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We propose a harmonic velocity noise with a broadband feature, which is the time derivative of the harmonic
noise. If this noise is regarded as a thermal one, the system has a vanishing effective friction and it should
induce ballistic diffusion of a free particle at long times. The effective temperature of the system coupled to
such a structured heat bath represented by the harmonic velocity noise is introduced. This means that any initial
preparation will approach asymptotically a preparation-dependent variance and mean value for velocity vari-
able. Thus the fluctuation-dissipation theorem does not hold as there is no unique stationary state being
connected with a breakdown of ergodicity. This noise can show greenness when it is taken as an external noise
source to drive a correlation ratchet.
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I. INTRODUCTION

During the last few years substantial progress has been
achieved towards an understanding of anomalous diffusive
behavior of a system in disordered media. Most of the dis-
tributions of these systems in the stationary state are non-
Gaussian, for instance, Lévy flights and Tsallis statistics �1�.
Whether a thermal Gaussian colored noise produced by a
linear stochastic differential equation subjected to a white
noise will induce abnormal diffusion? This question needs to
be addressed and investigated. There exists a very nice intro-
ductory and comprehensive review on colored noise phe-
nomena �2�. As one knows that the limit of superdiffusion is
ballistic diffusion, namely, the mean square displacement of
a free particle increases with the square of time. The physical
realistic Brownian motion for the mean square displacement
exhibits a ballistic behavior at short times by expanding the
exponential for short times �2�. Very recently, the effect of
bacterial motion on micron-scale beads in a freely suspended
soap film was reported �3�, where the mean-square displace-
ment of the particle shows ballistic diffusion for short time,
however, normal diffusion is recovered in a long time limit.
This is a result of transient formations of coherent structures
in the bacterial bath. Ballistic diffusion has also been theo-
retically studied in Refs. �4–9�. One of the dynamical origins
of anomalous diffusion is nonlocality in time and thus the
velocity of the particle shows a memory effect, which results
in a generalized Langevin equation �GLE� �10�, however, the
behaviors of the system at long times remain open.

The simple structured noise is the zero-mean Gaussian
quasimonochromatic noise �also called the harmonic noise
�HN��, which has a power spectrum having a narrow Lorent-
zian peak centered, not at zero frequency, but at a finite fre-
quency and has widely been used �11–13�. It is the solution
of a second-order stochastic differential equation driven by a

Gaussian white noise. However, the time derivative of HN,
i.e., the harmonic velocity noise �HVN�, used as a random
driving force is seldom considered and it can induce, as we
will show in this paper, some interesting phenomena in the
long time limit. We demonstrate in this work that the spec-
trum of HVN differs very much from that of HN. The former
leads to ballistic diffusion when t→� and the terminal ve-
locity of the particle does not vanish even without external
force, while the latter just leads to the ones of normal diffu-
sion. The physical situations for GLE with a HVN as an
internal noise can be found for a vortex transport in the pres-
ence of magnetic field, and a particle interacting, via dipole
coupling, with a blackbody radiation field �14� as well as in
the presence of the velocity-dependent coupling �15�. Be-
sides, a breakdown of ergodicity for HVN driven a Gaussian
non-Markovian process will be discussed.

This paper is organized as follows. In Sec. II we introduce
the harmonic velocity noise and write down its correlation
function and spectral density. In Sec. III we report the theo-
retical and numerical results for a thermal HVN-driven sys-
tem. In Sec. IV, we study a correlation ratchet driven by the
HVN, which acts as an external noise, and a colored Brown-
ian motion. Finally, we summarize the main results and give
a brief conclusion in Sec. V.

II. THE HARMONIC VELOCITY NOISE

For our considered Gaussian noise processes the statistics
is completely characterized by the power spectrum and the
first moment �16�. In order to obtain these quantities, a
Gaussian white noise ��t� is applied, for example, as an input
voltage to a RLC electric circuit, the electrical property is
described by the following Langevin equation:

ẏ = z�t�, ż = − �z − �0
2y + ��t� , �1�

where ��t� has zero centered and the correlation function
���t���t���=2���t− t�� with � being the intensity of white*Electronic mail: jdbao@bnu.edu.cn
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noise, � and �0 are the damping and frequency parameters,
respectively. This describes clearly the Brownian motion of a
simple harmonic oscillator of the thermal noise in a �R ,L ,C�
circuit.

In Eq. �1�, the voltage-variable y�t� is the well-known
Gaussian HN �11,12� with the following correlation function:

�y�t�y�t��� =
�

�1
2 − �2

2� 1

�1
exp��1�t − t���

−
1

�2
exp��2�t − t���	 , �2�

and the spectrum

Syy��� =
2�

��2 − �0
2�2 + �2�2 , �3�

where �1 and �2 are two roots of the equation �2+��
+�0

2=0.
Also in Eq. �1�, the electrical current-variable z�t� should

be regarded as an output signal with a Gaussian distribution,
which is called the harmonic velocity noise here. The corre-
lation function for HVN with a stationary behavior �i.e.,
time-translation invariance at any time� is given by

�z�t�z�t��� =
�

�1
2 − �2

2 �− �1 exp��1�t − t���

+ �2 exp��2�t − t���� . �4�

At t=0, both y and z are assumed to obey two independent
Gaussian distributions with �z2�0��=��−1, �y2�0��
=��−1�0

−2, and �z�0�y�0��=0 �see Appendix A�. The spectral
density of HVN is the Fourier transform of the correlation
function of the noise which is expressed as

Szz��� =
2��2

��2 − �0
2�2 + �2�2 , �5�

where � will be defined in Appendix A. Note that now the
spectral density of HVN is in proportion to the square of
frequency.

When �0
2→0, z�t� becomes the Ornstein-Uhlenbeck noise

�OUN� with the correlation time 	=�−1 if we choose �
=D�2 where D is the thermal diffusion coefficient; when �
→�, the above correlation function reduces further to a �
function and z�t� becomes a white noise. Note that the low-
frequency part of this noise has been removed �Szz�0�=0�
and the high-frequency part decays �Szz��→��→0�, thus
the spectrum �5� shows a broadband behavior. For the HN,
however, its low-frequency part does not vanish �11,12�, i.e.,
there is no � dependent term appearing in the numerator of
its spectral density Syy��� �Syy�0��0�. Due to this different
spectrum from the one of the usual HN, it will lead to much
different dynamical behaviors of the system in a long time
limit.

All quantities plotted here and below are dimensionless.
In Fig. 1, we plot the spectral densities of HN and HVN. The
width of spectral density S��� is defined as


� ª



0

�

S���d�

S��m�
, �6�

where �m is the center frequency of the spectral density. For
the HN, 
�=�0

2� / �2�� when 2�0
2��2 ��m=0� and 
�

= �4�0
2−�2��� / �8�0

2� when 2�0
2
�2 ��m=��0

2−�2 /2�.
For the HVN, 
�=�� /2 and �m=�0, so the width spectral
density of HVN increases with the increase of the damping
parameter of the noise and which reduces approximately to
the OUN when �→�.

III. NON-MARKOVIAN FEATURES AND EFFECTIVE
TEMPERATURE

The GLE describing the motion of a particle can be de-
rived by using the Zwanzig-Mori projection method �17,18�
and the system-plus-reservoir method �4,19,20�. The micro-
scopic derivation of the equation for generalized Brownian
motion in this context has been presented in Ref. �21�, where
the friction is generally state-dependent and becomes station-
ary only with an average over the initial probability of start-
ing values. For the exception of a state independent friction
in the GLE �18�, a discussion of possible pitfalls and open
problems is given in Ref. �22�.

Now we show that physical systems might exhibit an in-
ternal broadband noise within the framework of GLE. The
blackbody radiation field �14� and the magnetic force �15�
are two examples. Here we focus on dynamical results of the
equation with frequency-dependent but state-independent
friction. We write the following GLE including a thermal
HVN z�t� for the system, i.e.,

ẋ�t� = v ,

mv̇�t� = − m

0

t

��t − t��v�t��dt� − U��x� + z�t� , �7�

where m is the mass of the particle, ��t� is the damping
kernel due to HVN. In the Langevin formalism, the random
force z�t� is assumed to be uncorrelated to the initial velocity
and must satisfy Kubo second fluctuation-dissipation theo-
rem �23,24� expressed as �z�t�z�0��=mkBT��t�, where kB is

FIG. 1. The spectral densities of HN and HVN as functions of
frequency. The parameters used are �wkBT=1.0, �0

2=1.0, and �
=0.8, 2.0, 6.0 from top to bottom.
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the Boltzmann constant and T is the temperature of the heat
bath. In particular, the FDT is necessary, but not sufficient to
yield the consistent thermal Brownian motion �25�.

It is well known that the correlation function of HN has a
decaying oscillation which becomes negative at some times
in the underdamped case; elsewhere, which is positive in the
overdamped case. However, the integration of damping ker-
nel over time is always positive in both cases. In Fig. 2, we
plot the damping kernel functions of HVN and HN in the
overdamped case. For thermal HN, its damping kernel is
positive at any time and the effective Markovian friction is
defined by �0�
0

���t�dt=� / �mkBT�0
4� �12�; however, in

sharp contrast to HN, this quantity is equal to zero for HVN.
Besides, it is seen that the damping kernel function of ther-
mal HVN starts out positive, crosses zero towards negative
values, and assumes in the asymptotic long time limit zero
from below.

In a case where the potential is absent, the solution of Eq.
�7� can be obtained by the Laplace transform �26�,

x�t� = x0 + v0H�t� +
1

m



0

t

H�t − t��z�t��dt�, �8�

v�t� = v0Ḣt�t� +
1

m



0

t

Ḣt�t − t��z�t��dt�, �9�

where x0 and v0 are the initial position and velocity of the
particle. The response function H�t� is the inverse

Laplace transform Ĥ�s�= �s2+s�̂�s��−1, where �̂�s�
=
0

���t�exp�−st�dt is the Laplace transform of the damping
memory kernel. Applying the residue theorem, we have the
response function as

H�t� = �w�2�0
−4b2 + bt + ��t� �10�

with b=�0
2 / ��0

2+�w�� and ��t�= ��1

−�2�−1�� j=1
2 �−1� j� j

−2�w� exp�� jt��, where �1 and �2 are two
roots of the equation �2+��+�0

2+�w�=0 and the real parts
of both two roots are negative. Here we have chosen D
=�wkBT, where �w is the friction coefficient of the corre-
sponding thermal white noise used to drive HVN.

When the driving noise is internal, one can get a more
convenient form �27� of the mean-square displacement of the
free particle, which is given by

�x2�t�� = �x0 + v0H�t��2 +
kBT

m �2

0

t

H�t��dt� − H2�t�	 .

�11�

If the particle starts from the origin of coordinate �x0=0�, we
have

��x2�t��� = � kBT

m
b + ��v0

2� −
kBT

m
	b2�t2 +

kBT

m �2
�w�2

�0
4 b2t

+ 2

0

t

��t��dt�	 + ��v0
2� −

kBT

m
	���w�2

�0
4 b2	2

+ 2
�w�2

�0
4 b3t + 2b��w�2

�0
4 b + t	��t� + �2�t�� .

�12�

Here �¯� denotes the average with respect to the initial
states of the particle and might differ from the ensemble
average �¯�.

When t→�, ��x2�t���� ��kBT /m�b+ ��v0
2�− �kBT /m��b2�t2,

so that the proposed HVN can induce ballistic diffusion in a
long time limit. This motion is also called a fast superdiffu-
sion �9�, furthermore, we call here the process in the pres-
ence of a potential as a fast non-Markovian one. Note that
when ��0

−2→� and then b→0, the term 2�w�2�0
−4b2t

→2�w
−1t in Eq. �12�, the present process reduces to the nor-

mal diffusive one. Indeed, the ballistic diffusion is the limit
of superdiffusion and is also an intermediate result between
the internal Gaussian white noise case and the external white
noise without friction case. The asymptotical mean-square
displacement of a free particle is proportional to t for the
former and t3 for the latter.

The other non-Markovian features for HVN-driven par-
ticle in long time limit are found as the following:

�v�t → ��� = v0b �13�

and

��v2�t → ���� =
kBT

m
+ b2��v0

2� −
kBT

m
	 . �14�

It is seen from Eq. �13� that the asymptotic mean velocity
does not vanish and from Eq. �14� that an additional term
appears, however, which is absent in normal Brownian mo-
tion. Only when the initial state of the particle is also chosen
to be a thermal equilibrium state, i.e., �v0

2�=kBT /m �24�,
namely, the initial velocity of the particle obeys a Gaussian
distribution with zero mean and variance kBT /m. In this case,
the second moment of the velocity can arrive at its equilib-
rium value. This means that the breakdown of the FDT being
connected with the breakdown of ergodicity as there is no
unique stationary state for this ballistic diffusion. Here the
parameter b measures the nonergodicity strength, it is the
source of the issue of violation of ergodicity.

When the initial distribution of the particle is not in the
assumed equilibrium state, an effective temperature for the
system needs to be introduced

FIG. 2. The damping kernel functions vs time. The parameters
used are �=3.0, �0=1.0, �0=3.0, and �w=1.0.
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Teff

T
= 1 + b2�T0

T
− 1	 , �15�

where Teff= �v2�t→���m /kB and T0= �v0
2�m /kB. From Eq.

�15� it is seen obviously that Teff�T when T0�T; Teff
T
when T0
T; and Teff=T when T0=T. Moreover, if ���0,
Teff=T, which is just the result of a normal thermal noise-
driven system with a finite low-frequency Markovian fric-
tion.

In Fig. 3, the average velocity �v�t�� of the particle related
to its fixed initial value v0 is plotted as a function of time for
various values of the damping parameter � of HVN. It is
shown that the asymptotic velocity of the particle does not
relax towards zero and decreases as � increases. At the be-
ginning stage, the average velocity of the particle decreases
partly due to a positive friction and then keeps a finite value
when the friction becomes negative. The initial velocity of
the particle is dissipated partly by anomalous memory fric-
tion. This means that the dissipative dynamics in the pres-
ence of ballistic diffusion differs from normal Brownian mo-
tion.

It is possible to reformulate Eq. �7� into a set of Markov-
ian Langevin equations through introducing variable trans-
formations �28� �see Appendix B�. We have a set of Markov-
ian Langevin equations written as

ẋ = v ,

mv̇ = − U��x� + w ,

ẇ = − �w − �w�v − �0
2y − u + ��t� ,

u̇ = �0
2�w − z� ,

ẏ = z ,

ż = − �z − �0
2y + ��t� , �16�

where ��t� is a zero-mean Gaussian white noise with
���t���s��=2�w�2kBT��t−s�. The above equations with
U�x�=0 define our embedding, thus the process x�t� is com-
pletely decoupled and can be ignored now. For a Gauss-
Markov process in five dimensions X�t�= �v�t� ,w�t� ,
u�t� ,y�t� ,z�t�� is discussed in detail in Appendix B.

We can simulate a set of Markovian Langevin equations
�16� by using the Monte Carlo method. In order to produce a
stationary process for the present thermal colored noise, the
distributions of all noise variables at initial time are chosen
to be independent Gaussian functions with zero mean and
variances �y0

2�=�w�kBT /�0
2, �z0

2�=�w�kBT, w0=z0, and a �
function for u0=0.

In Fig. 4, we show the calculated result for
the mean-square displacement of a free particle with the
initial velocity obeying a Gaussian distribution, P�v0�
= �2��v0

2��−1/2 exp�−v0
2 / �2�v0

2��� where �v0
2�=kBT0 /m. The

theoretical result is also plotted in the same figure by using
the expression �12�. It is observed that the mean-square dis-
placement of the particle is proportional to t2 and shows a
parabolic behavior, namely, the ballistic diffusion appears in
the long time limit. The theoretical results are in agreement
with the numerical simulation. Moreover, the asymptotical
result for a thermal HVN-driven system is sensitive to the
initial condition. This implies that non-Markovian effect with
a vanishing effective friction influences not only on the tran-
sient process but also on the long-time result for a system of
this kind.

The explicit velocity correlation function �VCF� of a free
particle is derived and given by

��v�t�v�s��� = �v0
2�b2 +

kBT

m
��� b2

�0
2 +

B

�2
exp��2�t − s��

−
B

�1
exp��1�t − s��	 + ��v0

2� −
kBT

m
	

�B„b�C�exp��1t� + exp��1s�� − D�exp��2t�

+ exp��2s��� + BC2 exp��1�t + s��

+ BD2 exp��2�t + s�� − BCD�exp��1t + �2s�

+ exp��2t + �1s��… , �17�

where B= ��1−�2�−1, C= ��1
2+��1+�0

2� /�1, and D= ��2
2

+��2+�0
2� /�2. It can be seen that the distribution of the

velocity does not become stationary at any time, if the sec-
ond moment of initial velocity of the particle is not chosen to
be the value at the equilibrium state. As soon as �v2�0��
=kBT /m, all the aging terms in Eq. �17� vanish, the VCF

FIG. 3. Time-dependent average velocity of the free particle
related to its initial velocity for various � in the absence of external
driving force. The parameters used are �w=1.0 and �0=1.0.

FIG. 4. Calculated mean square displacement of a free particle
for various initial temperatures T0. The solid lines and open points
are analytical and numerical results, respectively. The parameters
used are T=1.0, �w=0.2, �=5.0, and �0=1.0.
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becomes stationary, so that the VCF depends on the time
difference only. In this case, the time derivative of the VCF
at t=0 is equal indeed to zero, �d /dt���v�t�v�0���t=0=0.

Especially for the harmonic potential U�x�= 1
2m�0

2x2 with
m�0

2
0, the problem is still exactly solvable for Eq. �7�, the
results for the second moments of coordinate and velocity
are shown in Appendix C. It is noticed that the mean square
displacement of the particle remains now bounded, but will
be independent of the initial conditions. Thus both the energy
balance theorem and the ergodicity are obeyed in this case.

IV. HVN DRIVEN CORRELATION RATCHET

For general references for ratchets and Brownian motors
see Refs. �29–35�. Here we just discuss the case when the
proposed HVN z�t� is used as an external noise with intensity
Q to drive a correlation ratchet �29�, i.e.,

ẋ�t� = − U��x� + �2D�1�t� + z�t� , �18�

where U�x� is a ratchet potential and chosen to be

U�x� = −
1

2�
�sin�2�x� + 0.25 sin�4�x�� . �19�

In Eq. �18�, �1�t� is a white noise with ��1�t��=0 and
��1�t��1�s��=��t−s�, which is independent of the white noise
��t� in z�t�. In the case of small noise intensity, noise-induced
steady average velocity is determined by

�v� = A�exp�− F��0�c+/D� − exp�− F��0�c−/D�� �20�

with F���= �1+RSzz����−1, and c±=
x0

x±dxU��x��U��x��2,
where A is the Arrhenius-Kramers factor, R=Q /D, and x0 is
the minimum of the ratchet potential with the left �right�
maxima x−�x+�. The quantities c± are positive and c−
c+ for
a forward ratchet potential �29�, thus �v�
0 or �v��0 when
F��0�
0 or F��0��0. For HN, F��0�=4R�0

−2��2 /�0
2

−2� / �1+2R�2; for HVN, F��0�=−4R�2�0
−4�0. It is found

that HVN-induced flow is always negative, which is opposite
to that of OUN. The former shows the greenness �30,31� and
the latter shows the redness.

In Fig. 5, we calculate numerically the steady average
velocity of the particle via Monte Carlo simulation for Eq.
�18�. It is compared with the result induced by a Gaussian

white noise plus a harmonic noise y�t� �29�. The steady av-
erage velocity �v� of the particle is plotted as a function of
the noise parameter 	=� /�0

2. For the HN case, the direction
of motion of the particle occurs reversal when 	�2/� �29�;
however, for the HVN case, the particle changes its direction
of the motion when 	 becomes large, i.e., �0

2 becomes small,
because the harmonic velocity noise z�t� reduces to the
Ornstein-Uhlenbeck noise in Eq. �18�. It is concluded that
y�t� shows redness and z�t� can show greenness in the case of
small-to-medium 	.

Note that in the case of inertia ratchet with coexisting
regular attractors which means nonergodicity in phase space,
the diffusion behavior emerges also as being ballistic with a
second moment that grows proportional to t2 �36�. These
inertial ratchet trajectories thus seems to mimic the behavior
of free, nonergodic Brownian motion behavior in the absence
of a potential.

V. SUMMARY

We have presented a solvable non-Markovian Gaussian
model for understanding anomalous features of noise-driven
systems at long times. A harmonic velocity noise is proposed
here; its spectrum differs very much from that of the har-
monic noise. The effective Markovian friction of the system
is equal to zero due to the spectral density with the vanishing
zero frequency. This results in ballistic diffusion and nonva-
nishing asymptotic velocity of a free particle at long times,
the second moment of the velocity can arrive at the equilib-
rium value only when the initial velocity distribution of the
particle is assumed to be the thermal equilibrium state, oth-
erwise, the system exists as an effective temperature. This
means in general FDT does not hold as there is no unique
stationary state for the embedded process which is connected
with a breakdown of ergodicity. When this noise is used as
an external noise, which can show greenness in comparison
with the Ornstein-Uhlenbeck noise in the cases of small-to-
medium correlation times, to drive a correlation ratchet sys-
tem. Our model can be generalized to a j-order derivative of
the solution of a n-order linear stochastic differential equa-
tion subjected to a Gaussian white noise, 1� j�n, which is
regarded as a thermal noise and will also induce ballistic
diffusion. The transport driven by a harmonic velocity noise
or a derivative noise might be applied to various problems in
the future.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China under Grants Nos. 10235020 and
90403007.

APPENDIX A: DETERMINATION OF PARAMETERS OF
HARMONIC VELOCITY NOISE

We write the “velocity” variable for the solution of Eq. �1�
as

FIG. 5. The steady mean velocity of the particle versus the
correlation time of noise 	. The parameters used are D=0.1, Q
=0.25, and �=20. The solid and dashed lines are the results of
HVN and HN �29�, respectively.
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z�t� = a10�1e�1t + a20�2e�2t +
1

�1 − �2



0

t

��1e�1�t−t��

− �2e�2�t−t�����t��dt�, �A1�

where the two coefficients are given by

y�0� = a10 + a20, z�0� = �1a10 + �2a20. �A2�

The correction function of the noise variable z�t� is given by

�z�t�z�s�� =
�

�1
2 − �2

2 �− �1 exp��1�t − s�� + �2 exp��2�t − s���

+ ��1
2�a10

2 � +
�1�

��1 − �2�2	exp��1�t + s��

+ ��2
2�a20

2 � +
�2�

��1 − �2�2	exp��2�t + s��

+ �1�2��a10a20� −
2�

��1 + �2���1 − �2�2	
� �e�1t+�2s + e�2t+�1s� . �A3�

In order to produce the stationary correction function of
the noise at any time, namely, it is only a function of �t−s�,
we let the latter three terms equal zero, so

�a10
2 � +

�

�1��1 − �2�2 = 0,

�a20
2 � +

�

�2��1 − �2�2 = 0,

�a10a20� −
2�

��1 + �2���1 − �2�2 = 0. �A4�

Those lead to �y2�0��=� / ���2�, �z2�0��=� /�, and
�y�0�z�0��=0. We assume that the initial distribution of the
two noise variables y and z are the Gaussian ones with the
above variances.

It is known that �1= �−�+��2−4�2� /2 and �2= �−�
−��2−4�2� /2 from the equation below Eq. �3�, and thus
�1=0 and �2=−� when �→0, so �z�t�z�s��=� /
� exp�−��t−s��. This means that the harmonic velocity noise
can reduce to the OUN in the limit of �→0, the parameter �
needs to obey the condition � /�=D�, i.e., �=�2Q. This
noise can reduce further to a white noise �z�t�z�s��=2D��t
−s� when �→�. Therefore, D=�wkBT for a thermal white
noise, where �w is the friction strength of the system in this
case. According to the above idea, �=�4�wkBT for obtaining
the harmonic noise �11,12�.

APPENDIX B: FIVE-DIMENSIONAL GAUSS-MARKOV
PROCESS

We introduce two auxiliary variables as follows:

w�t� = − m

0

t

��t − s�v�s�ds + z�t� ,

u�t� = 

0

t

��̇�t − s� + ���t − s��v�s�ds . �B1�

In order to make stochastic variables become stationary,
namely, their correlation functions have the behavior of time-
translation invariance at any time, we assume that the initial
distributions of y�0� and z�0� are Gaussian with the variance
determined by Section II, w�0� is the same as z�0� and
u�0�=0.

In the absence of potential, a set of equations �16� de-
scribe a five-dimensional linear Gauss-Markov process. The
stationary solutions of the auxiliary variables and correla-
tions among them with the velocity variable are given by

�y2�st =
�w�

�0
2 kBT, �z2�st = �w�kBT ,

�yz�st = 0,

�yv�st = 0, �zv�st = 0,

�w2�st =
2m�w

3 �kBT

4�0
2 + �w

2 + 2�w�
,

�u2�st = m�0
4��1 − b2�kBT + �1 − b�2kBT0 +

2�w�

�0
2 kBT	 ,

�uv�st = �0
2��1 − b2�kBT − b�1 − b�kBT0� ,

�wv�st = 0. �B2�

Setting �0
2=0, however, which yields an unique distribu-

tion of Boltzmann form with a temperature T, because the
HVN reduces to the OUN in this case. This process is usu-
ally a Markovian one with a behavior of normal diffusion.
Indeed, this non-Markovian process with �w=0 �without
friction and thermal fluctuation� is the result of a contraction
of a nonergodic five-dimensional Gauss-Markov process.
This leads to b=1 and then �v2�t→���= �v0

2�, which results
in different stationary states corresponding to different initial
states. Thus it is rather natural that any initial preparation
will approach asymptotically a preparation-dependent vari-
ance and mean value.

APPENDIX C: HARMONIC POTENTIAL CASE

For the harmonic potential U�x�= 1
2m�0

2x2, the solutions of
Eq. �7� in terms of the Laplace transform technique become

x�t� = �1 − �0
2


0

t

H�s�ds	x0 + H�t�v0 + 

0

t

H�t − s�z�s�ds ,

�C1�

v�t� = v0h�t� − �0
2x0H�t� + 


0

t

h�t − s�z�s�ds , �C2�

where H�t� and h�t� are the inverse transformations of

Ĥ�p�= �p2+ p�̂�p�+�0
2�−1 and ĥ�p�= p�p2+ p�̂�p�+�0

2�−1, re-
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spectively. Thus the second moments of the coordinate and
velocity are given by

�x2�t�� = x0
2 + �v0

2 −
kBT

m
	H2�t� + 2x0v0H�t�

��1 − �0
2


0

t

H�s�ds	 + ��0
2x0

2 −
kBT

m
	

�

0

t

H�s�ds��0
2


0

t

H�s�ds − 2	 �C3�

and

�v2�t�� =
kBT

m
− 2x0v0�0

2H�t�h�t� + �v0
2 −

kBT

m
	h2�t�

+ ��0
2x0

2 −
kBT

m
	�0

2H2�t� . �C4�

It is known that the distribution of the particle in the har-
monic potential is asymmetrically in the long time limit,
namely, �x�t→���=0, this leads to 
0

�H�s�ds=�0
−2. There-

fore, the asymptotic results for the second moments of coor-
dinate and velocity of the particle are ��x2��st=kBT / �m�0

2�
and ��v2��st=kBT /m. This implies that the initial conditions
do not influence upon the results in the stationary state in the
bounded phase space.
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