F00n,21,21
c /G00n,21,21 of the NEP

F00n,21,21
c and his static counterpart G00n,21,21 for oblate ellipsoids

with a=0.08 and b=1.412, i.e., �X0 ,����0.0567,0.0835�.

FIG. 6. Same as Fig. 3, but for l=2, l�=4.
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The q dependence of the critical NEP for prolate ellip-
soids is sensitive on the shape of the ellipsoids �see Figs. 7,
9, and 10�. The reader should note the higher values of the
maxima in S

��q�, which are necessary to get a glass tran-
sition, compared to the corresponding correlators for oblate
ellipsoids. Let us have a closer look at prolate ellipsoids with
a=1.4524 and b=0.72, i.e., �X0 ,����2.02,0.394�. Figure 7
shows that the structural arrest of these ellipsoids is com-
pletely different from that of oblate ones. The huge peak in
F22,22

c (q= �0,0 ,��) at the zone boundary has a height of 157
and dominates the transition. Since this peak belongs to a
wavelength of period two, it leads to strong frozen oscilla-
tions in the orientational density fluctuations on the lattice, as
can be seen in direct space from Fig. 8. Note that for the
correlators F00n,21,21

c almost no decay exists if n is increased.
Again, like for oblate ellipsoids, the frozen Fxyz,20,20

c seem to
play a special role, since they are much weaker than the NEP
for m=m��0. Figure 9 shows the diagonal correlators for
l= l�=4. Note the very small scale for the static structure
factors and NEP, in comparison with Fig. 7. Figure 9 shows
other interesting features of the MCT results for molecular
crystals: besides the appearance of simultaneous maxima of
the normalized NEP at the zone center and its boundary �see
f42,42�q� along the fourfold reciprocal space direction�, the
rule that the normalized NEP in reciprocal space are in phase
with the corresponding static correlators �44� is violated.

Finally, it must be said that the static structure factors for
ellipsoids with a=1.4524, b=0.72 have been calculated by
OZ/PY theory. But MC results �33� for other values of �a ,b�
in the vicinity of these parameters show that OZ/PY overes-
timates the maxima at the zone bondary in this region of the
phase diagram. Therefore, the interpretation of Figs. 7–9
should be taken with some caution. Perhaps this overestima-
tion is the indirect cause for the dip in �PY�X0� for 2�X
�4 �see Fig. 2�. Why OZ/PY fails in this region of ellipsoids
is currently unknown.

As we turn to very elongated prolate ellipsoids, the tran-
sition scenario becomes simpler again. Figure 10 for a
=5.857 and b=0.24 �yielding �X0 ,����24.4,0.177�� serves

FIG. 7. Same as Fig. 3, but for prolate ellipsoids with a
=1.4524 and b=0.72, i.e., �X0 ,����2.02,0.394�.

FIG. 8. Same as Fig. 4, but for prolate ellipsoids with a
=1.4524 and b=0.72, i.e., �X0 ,����2.02,0.394�.

FIG. 9. Same as Fig. 3, but for prolate ellipsoids with a
=1.4524 and b=0.72, i.e., �X0 ,����2.02,0.394�, and for l= l�=4,
m=m�=0,1,2,3,4.
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as an illustration. The behavior of the �l= l�=2� NEP with
peaks at the zone center reminds one of the NEP for flat
oblate ellipsoids �see Fig. 3�. This means that for long prolate
ellipsoids only nematiclike orientational fluctuations may
freeze. Such an extreme narrowness of the peaks at q=0 as
seen in Fig. 10 is observed for prolate ellipsoids with X0
�8 only, indicating the huge spatial extension of the frozen
nematiclike fluctuations.

C. Nonergodicity parameters in the glass phase

In this subsection, we show by means of two examples
how the NEP change in comparison to the critical NEP on
moving slightly into the glass phase. The corresponding pairs
�X0 ,�� are indicated in Fig. 2, too.

For densely packed oblate ellipsoids with a=0.78 and b
=1.1, i.e., �X0 ,����0.709,0.494� in the glass phase, the pro-
totypical behavior of the critical NEP for oblate ellipsoids on
the glass transition line shown in Figs. 3 and 6 is clearly
changed, as can be seen from Fig. 11 �53�. Now, the
Gaussian-like shape of the normalized NEP is much broader,
indicating an enhanced arrest of orientational density fluctua-
tions for q�0, which is expected due to the high packing
fraction. This leads to a deviation of the frozen orientational
correlators in direct space from the exclusive monotonous
decay, which is present almost everywhere along the glass
transition line for oblate ellipsoids. For example, the frozen
F00n,20,20 for the �a ,b� pair of Fig. 11 �not shown here� have
weak oscillations, reminiscent of the strong oscillations be-
ing present in the associated static G00n,20,20.

Considering prolate ellipsoids with a=1.7 and b=0.66,
i.e., �X0 ,����2.58,0.389�, slightly above the glass transition
line, many different patterns of behavior occur in the NEP, as
can be seen from Fig. 12. This figure can directly be com-
pared with Fig. 7, since the ellipsoids for both figures have

almost the same packing fraction. Again, for one and the
same NEP there partly exist simultaneous maxima at the
zone center and its boundary. Accordingly, in the limit of
long times, we have frozen density-density correlators with
either oscillatory or monotonous behavior, depending on


�.

D. Glass transition of the l,l� odd correlators

So far we have discussed the NEP for l,l� even. For l,l�
odd only the “self” part of the NEP is nonzero. It is useful to

FIG. 10. Same as Fig. 3, but for prolate ellipsoids with a
=5.857 and b=0.24, i.e., �X0 ,����24.4,0.177�.

FIG. 11. Same as Fig. 3, but for oblate ellipsoids with a=0.78
and b=1.1, i.e., �X0 ,����0.709,0.494�, above the glass line.

FIG. 12. Same as Fig. 3, but for prolate ellipsoids with a=1.7
and b=0.66, i.e., �X0 ,����2.58,0.389�, above the glass line.
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investigate the normalized, rotationally invariant “self” part
of the NEP, i.e.,

f l
�s� =

�m=−l

l
F000,lm,lm

�m=−l

l
G000,lm,lm

. �26�

Values for f l
�s� are given in Table I for those pairs �a ,b� for

which the glass transition has been found for l, l� odd. For
comparison, the f l

�s� for l even are given in Table I, too. The
relation

f l
�s� � f l�

�s�, l � l�, �27�

which is similar to

fc�q� � fc�q��, q � q� �28�

for simple liquids, seems to be fulfilled for even and odd l
separately. Note that the pairs �a ,b� in Table I are located in
the glass phase for l,l� even.

IV. DISCUSSION AND CONCLUSIONS

We have extended the mode coupling theory �MCT� for
liquids to molecular crystals. The natural choice is the use of
tensorial correlators, instead of correlators defined in a site-
site representation �45�. This leads for the dynamical correla-
tors S

��q , t� to an integro-differential equation of second
order in time. Truncating l at lmax, this set of equations is
equivalent to the corresponding equation for a multicompo-
nent liquid of isotropic particles �for binary systems see, e.g.,
�46��. The memory kernel is approximated in the framework
of MCT. The main differences to liquids are �i� the occur-
rence of umklapp processes, if the sum of the wave vectors
q1,q2 of the orientational density modes �

1

�q1� and
�

2

�q2� is outside of the first Brillouin zone, �ii� besides the
static two-point orientational correlators S

��q� the need of
the one-molecule orientational density 
�1���� as an input for
the vertices of the memory kernel and �iii� the anisotropy of
the static orientational current density correlators J

� which
do not cancel completely from the memory kernel m

��q , t�.
Nevertheless, the factor kBT / I of J

� drops out. Accordingly,
the glassy dynamics and the ideal glass transition does not
exhibit inertia effects, i.e., they are independent on I, the
moment of inertia. Additionally, for rigid lattices, all l,l�=0
tensorial correlators vanish and can be skipped, due to the
lack of TDOF.

In order to discuss this set of MCT equations for molecu-
lar crystals we have chosen hard ellipsoids of revolution with
aspect ratio X0=a /b fixed with their centers of mass at the
sites of a sc lattice with lattice constant equal to one. Increas-
ing the size of the ellipsoids, which is equivalent to a de-
crease of the lattice constant, results in an increase of steric
hindrance and finally in an orientational glass transition at
the MCT-glass transition line �c�X0� shown in Fig. 2 for
oblate and prolate ellipsoids. Since this orientational glass
transition is mainly driven by the growth of S

��q� at the
zone center or/and the zone edge, its origin lies in the growth
of the orientational order close to but below the equilibrium
phase transition line from OZ/PY theory. This is quite similar
to what has been found for a liquid of hard ellipsoids �39� if
the aspect ratio becomes larger than about 2 or smaller than
about 1 /2. However, there is a difference between the mo-
lecular liquid �of ellipsoids� and the molecular crystal.
Whereas the former already undergoes a glass transition for
X0�2 or X0�1/2 when S2m,2m�0� is of order one, it must be
S2m,2m�0� of order 10 for oblate �cf. Fig. 3� or even order 100
for prolate ellipsoids �cf. Fig. 7�. This proves that the trans-
lational degrees of freedom of the liquid still have a strong
influence on the glass formation, although they are not pri-
marily responsible for the transition for X0�2 and X0
�1/2. This finding is consistent with results found from a
MD simulation for difluorotetrachloroethane in its super-
cooled liquid and plastic crystal phase �47�. For both phases,
the glass transition temperatures Tc

liquid and Tc
plastic crystal were

determined. That Tc
liquid�139 K�Tc

plastic crystal�129 K im-
plies that the translational degrees of freedom of a liquid
enhance the glass formation which might be related to a fa-
cilitated cage formation for systems where the center of mass
of the particles can move freely.

Comparing S

��q� on the glass transition line for oblate
�Figs. 3 and 6� with prolate ellipsoids �Figs. 7, 9, and 10�
already shows that the tendency to an orientational glass for-
mation for oblate ellipsoids is larger than for prolate ones.
This can also be seen from Fig. 2 since the distance
�PY�X0�−�c�X0� is large for very flat oblate ellipsoids, only.
This difference may be explained as follows. If we fix the
length a of prolate ellipsoids and decrease their thickness b
to zero, then the excluded volume interaction becomes zero.
Particularly, the static correlators become trivial, which leads
to vanishing vertices and consequently to a disappearance of
the MCT glass transition. If, on the other hand, we fix the
diameter b of the oblate ellipsoids and decrease their thick-
ness a to zero the excluded volume interaction still exists for
a=0. This seems to be an important difference between ob-
late and prolate particles.

From the solution of the MCT equations for t→� we
obtained results for the critical NEP F

�

c �q� and the corre-
sponding normalized ones, f

�

c �q�, as well as NEP deeper in
the glass. Due to the lattice translational invariance, q can be
restricted to the first Brillouin zone. Within this zone the
critical NEP do not have much structure. Almost all of them
either exhibit a maximum �or minimum for l� l�� at the zone
center and/or at its edge, depending on 

� and the direction
of q. However, going deeper into the glass and varying the
ellipsoid shape, i.e., X0 and/or �, leads to significant changes

TABLE I. Selected normalized NEP f l
�s� of the “self” part of the

orientational density-density correlation function �see Eqs. �24� and
�25��.

�a ,b� l=1 l=2 l=3 l=4

�0.776, 1.1� 0.203 0.208 0.124 0.106

�0.778, 1.1� 0.406 0.268 0.262 0.143

�0.78, 1.1� 0.546 0.333 0.371 0.185

�1.7, 0.66� 3.00�10−2 0.197 8.14�10−3 3.93�10−2
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in the q dependence especially of the normalized NEP, as
demonstrated in Figs. 11 and 12.

The MD simulations for cyanoadamantane �16� and chlo-
radamantane �18� reveal quite similar glassy dynamics as
found for supercooled liquids �7–9�. Particularly, the authors
of Refs. �16,18� stress that their molecular crystals can be
supercooled and that the relaxational dynamics is consistent
with MCT predictions, at least where this has been checked
�16,18�. Since both model systems exhibit tremendous slow-
ing down in the supercooled regime an orientational glass
transition or at least a crossover from ergodic to quasinoner-
godic dynamics must also occur in the supercooled phase.
This is different from what we have found for the hard ellip-
soids. In our case the glass transition line is located within
the dynamically disordered equilibrium phase of PY theory,
which itself is a consequence of the static input taken from
PY theory. It would be very interesting to insert the static
correlators �54� from the MD simulations in the supercooled
phase into our MCT equations and to check whether one
obtains a glass transition. The investigation of hard ellipsoids
on the sc lattice has demonstrated that the magnitude of the
extrema in S

��q� at the zone center or/and edge must be
rather large �at least for prolate particles�. It is not obvious
that the simulational results in the supercooled phase fulfill
this criterion. Of course, it could be that the average height
of S

��q� in q space is much larger than for the ellipsoids
such that large maxima or minima of S

��q� at the zone
center and/or edge are not really necessary. We hope that
these questions can be answered in the future.

To conclude, we have shown that MCT can be derived for
molecular crystals, as well. Whether or not the MCT ap-
proximation �which mainly consists of the factorization of a
time dependent four point correlator� is also a reasonable
approximation for molecular crystals as it is for glass-
forming liquids has to be investigated by comparison of the
results from present MCT for molecular crystals with simu-
lational and experimental results. As already mentioned
above our conventional MCT approach will become worse if
the thickness of prolate particles becomes small. In that case
it is the entanglement which is responsible for glassy dynam-
ics �22,23�. This requires a different theoretical description,
as recently discussed �48,49�.

APPENDIX A: CALCULATION OF J���„q…ÆJ���

Substituting the 
-Fourier transform j
�q� of jn��� �Eq.
�6�� into Eq. �11� yields

J

��q� =
4�

N
il�−l�

nn�

eiq·xnn�

� �„�n · L̂�n
Y
��n�…*

„�n� · L̂�n�
Y
���n��…� .

�A1�

Since �n · L̂�n
=�n� · L̂�n

� �where the primed quantities refer to
the body fixed frame� we get for the canonical average in Eq.
�A1� in close analogy to molecular liquids �28�

�…� = �
���

��n�
��n�

�����„L̂��n

� Y
��n�…*
„L̂��n�

�� Y
���n��…�

= �
���

kT

I
�nn������„L̂��n

� Y
��n�…*
„L̂��n�

�� Y
���n��…� ,

�A2�

where �=x,y,z are the Cartesian components in the body
fixed frame. This leads to

J

��q� = 4�
kT

I
il�−l�„L̂�n

Y
��n�…* · „L̂�n
Y
���n�…� ,

�A3�

which is q and n independent, and can therefore be evaluated
for arbitrary n.

Using L̂�
� Ylm���=�m�=−l

l Ll,mm�
� Ylm���� and the product

rule for the spherical harmonics and substituting the explicit
expression for Ll,mm�

� we get with c�ll�l�� as in �C4�

J

��q� = 4�
kT

I
il�−l�− 1�m�


�
�mm�C�ll�l�,− mm�m��

−
1

2
�l�l + 1� − m�m + 1��l��l� + 1� − m��m� + 1�

�C�ll�l�,− m − 1,m� + 1,m��

−
1

2
�l�l + 1� − m�m − 1��l��l� + 1� − m��m� − 1�

�C�ll�l�,− m + 1,m� − 1,m��	c�ll�l���Y
�� . �A4�

This expression strongly simplifies since

�¯�c�ll�l�� = −
1

2
�l�l + 1��l��l� + 1�

�� �2l + 1��2l� + 1�
4��2l� + 1� 	1/2

�C�ll�l�,1 − 10�

+ C�ll�l�,− 110��C�ll�l�,− mm�m�� . �A5�

This leads to the final result

J

��q� = 4�
kT

I
il�−l�− 1�m+11

2
�l�l + 1��l��l� + 1�

� �

�
� �2l + 1��2l� + 1�

4��2l� + 1� 	1/2

�C�ll�l�,1 − 10�

+ C�ll�l�,− 110��C�ll�l�,− mm�m���Y
�� . �A6�

Note that �Y
� is given by

�Y
� =� d� 
�1����Y
��� = �− i�l


�1�, �A7�

i.e., J

��q�
J

� only involves the 
 transform of 
�1����.
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APPENDIX B: MODE COUPLING APPROXIMATION

In this appendix we shortly describe the mode coupling
approximation leading to the results presented by Eqs.
�15�–�19�.

The derivation of the Mori-Zwanzig equation is standard
by using the projectors onto the slow variables �

�q� and
j
�q�,

P
 =
4�

N
�


�

�
�

�q��„S−1�q�…

���

�
* �q�
 , �B1�

Pj =
4�

N
�


�

�
j
�q���J−1�

��j
�
* �q�
 . �B2�

The prime on sums denotes summation such that l,l��0. The
projector Q in Eq. �14� is then given by

Q = 1 − P
 − Pj . �B3�

In order to approximate M

��q , t� Eq. �14� we introduce the
projector onto pairs of orientational density modes:

P = �
q1q1�,q2q2�

� 1BZ

�

1
1�
2
2�

�
�

1
�q1��

1�

�q1���

� g
1
1�;
2
2�
�q1q1�,q2q2��� �

2

* �q2��


2�
* �q2��
 , �B4�

where �g
1
1�,
2
2�
�q1q1� ;q2q2��� is the inverse of the static

four-point correlation matrix �� �

1

* �q1��


1�
* �q1��

��

2
�q2��

2�

�q2����. We use the approximation

g
1
1�;
2
2�
�q1q1�,q2q2��

�
1

4
�4�

N
�2

��q1q2
�q1�,q2�

�S−1�q1��
1
2
�S−1�q2��
1�
2�

+ �1 ↔ 2�� , �B5�

which is consistent with the mode coupling approximation of
M

��q , t� for t=0 �see Eq. �B7��.

The mode coupling approximation consists of two main
steps. First, the fluctuating force is approximated

Q
Lj
�q�� � PQ
Lj
�q�� . �B6�

Substituting �B6� into Eq. �14� leads to a time-dependent
four-point correlator, which in a second approximation is

factorized. For q1, q1�, q2, q2�� 1BZ we have

� �

1

* �q1��


1�
* �q1��
Qe−i Q L Q tQ
�

2

�q2��

2�
�q2���

�
N2

�4��2 ��q1,q2
�q1�,q2�

S
1
2
�q1,t�S
1�
2�

�q2,t� + �1 ↔ 2�� .

�B7�

With these approximations we obtain

M

��q,t� �
1

2
�4�

N
�3

�
q1q2

�1BZ

�

1
2
3
4

1�
2�
3�
4�

�

���L j
�q��*
Q
�

1
�q1��

2

�q2��

� �S−1�q1��
1
3
�S−1�q2��
2
4

� S
3
3�
�q1,t�S
4
4�

�q2,t�

� �S−1�q1��
3�
1�
�S−1�q2��
4�
2�

� ��
*

2�

�q2��
*

1�

�q1�
Q
L j
��q�� . �B8�

APPENDIX C: CALCULATION OF
Š(Lj�„q…)*�Q����1

„q1…���2
„q2…‹

This correlator is calculated quite similar to simple �5�
and molecular liquids �28–30� by using Eq. �B3� and
Pj
�

1

�q1��

2
�q2��=0, due to time reversal symmetry.

Then we get

�„Lj
�q�…*
Q
�

1
�q1��

2

�q2��

= �„Lj
�q�…*�

1
�q1��

2

�q2��

− �„Lj
�q�…*
P

�

1
�q1��

2

�q2�� . �C1�

The first term on the RHS of Eq. �C1� is easily rewritten by
taking into account the Hermiticity of L and the continuity
equation Eq. �4� and Eq. �6�. This leads to

�„Lj
�q�…*�

1
�q1��

2

�q2�� = � j

*�q�j
1

�q1��

2
�q2��

+ �1 ↔ 2� . �C2�

Substituing the 
-Fourier transform of �
n��� and jn���
into the RHS of Eq. �C2� we arrive at

� j

*�q�j
1

�q1��

2
�q2�� =

N

4�

kT

I �
Q

�q1+q2,q+Q�

�

�il1+l�−l�− 1�m+m��mm1C�ll1l�,− mm1 − m��

−
1

2
�l�l + 1� − m�m + 1��l1�l1 + 1� − m1�m1 + 1�C�ll1l�,− m − 1,m1 + 1,− m��

−
1

2
�l�l + 1� − m�m − 1��l1�l1 + 1� − m1�m1 − 1�C�ll1l�,− m + 1,m1 − 1,− m��	c�ll1l��S
�
2

�q2�

�C3�
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with

c�ll�l�� = � �2l + 1��2l� + 1�
4��2l� + 1� 	1/2

C�ll�l�,000� . �C4�

Here we have used the product rule for the spherical harmon-
ics and the factorization of canonic integrals as in Eq. �A2�.
The second term on the RHS of Eq. �C1� is rewritten by
using P
 from Eq. �B1� and again the Hermiticity of L, as
well as the continuity equation:

�„Lj
�q�…*
P

�

1
�q1��

2

�q2��

= �

�
�

�J

�„S
−1�q�…
�
�� �

�

* �q��

1
�q1��

2

�q2�� .

�C5�

Substituting Eqs. �C2�, �C3�, and �C5� into Eq. �C1�,
the LHS of Eq. �C1� is expressed by the static two-point
and three-point correlators S

��q� and
��

�

* �q��

1
�q1��

2

�q2��, respectively, and by J

�. J
= �J

�� is calculated in Appendix A,
��

�

* �q��

1
�q1��

2

�q2�� in Appendix D.
Now we rewrite �
�

� … in Eq. �C3� as follows:

�

�

�… = �

�

��

1�

�il1+l�−l�− 1�m+m��mm1�C�ll1�l�,− mm1� − m��

−
1

2
�l�l + 1� − m�m + 1��l1��l1� + 1� − m1��m1� + 1�

�C�ll1�l�,− m − 1,m1� + 1,− m��

−
1

2
�l�l + 1� − m�m − 1��l1��l1� + 1� − m1��m1� − 1�

�C�ll1�l�,− m + 1,m1� − 1,− m��	
� c�ll1�l���


�

„S−1�q1�…
1�
�S
�
1
�q1�S
�
2

�q2� ,

�C6�

and substitute succesively the terms on the RHS of

S−1�q1� = d−1 − d−1 + D−1 −
1

4�
c�q1� , �C7�

which is a rearrangement of the OZ equation �20�, into Eq.
�C6�.

In the first step we replace d

1�
�
−1 S
�
1

�q1�S
�
2
�q2�

=d
�
2�
�d−1S�
1�
1

�q1��d−1S�
2�
2
�q2�. This expression arises if

the matrix elements of d−1 on the RHS of �C7� are used with
�C6�. Using the explicit result for the matrix d �see �33�� and
the relations

�

�

�mm1�c�ll1�l��C�ll1�l�,− mm1�m��c�l�l2�l��C�l�l2�l�,m�m2�m�� + mm2�c�ll2�l��C�ll2�l�,− mm2�m��c�l�l1�l��C�l�l1�l�,m�m1�m���

= �

�

mm�c�l1�l2�l��C�l1�l2�l�,m1�m2�m��c�ll�l��C�ll�l�,− mm�m�� , �C8�

�

�

��l�l + 1� − m�m � 1��l1��l1� + 1� − m1��m1� � 1�c�ll1�l��C�ll1�l�,− m ± 1,m1� � 1,m��c�l�l2�l��C�l�l2�l�,m�m2�m��

+ �l�l + 1� − m�m � 1��l2��l2� + 1� − m2��m2� � 1�c�ll2�l��C�ll2�l�,− m ± 1,m2� � 1,m��c�l�l1�l��C�l�l1�l�,m�m1�m���

= �

�

�l�l + 1� − m�m � 1��l��l� + 1� − m��m� � 1�c�l1�l2�l��C�l1�l2�l�,m1�m2�m��c�ll�l��C�ll�l�,− m ± 1,m� � 1,m�� , �C9�

we find that this part of �C6� taken together with the same part in the partner expression of �C6� due to �C2� cancels with the
part �(Lj
�q�)*
P

�

1

�q1��

2
�q2�� of �C1�, if Eqs. �D8� and �A4� are used in Eq. �C5�.

We turn to the term D−1−d−1 of �C7�, which leads to �D−1−d−1�
1�
�S
�
1
�q1� if substituted in �C6�. Since

�D−1 − d−1���,��� =
1

4��−
1

4�

1


�1����
−

1

4�

1


�1�����
+

1

�4��2�
S2

1


�1����
d�	 , �C10�

D−1−d−1 consists just of a nontrivial first row and column, while S�q1� has a vanishing first row and column. So the product
�D−1−d−1�S�q1� has nonvanishing elements in its first row, only. Therefore, �D−1−d−1�
1�
�S
�
1

�q1�=0, if not l1�=m1�=0. But
if we evaluate the coefficients of �C6� with l1�=m1�=0, we find that the part D−1−d−1 of �C7� contributes nothing.

What remains is the last term on the RHS of �C7�. If substituted into Eq. �C6� and the corresponding partner expression due
to Eq. �C2�, respectively, this term delivers the final result
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�„Lj
�q�…*
Q
�

1
�q1��

2

�q2��

= −
N

�4��5/2

kT

I
�
Q

�q1+q2,q+Q �

1�
2�
3�

��b�l3�l2�l�C�l3�l2�l,m3�m2�m�c
3�
1�
�q1�S
1�
1

�q1�S
2�
2
�q2� + �1 ↔ 2�� , �C11�

with b�l , l� , l�� from Eq. �18�. Here we have used the relation
�A5� for the Clebsch-Gordan-coefficients. If Eq. �C11� and
its conjugate is substituted into Eq. �B8� one obtains the
mode coupling approximation of the slow part of M

��q , t�,
which then leads to the final result for m�q , t�, Eqs.
�15�–�19�.

APPENDIX D: APPROXIMATION OF
Š���

*
„q1…���2

„q2…���3
„q3…‹

The approximation of the static three-point correlator is
rather involved. Therefore, the most crucial steps are pre-
sented only. Readers which are interested in more details are
referred to Ref. �40�.

The corresponding static three-point correlator for simple
liquids was approximated by the convolution approximation
�5�. It has been proven that the approximation of the corre-
sponding correlator for molecular liquids �28� is again the
convolution approximation as defined in Ref. �50�. However,
performing the convolution approximation for molecular
crystals does not lead to a simple result. Therefore, we
have chosen a different approximation.

��

1

* �q1��

2
�q2��

3

�q3�� is the 
-Fourier transform of
��
n1

��1��
n2
��2��
n3

��3�� given by

��

1

* �q1��

2
�q2��

3

�q3��

= �
n1n2n3

ei�−q1·xn1
+q2·xn2

+q3·xn3
�il2+l3−l1

�� � � d�1d�2d�3Y
1

* ��1�Y
2
��2�Y
3

��3�

� ��
n1
��1��
n2

��2��
n3
��3�� . �D1�

For � �
n1
��1��
n2

��2��
n3
��3��, one can prove that a rea-

sonable approximation is

��
n1
��1��
n2

��2��
n3
��3��

� �
n
� d� 
�1����

�
Gn1n��1,��


�1����

Gnn2
��,�2�


�1����

Gnn3
��,�3�


�1����
, �D2�

where Gnn1
�� ,�1�=Gn1n��1 ,�� has been used. Performing

the Fourier sums of Eq. �D1� on approximation �D2� yields

N

�4��3�
Q

�q2+q3,q1+Q� d� 
�1����

�
S�q1,�1,��


�1����
S�q2,�,�2�


�1����
S�q3,�,�3�


�1����
, �D3�

where

S�q,�,��� = 4��
xnn�

Gnn���,���eiq·xnn�. �D4�

Substituting

S�q,�,��� = �


�

��− i�l�−lS

��q�Y
���Y
�
* ���� �D5�

and

S�q,�,���

�1����

= 4�� d��d−1��,���S�q,��,���

= 4��



�

�

��− i�l�−l�d−1S�

��q�Y
���Y
�
* ���� ,

�D6�

with

d��,��� = 4� 
�1�������
��� , �D7a�

d−1��,��� =
1

4�

���
���

�1����

�D7b�

into Eq. �D3� and taking the 
 transforms as defined in Eq.
�D1� afterwards we get

��

1

* �q1��

2
�q2��

3

�q3��

�
N

4�
�
Q

�q2+q3,q1+Q�

1�

� �

2�
3�

il2�+l3�−l1�

�c�l2�l3�l1��C�l2�l3�l1�,m2�m3�m1��

� S
1
1�
�q1��d−1S�
2�
2

�q2��d−1S�
3�
3
�q3� . �D8�

Although the product of the last three factors of Eq. �D8�
does not look symmetric, one can show that all three factors
indeed are equivalent.
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