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The asymmetric diffusion through conical nanopores is described by the diffusional model. Diffusion is
several times faster; when the concentration gradient points from the wide towards the narrow opening of the
cone than in the opposite direction. The asymmetric diffusion appears either when the diffusion coefficient
depends on the concentration or when the diffusing substances interact with the channel (i.e., ions moving
through channels with charged walls). These results suggest that asymmetric nanopores can act as molecular

(ionic) filters which could be used for retrieving the molecules of a given component from solutions in which
its concentration fluctuates strongly, and only occasionally attains high values.
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I. INTRODUCTION

One of the main unsolved problems in nanoscience is how
to control the material transport. This aim was achieved long
ago in living cells where the active channels pump ions or
other substances against their concentration gradients, and
passive channels transport the material down concentration
gradients [1]. In synthetic nanosystems the most widely
known example is the Brownian ratchets [2,3]. Recently, it
has been proved also that the synthetic nanopores can rectify
the ionic currents [4,5] and pump the ions against their con-
centration gradients [6].

In all the above-mentioned examples, the asymmetric
transport is achieved by the driving of the system by forces
external to the system under consideration. In active chan-
nels, proteins (ATP-ases) use the energy stored in the ATP to
pump ions or other substances against their concentration
gradients. They are also able to use this aim of oscillations of
external electric fields [7-9], and intrinsic fluctuations of
electric fields across the membrane [10]. In some of the pas-
sive channels—so-called voltage-gated channels, that exhibit
a remarkable property of current rectification—this effect is
obtained by means of excitation of the channel by an exter-
nally applied voltage, that results in different magnitudes of
the conduction currents in opposite directions [11]. The same
objectives (i.e., pumping and rectification) can also be
achieved in synthetic nanopores [6,12,13]—nano pumps and
rectifiers—which also make use of the energy from external
electric fields.

We report here the theoretical description of a new asym-
metric transport phenomenon, the asymmetric diffusion
through very narrow conical pores. In the presence of con-
centration gradients, and without the use of external forces
which could pump energy into the system, the magnitude of
diffusion flow depends on the direction of the concentration
gradient. One of possible realizations of this effect has re-
cently been confirmed experimentally [14]. It is worth noting
that a similar phenomenon of asymmetry in channel selectiv-
ity properties has been reported recently for the bacterial
porin OmpF [15]. These results prove that it is possible to
construct ionic nanofilters. However, it should be stressed
that this effect cannot be used for pumping the material
against concentration gradients (except perhaps by means of
the so-called co-diffusion [16,17])
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Typical synthetic nanochannel [4-6,12-14] is a conical
pore of length L=8-12 um, and diameters dy=2r, a few
nanometers, and d; =2r;, a few hundred nm (cf. Fig. 1). The
biological channels are more narrow and much shorter. The
channel connects two compartments containing solutions of
concentrations ¢, and c;, The charge density at the inner
surface of the pore can be regulated by changing pH of the
solution. The pores used in [14] at pH 8 are negatively
charged with surface charge p of about 1.5 e¢/nm?
(e—elementary charge); at pH 2 the pore’s surface is elec-
trically neutral. The setup assumed implicitly in this paper is
the same as in our earlier work [12-14]. In the major part of
this paper no driving external fields, electric or otherwise, are
considered.

We define here the positive direction of the motion of
particles (ions) as the direction from left to right—therefore,
the diffusion flow is positive when ¢; <c,; we also assume
that the narrow tip of the pore is situated at the left (cf. Fig.
1).

A convenient measure of the effect of asymmetric diffu-
sion is the quantity introduced in [14]:

o=\_N_l (1.1)

where J_ and J_, are the currents measured (calculated) for
co<cy, and cy>c;, respectively. For the ionic currents flow-
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FIG. 1. Schematic sketch of the channel geometry. Not in
proportions.
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ing through long narrow charged nanopores measured in KCl
solutions, Q is about 2+0.2 for concentration gradients
0.1M/1.0M [14].

This paper is organized as follows: Section II presents the
diffusion equations in Zwanzig’s formulation [18,19] of the
so-called Fick-Jacobs equation. Asymmetric diffusion
through neutral pores and/or of neutral particles is discussed
in Sec. III, and asymmetry of ionic diffusion in electrically
charged pores—in Sec. I'V. Sec. V contains final remarks and
conclusions.

II. DIFFUSION EQUATIONS

We consider the diffusion through the narrow axially sym-
metric channel of length L. The shape of the channel is de-
fined by its local radius i(z),z being the coordinate along
channel’s long axis (cf. Fig. 1).

There have been several approaches to the issue of diffu-
sion in confined geometries and/or in irregular channels re-
ported recently (for a review see [20]). We shall use Zwan-
zig’s formulation [18] of the so-called Fick-Jacobs equation,
in which the boundary problem in 2 or 3 dimensions, which
is a very difficult issue, is replaced by an equivalent one-
dimensional (averaged) representation.

The diffusional transport of component i in external fields
is described by the Smoluchowski-Nernst-Planck (or gener-
alized diffusion) equation:

%Ci(x,t):— A% ~jl-(X,t), (21)

ji(x9t) == Di v Ci(X7t) + Iu'iEi(X)Ci(x’t) s (22)

with appropriate boundary conditions, where D; stands for
diffusion coefficient, u; is the mobility, c¢; denotes concentra-
tion, j; is the mass current density, and E;(x)=—-V ¢,(x), ¢; is
the potential energy of the ith particle in the electric field. (In
a more general case the electric field E; can be time-
dependent.)

The boundary conditions of the confined geometry can be
easily taken into account in the following way: define the
“entropy barrier” iy(z,7) [18] such that =0 outside the
pore, and inside the pore for r<h(z)=r,uyic» and is infi-
nitely repulsive for 0<<z<<L and r>h(z) =74, (the par-
ticle radius 7, takes into account the nearest approach
distance of the particle to pore’s surface), and write Eq. (2.2)
in the form

ji(x,1) = — e PUND,V PN (x,1), (2.3)

Pi(x) = %(X) + ho(x), (7)5 = ¢/ BD;, (2.4)

where B=1/kT.

Solution of Eq. (2.1) for both the concentration and the
current in the general three-dimensional case, and for the
confined geometry shown in Fig. 1, is difficult even for the
stationary case. One way of dealing with this issue suggested
in the literature [18-21] is to formulate a one-dimensional
equivalent. Let ¢;(z) be the local concentration inside the
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channel, channel’s cross-section A(z)

=7h(z):

averaged over

T h(z)
ci(z)= f dé’f dr r cz,r,0)/A(z), (2.5)
- 0

inside the channel, and ¢;(z)=c; ,; otherwise.

According to Zwanzig [18], in the local equilibrium ap-
proximation (along the cross-section) the local average con-
centration ¢ satisfies the one-dimensional Smoluchowski
equation (in this case equivalent to the so-called Fick-Jacobs
equation [18,19]):

d d -
—A(2)ez,1) = —A@)jilz,1), (2.6)
ot Jz
with the current density
- d
Jiz,1) =— Die_'B‘[’i,L’ff(z)—eﬁ‘/’iA,f.f/(Z)Ei(z,t) s (2.7)

9z
where [18]

e Piesd) = f f drr d0ePPCrIIA(Z).  (2.8)
A(z)

The above formula has clear physical meaning for the
confining potential ¢ (cf. [18,19]) as the effective probabil-
ity density of finding the diffusing particle inside the channel
at the position z along the channel’s length. For electrostatic
potential and diffusing ions, this Zwanzig-type average
would lead to effective electric fields E; ;(z)
==V, 4(2) 9z [with ¢, s/ (2)=ZeV; ;/(z),Zie being the ith
ion’s charge] different for anions (Z;<0) and cations (Z;
>0). In a negatively charged channel the absolute magnitude
of the effective potential for a cation would be higher (in
some cases much higher) than that for an anion. This seems
to be dubious from the physical point of view. The use of the

effective potential energy d),-!eff(z):(Z(z) defined by the for-
mula analogous to that for the concentration, Eq. (2.5), en-
sures that the effective field inside the channel is the same
for every ion, and, moreover, yields results, which are more
in keeping with experimental data [13].

In one dimension, the overall stationary current is just the
current density multiplied by the pore’s cross-section: J;
=A(z)j(z) and does not depend on z. The stationary effective
Smoluchowski equation therefore reads:

a%ew"“”(“a(z) =— Pl DJ[DART!. (29

When neither the diffusion coefficient nor the potential
¢i(z,r) depend on the concentration, the solution of Eq. (2.9)
is simple:

Z
ePliesf Dz () = ePlesrOE,(0) - J, f dz' PP mD ('),
0

(2.10)

with J; given by the boundary conditions ¢;(0)=c;.c;(L)
=Cir:
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Bbioff0) . LB ofAL) .
e . C e ). C
Ji=— L0 il (2.11)
fdz’eﬁ‘f’i,efff(zr)/WD,-hz(z')
0

However, in the majority of interesting cases, either the
diffusion coefficient is the function, or the internal potential
energy is the functional of the local value of the concentra-
tion of the diffusing molecules. In these cases, the direct
analytic solutions of the Smoluchowski equation (2.6) are
unknown. The standard method is the self-consistent itera-
tion of the expressions (2.11) and (2.10): assume as the
zero-th approximation some concentration gradient E;O)(z),
e.g., the “bulk” linear solution c¢; 5, (2) =co+(c —co)z/L, cal-
culate JEO) from (2.11), insert the result to Eq.(2.10) to calcu-
late Egl)(z), insert the result to Eq.(2.11), etc. Note that at
every subsequent approximation one needs to calculate also
the subsequent local values of D;(c(z))

Cr—Co

Dy(c(2)) = Di(co) + (2), (2.12)
from the expansion in Taylor’s series and ¢ rA(z,[c;(2)])
[i.e., ¢i(z,r,0) also]. Still, this method (if convergent) is
faster than the numerical solution of Eq.(2.6), which can be
cumbersome because of the need to calculate D;(z) and ¢,(z)
at many intermediate values of the running variable z.

III. NEUTRAL DIFFUSION

Let us consider first the case when there are no interac-
tions (¢;=0) between the channel’s walls and the diffusing
particles. This corresponds either to the diffusion of neutral
particles or to the diffusion of charged or polar particles
through neutral channels. In this case the only source of the
asymmetry sensitive to the direction of the concentration
gradient is the concentration-dependent diffusion coefficient
D;=D{(c,(z)) and Eqgs.(2.10) and (2.11) reduce to

£ =i f EODIE), ()
0
Ji=m— Cio~ Cir . (3.2)
f dzh™(2)D} ' (2)
0

It is easy to check that for cylindrical pores, h(z)=r,
#f(z),J;=—J; ., and Q;=1.

In the case of neutral diffusion, the procedure described in
(3.2) works very well and the self-consistency at the level of
about 0.1% is obtained after two-three iterations. The shape
of the final concentration distribution c¢,(z) (full lines) for
both directions of the concentration gradient is shown in Fig.
2, where the dashed lines denote the “bulk” (linear) distribu-
tion cl(,o)(z). Although the initial and final concentration pro-
files are very different, the calculated currents change no
more (and in many cases much less) than 20%, and the mea-
sures Q¥ and Q remain practically the same.
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FIG. 2. Iterated distribution of concentrations of the diffusing
components inside the neutral conical channel, under concentration
gradients ¢(=0.1, ¢;=1.0M, and cy=1.0, ¢;=0.1M. Dashed lines
show the linear (“bulk-type”) gradients. (a) rp=1.0 nm,
r;=250 nm, L=12000 nm, ¢=0.85, 0=1.33, J¥'=-40.7—J?=
-38.2, J'=30.6 - J?'=32.7 % 108 particles/s; (b) ro=0.5 nm, r;
=5nm, L=12000 nm, ¢=0.5,0=2.41, J¥=-0.52— 7%=
-0.46, JV=0.22—7%'=0.42 X 108 particles/s.

The analysis of Egs.(3.1) and (3.2) shows that the effect,
as measured by the quantity Q, will depend on three factors
only: the shape of the channel described by the function A(z),
the magnitude of the dependence of the diffusion coefficient
on the concentration, measured by the parameter ¢
=Di(c[,high)/Di(Ci,low) (ci,lowaci,high being the lower and upper
outside-the-channel concentrations, respectively; we assume
here that the diffusion coefficient diminishes with increasing
concentration), and the geometrical asymmetry of the chan-
nel, measured by the parameter r;/r, for below-described
different shapes of the channel.

Figure 3 shows the dependence of the asymmetry factor Q
on the parameter g for three different shapes of the channel
(shown in the inset): concave, straight cone, and convex. It is
seen that the concave and straight shapes are optimal,

FIG. 3. Dependence of the asymmetry factor Q on the parameter
q=D{(cpign) ! Di{cyy,), for three different shapes (shown—not in
scale—in the inset) of the channel. In all three cases rg
=1.0 nm, =250 nm,/=12000 nm. For short narrow channels the
dependence Q(q) is similar.
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FIG. 4. Dependence of the asymmetry factor Q on the quotient
ri/ry, for constant ry and L, for three different values of the param-
eter ¢. In this parametrization the effect depends very weakly on r
and L.

whereas the convex-shaped channels being less effective.
However, the effect is non-negligible only for not too weak
dependence of the diffusion coefficient on the concentration.
Now, in most cases the diffusion coefficients depend on the
concentration in a fairly weak manner.

For example, for the water solutions of KCI, considered in
[14], the literature treats usually the diffusion coefficients of
K* and CI” as independent of concentration and equal to
each other (about 2X 10™"m?s™!) (e.g., [20]). On the other
hand, the dependence D(c) for KCI can be estimated from
the dependence on the concentration of its conductance x(c),
assuming the validity of the Einstein relation u=D/kT, and
X~ cp, m being the mobility. Now, for KCI concentrations
0.1M and 1.0M (used in [14]), (XI.O/CI.O)/(XO.I/CO.I) ~0.85
[12,13,22], and therefore also ¢=0.85, and, from Fig. 3, Q
~1.15, which implies that there is about 15% contribution of
the neutral diffusion effect, and about 85% contribution of
the electrostatic effects in the measured [14] asymmetry.
Stronger dependence can, perhaps, appear in the case of as-
sociating molecules, when the association depends on the
concentration, or in other exotic conditions.

Figure 4 presents the dependence of Q on the parameter
rp/ry, for a straight-cone geometry, and for a few values of
the parameter ¢g. The wider the cone’s opening angle, the
stronger the effect, but the dependence saturates practically
for r;, > 100 r,,.

Factor Q does not depend on the length of the channel. On
the other hand, the length influences the magnitudes of the
currents which are inversely proportional to L.

The plausible tentative mechanism of this “neutral” effect
might be explained through “density” of particles (flow
lines) when the flow is in the direction towards the narrow
end, and “attenuation” in the opposite case, which seems to
be related to the recently described effect deviations from
parallel geometry resulting in nonuniform pressures and den-
sity profiles of a liquid along the pore [23]. Formally, this is
taken into account in the formulas (3.2) and (3.1) by the
factor 1/ah*(z). However, it still has not been shown as to
what extent the Fick-Jacobs-Zwanzig approximation [18,19],
on which these formulas are based, is good enough to ex-
plore the fine details of diffusion through asymmetric con-
fined spaces, i.e., whether the effects shown in Figs. 2—4 are
real or are merely artefacts of the model. It still requires
experimental verification, and if the answer is affirmative, a
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more detailed theoretical description will be necessary. Still,
the comparison of experimental results and model calcula-
tions in [12-14] seem to suggest that the models based on
this approximation are correct at least in a semi-quantitative
way.

IV. IONIC DIFFUSION

The essential results, both experimental and theoretical,
concerning the asymmetry of diffusion of electrolytes in
charged synthetic nanopores were published in our previous
paper [14]. In this section we present some additional analy-
ses and a few corollaries.

The internal potential V,,,(z,r) inside the charged channel
is generated by the charges of charge density p(z), located on
the channel walls. In general, the density of the charges and
the internal potential depend on their location along the
channel axis [24]. We assume that the internal potential does
not depend on the angle 6 (cf. Fig. 1 for explanation of the
notation):

1 L
Vider) = — J de'ple ()
4’776 0

xffﬂdG’R‘l(z,z',r, §')e M@0 1 (4.)

where
R(z,7',r,0") =|x-x|
=\[r=h(z")cos 0'F +[h(z")sin @'+ (z - 2')*
(4.2)

is the distance between points x and x’, where 6=0, due to
the assumed cylindrical symmetry of the channel. e denotes
the dielectric constant (for water solutions we assume €
=80.1¢,, €y being the vacuum permittivity), N=1/I is the
inverse Debye (screening) length, factor h(z')[" d6' =A(z')
[A(z) being the cone’s radius at z'] gives the number of
charges per unit length on the channel’s circumference, L is
the length of the pore, and r and r; are the radii at the left
and right apertures. In the presence of external voltage U (as
in Fig. 5) the total potential is the sum of ¢,
=ZeV,,(r,z), and of the contribution  ¢,(z)
=[R(z)/R(L)]Z;eU,Z;e being the ion’s charge, R(z) the re-
sistance of the cone of length z. Note that this external con-
tribution remains unchanged in the effective potential ap-
pearing in (2.9) and (2.11). The validity of Einstein’s relation
mi=PBD;, u; being the mobility, is assumed.

The nanopores discussed in [14] were wider and much
longer than typical biological membrane nanochannels [1].
Therefore, to check whether the effects described there may
occur also in biological situations, we calculated the currents
for a short and narrow cone of dimensions (ry,r,L)
=(0.5,1.5,6.0) nm (cf. Fig. 1), resembling the dimensions of
the biological ionic channels. The results are shown in Figs.
5-7 below. Qualitatively, these results are the same as those
reported in [14]. The comparison of diffusional currents for
the cones (0.5, 1.5, 6.0) nm (Fig. 5(A)) and (1.5, 315, 12000)
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FIG. 5. Diffusional flows J(U)(10% ions/s) of cations and anions
through the conical nanochannels of dimensions (rq,r;,L)= (a)
(0.5, 1.5, 6.0) nm and (b) (1.5, 315, 12000) nm. p=1.5¢ nm™2,D,
=D_=2X10"m?s7!, (a) ¢u=1.0, ¢;=0.1 M, (b) ¢,=0.1, ¢,
=1.0 M.

nm (Fig. 5(B)) shows that one may expect the asymmetry of
the ionic diffusion to be even stronger in short biological
channels than in long synthetic ones.

The measurements reported in [14] show that the electric
currents I=3,Z,eJ; measured at zero voltage (i.e., corre-
sponding to pure diffusion without drift) are different from
zero when the channel’s surface is charged, whereas the cur-
rents flowing through electrically neutral channel are equal
to zero (within the experimental error) at U=0. Note that this
does not mean that the diffusional flow is zero in the presence
of concentration gradients; /=0 means merely that the diffu-
sional flows of anions and cations are equal to each other,

z [nm]
0 3
T T T T T T T T T ™
)
_. -50p
E (a)
5
> -
-1501

FIG. 6. The effective electric potential inside the charged short
conical channel, under concentration gradients (a) c¢y=1.0, ¢
=0.1 M, (b) ¢y=0.1, ¢;=1.0M. ry=0.5nm, r;=1.5nm, L
=6.0 nm, U=0, p=1.5¢ nm™2,
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FIG. 7. Concentration gradients inside the charged channel re-
sulting from the confinement in the charged nanopore with internal
electric potential as in Fig. 6.

resulting in the zero net electric current. On the other hand,
when the nanochannel is charged, /# 0, which means that
anionic and cationic diffusional flows are unequal—the
channel is cation-selective. This is shown in Fig. 5, where
the diffusional currents calculated separately for anions
((CI)) and cations (K+) are presented [25]—the biological-
like narrow channel is practically closed for anions, whereas
for wider synthetic one the anionic flows are much smaller
than the cationic ones.

The most important result found in [14] was that the mag-
nitudes of the currents at zero voltage are different when the
direction of the concentration gradient is reversed—the mag-
nitude of the diffusional flow is higher when it flows from
the wide towards the narrow aperture of the channel than in
the opposite direction. Again, this effect is distinct in Fig. 5.
It has also been found that it exclusively appears in charged
channels. Moreover, this effect is due to the diffusional flow
of cations—anionic flows are higher when the direction of
the concentration gradient points from the narrow towards
the wide aperture. The latter means that the net charge trans-
ferred by diffusion alone (at U=0) from one compartment to
the other is not zero. Such charge transfer across the mem-
brane will build up the appropriate diffusional potential,
which will eventually stop the process, unless the transferred
ions are carried away or consumed by some additional pro-
cesses.

The absence of the effect at pH 2 suggests that the asym-
metrical diffusion is related to the electrostatic interactions
between ions and the surface charges. More detailed analysis
of the mechanism of this effect can be understood on the
basis of the properties of the electrostatic fields acting on
different ions inside the negatively charged channels.

We have shown in [14] that the principal role is played by
the electric potentials V,/(z) and their gradients, the magni-
tudes of which are much higher for c¢y<<c; than otherwise
(cf. Fig. 6). As a result, the cations are drawn into the chan-
nel more strongly from the wide than from the narrow aper-
ture of the channel. This in itself would not be sufficient for
the appearance of the asymmetry in the flows—as what is
gained by the cations would be compensated by the anions,
for which the effect is opposite. However, in the narrow
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FIG. 8. Diffusional asymmetry factors for cation Qg+, anion
Ocr-, and the whole electrolyte Q, for the long channel (1.5, 315,
12000) nm.

nanochannels, the concentration of ions of the same sign as
that of the surface charges is depleted, which is due to strong
repulsion, whereas that for counter-ions is enhanced. This
can be seen from the stationary solution for the concentra-
tion, Eq. (2.10), and is illustrated in Fig. 7. Therefore, the
above-described action of the electric field on the ions is
effectively stronger on cations than on anions, which leads to
the asymmetry of the net electric current.

In this context we want to stress that the measured asym-
metry, Q,,, is the asymmetry of the electric current flowing
through the channel and it results mainly from the fact that
ions of different sign carry electric currents in opposite di-
rections: 1,,=2,Z;FJ;. The diffusional asymmetries Q; of the
ionic diffusional flows are different for different ions, and the
overall asymmetry O of the diffusional flows of the whole
electrolyte (J;/=2/;) is still different and also different from
both ionic and electrical asymmetries. This is illustrated in
Fig. 8.

We calculated also the factor Q for the cones with the
linear gradients of the surface charge p=p(z). We found
where the situation, when p(z=0)=1.5 e/nm?, and p(z=L)
=0 (this would correspond to the experimental situation with
pH 8 in the left compartment, and pH 2 in the right compart-
ment), that the effect is almost the same as when p=1.5
uniformly. On the other hand, when p(0)=0 and p(L)=1.5,
the effect practically vanishes (Q=1). This confirms our ear-
lier observations that practically the whole effect has its
source in the narrow part of the channel near the tip.

V. FINAL REMARKS AND CONCLUSIONS

The basic equation of this paper, Eq. (2.6) has been ob-
tained by the projection of the three-dimensional transport
process in long narrow channels (confined geometry) onto
equivalent one-dimensional process [12,18,19]. Such a pro-
cedure results in the factor 7h(z)? appearing in the reduced
Smoluchowski equation. The procedure is valid when the
local equilibrium is established in the radial direction per-
pendicular to the channel’s axis. The first-order correction to
this result is the position-dependent correction to the diffu-

sion coefficient: D;— D;(z)=D,/f(z) [18,19]. This correction
results from both the geometrical effects [described by the
shape function h(z)] and the presence of the potential ¢,(z).
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The geometrical effect is estimated to be f,(z)=1
+(1/2)h'(2)* (cf. [19] for more details). For the majority of
narrow conical pores this correction is negligible [for the
short pore (0.5,1.5,6) nm f,=1.014, for longer pores it is still
smaller] for more “fancy geometries” it may introduce non-
negligible effects. The correction f, is much more difficult to
determine. The formulas given by Zwanzig [18] hold for
two-dimensional cases only and require very special proper-
ties of the potential ¢(z,r), which are not fulfilled by the
electrostatic potential considered in the Sec. IV [26].

The presence of the effect of the asymmetrical diffusion
discussed above was established experimentally for the dif-
fusion of electrolytes in charged nanopores. So far there is no
verification of the existence of such an effect in neutral con-
ditions. This raises the following question: to what extent are
one-dimensional continuous diffusional-type models suffi-
cient for the description of transport through nano-sized
channels? These issues are being widely discussed, mainly in
the context of the transport phenomena in biological chan-
nels [28]. One of main objections is the well-established and
rather obvious fact that the particles (ions) can pass through
pores of diameter comparable to particles’ sizes only in the
form of single ions, which seems to exclude the possibility of
the continuous (macroscopic-type) description. We want to
stress the difference between single-file and our continuum
description. On the other hand, the diffusion-type models
seem to describe the familiar nanotransport phenomena at
least in a semi quantitative way, and are able to reproduce
most of their qualitative characteristics. In the following
paragraph, we offer our explanation of this seemingly para-
doxical situation.

The starting point of all diffusion-type description is the
Smoluchowski-Nernst-Planck equation. The original Smolu-
chowski equation [29] describes the evolution of the (condi-
tional) probability density for finding the Brownian (diffus-
ing) particle moving in an external field. The Smoluchowski
equation is isomorphic with the continuity equation together
with the first Fick’s law (of diffusion in external field). How-
ever, in this case it is the diffusion of probability. [It was
Smoluchowski who first realized that the phenomenological
laws of macroscopic diffusion can be applied to probability
“because the process of diffusion is the superposition of
Brownian motions of the molecules of the substance under
consideration”.] In other words, the Smoluchowski equation
describes the (probability of finding of a) particle performing
a random walk in an external field, and therefore is able to
describe even the single-ion motion in nanoscale. The de-
scription in terms of the concentration of diffusing molecules
is just the way of normalizing the probability density, related
to the fact that (due to experimental limitations) the mea-
sured currents are of the order of pico-Amperes, i.e., millions
of particles per second.

The effect of the asymmetrical diffusion described in this
paper and in [14] may serve for the construction of nanofil-
ters (or nanosieves), composed of thin polymer films con-
taining many nanochannels of the same orientation. Such
filters could be used for retrieving the molecules of a given
component from solutions in which its concentration fluctu-
ates strongly, and only occasionally attains high values, as
the result of either varying environment, or chemical reac-
tions.
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The effect of asymmetric diffusion through the membrane
has been demonstrated via numerical simulations [30]. The
phenomenon occurs if the diffusing particles are spatially
extended and the pores in the membrane have asymmetric
structure. The authors suggest that the purely geometric ef-
fects may play a role in the potassium ion channel.

Because the anisotropy coefficient in the case of ionic
diffusion seems to depend very weakly on channels’ sizes
when the narrow apertures do not exceed about 20 nm diam-
eter [14], it will not be necessary to control tightly these
diameters. On the other hand, the absolute magnitude of the
currents, and consequently, the amount of the transported
material, are roughly proportional to mryr;/L; therefore it
would be expedient to use channels of the greatest possible
width without diminishing the asymmetry effect. At the same
time, it should be remembered that the effect virtually van-
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ishes in wider pores [14], which is the result of short-ranged
screened interactions between ions and charges on pores’
walls.

To avoid misunderstandings, we re-emphasize the fact
that the described effect results from the differences in dif-
fusion rates under the same concentration gradient, and
therefore cannot be used, e.g., for pumping the molecules
(ions) against their concentration gradient. On the other
hand, this fact does not exclude the use of the effect de-
scribed recently [16,17] of carrying other particles by the
diffusing ones, i.e., of the use of so-called co-diffusion.

ACKNOWLEDGMENTS

The authors would like to thank Zuza Siwy and Paul
Grayson for insightful comments and kind cooperation.

[1] B. Hille, Ionic Channels of Excitable Membranes, 2nd ed.
(Sinauer, Sunderland, MA, 1992)

[2] P. Hiinggi and R. Bartussek, Brownian Rectifiers: How to Con-
vert Brownian Motion into Directed Transport, in Nonlinear
Physics of Complex Systems, Current Status and Future
Trends, edited by J. Parisi, S. C. Miiller, and W. Zimmermann
(Springer, Berlin, 1996), vol. 476, pp. 294-308.

[3]R. D. Astumian and I. Derenyi, Eur. Biophys. J. 27, 474
(1998).

[4] Z. Siwy, Y. Gu, H. Spohr, D. Baur, A. Wolf-Reber, R. Spohr,
P. Apel, and Y. E. Korchev, Europhys. Lett. 60, 349 (2002).

[5] Z. Siwy, P. Apel, D. Baur, D. D. Dobrev, Y. E. Korchev, R.
Neumann, R. Spohr, C. Trautmann, and K. Voss, Surf. Sci.
532-535, 1061 (2003).

[6] Z. Siwy and A. Fulinski, Phys. Rev. Lett. 89, 198103 (2002).

[71E. H. Serpersu and T. Y. Tsong, J. Biol. Chem. 259, 7155
(1984).

[8] T. Y. Tsong, Electroconformational Coupling: A fundamental
Process of Biomolecular Electronics for Signal Transduction,
in Molecular Electronics. Biosensors and Biocomputers, ed-
ited by F. T. Hong (Plenum Press, New York ° London, 1989),
pp. 83-95.

[9] D.-S. Liu, R. D. Astumian, and T. Y. Tsong, J. Biol. Chem.
265, 7260 (1990).

[10] A. Fulinski, Phys. Lett. A 193, 267 (1994); Phys. Rev. Lett.
79, 4926 (1997).

[11] See, for example B. Hille and W. Schwarz, J. Gen. Physiol.
72, 409 (1978).

[12] A. Fulinski, I. D. Kosifiska, and Z. Siwy, Europhys. Lett. 67,
683 (2004).

[13] A. Fulinski, 1. D. Kosifiska, and Z. Siwy, New J. Phys. 7, 132
(2005).

[14] Z. Siwy, L. D. Kosinska, A. Fulinski, and C. R. Martin, Phys.
Rev. Lett. 94, 043102 (2005).

[15] A. Alcaraz, E. M. Nestorovich, M. Aguilella-Arzo, V. M. Agu-
ilella, and S. M. Bezrukov, Biophys. J. 87, 943 (2004).

[16] S. Savel’ev, F. Marchesoni, and F. Nori, Phys. Rev. Lett. 91,
010601 (2003); 92, 160602 (2004).

[17] T. Chou and D. Lohse, Phys. Rev. Lett. 82, 3552 (1999).

[18] R. Zwanzig, J. Phys. Chem. 96, 3926 (1992).

[19] D. Reguera, and J. M. Rubi, Phys. Rev. E 64, 061106 (2001).

[20] S. Kuyucak, O. S. Andersen, and S-H. Chung, Rep. Prog.
Phys. 64, 1427 (2001).

[21] V. L. Yudson, and P. Reineker, Phys. Rev. E 64, 031108 (2001).

[22] See, for example Handbook of Chemistry and Physics; CRC
Press, FL, 1973-1974 (edited by R. C. Weast), pp. D-132,
D-213.

[23] L. G. Camara, and F. Bresme, J. Chem. Phys. 120, 11355
(2004).

[24] A simplified semiquantitative attempt to describe ion currents
through a conical nanopore, based on the Smoluchowski-
Nernst-Planck equation with a simplified form of electric po-
tential inside the pore, was given recently in C. Rischel and H.
Flyvbjerg, Phys. Rev. Lett. 91, 179801 (2003); cf. also Z.
Siwy, and A. Fulifiski, ibid. 91, 179802 (2003).

[25] For the sake of better visualization of the behavior at U=0, we
present in Fig. 5 the diffusional currents as the functions of the
external voltage U.

[26] In Egs. (2.6) and (2.7), the role of the effective diffusion co-
efficient D, plays the term A(z)D; [or A(z)D,(z)]. This
means that the smaller is D; ¢, the more narrow the channel
becomes. Such an effect was found recently in molecular-
dynamics simulations of the fluid confined in a nanopore [27].

[27] Y-C. Liu, Q. Wang, and L-H. Lu, J. Chem. Phys. 120, 10728
(2004).

[28] W. Nonner, D. P. Chen, and B. Eisenberg, J. Gen. Physiol.
113, 773 (1999); D. G. Levitt, ibid. 113, 789 (1999.)

[29] M. Smoluchowski, Bull. Int. Acad. Pol. Sci. Lett., Cl. Sci.
Math. Nat., Ser. A 1913, 418 (1913); Ann. Phys. (Paris) 48,
1103 (1915); Phys. Z. 17, 557, 585 (1916).

[30] N. Packard, and R. Shaw, e-print cond-mat/0412626.

011201-7



