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A difficulty in interpreting phenomena related to anomalous diffusion concerns how to identify scale invari-
ant superdiffusive from Markovian correlated random walk processes. Here we propose a criterion that can
distinguish between these two kinds of random walks and describe its usefulness in interpreting real data. To
do so, we estimate the correlation time � of the orientation persistence of a general correlated random walk. If
the experimentally observed random walk appears diffusive on scales larger than �, then the data cannot
support the possibility of superdiffusion. We argue that the criterion is a necessary but not sufficient condition
for establishing true superdiffusive behavior.
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I. INTRODUCTION

A classic problem in physics concerns the type of diffu-
sion generated by the dynamics underlying random walks
�RW��1–3�. For large enough times t the root mean square
�rms� displacement of the RW scales as t�. Normal diffusion
leads to �=1/2 and super�sub�-diffusion corresponds to
��1/2��1/2�. In this respect, different processes can be
associated to different classes of RW. For instance, correlated
random walks �CRW� are characterized by retention of di-
rectional memory, finding applications �4� in problems as
diverse as tracer diffusion in lattice gas systems �5�, poly-
mers chains �6,7�, scattering �6,8�, and animal motion �9�.
But due to their Markovian nature, CRW tend asymptotically
to Brownian diffusion for times beyond a correlation time �.
On the other hand, Lévy walks �or flights� �LW� �1,2� can
give rise to genuine superdiffusive behavior ���1/2� in a
number of phenomena �1,10–12�. In contrast with CRW, LW
models use a broad class of move length distributions that
renormalize to the Lévy-stable distribution �1�. For the steps
� j, the long-range tails of such distributions follow the power
law

P�� j� � � j
−�, � j � �0, �1�

where �0 is a typical lower cutoff distance for the power-law
tail regime and the exponent �L=�−1 �for 2���3� is the
Lévy index. For 2���3, one obtains superdiffusion. Nor-
mal diffusion results for �	3. The limit �→1 leads to bal-
listic motion.

The above two classes of RW models have a high degree
of explanatory power in many concrete instances. But ex-
actly which one to choose will depend on the distinct statis-
tical and scaling properties of the system in hand �see, e.g.,

Ref. �13��. Consider animal movement for example. Taken as
a whole, both CRW and LW can adequately account for ani-
mal motion �14,15�. However, in random foraging �11,16�
there are certain ecological mechanisms which, in specific
cases, can provide the necessary clues for the identification
of the model class resulting in the best search strategies �17�.
On the other hand, the absence of a priori extra information
may pose great challenges in interpreting real data. For in-
stance, in ecological studies the same data set can lead to
apparent agreement with both kinds of RW �15�. Similar is-
sues are important in classifying experimental data for cell
motility �18,19�, where both normal as well as anomalous
diffusion can arise. Moreover, Gaussian as well as non-
Gaussian velocity distributions do occur �19�.

In fact, the necessity to better characterize experimentally
the type of diffusion �i.e., normal versus anomalous� exists in
contexts as diverse as surface growth, molecular dynamics,
and nuclear spectra analysis �20�. Our aim here is to propose
a general criterion that distinguishes more carefully between
diffusive and scale invariant superdiffusive processes. Fur-
thermore, we show how to apply it to experimental data,
establishing whether the amount of information is sufficient
to identify the type of diffusion.

In principle many methods can be used to detect correla-
tions in time series. For example, usually it is not compli-
cated to detect correlations in CRW models which are absent
in Lévy walks and flights. However, the nature of experimen-
tal data creates extra difficulties to make such distinctions,
since in practice one “slices” the observed trajectory into
many small steps to generate a RW �9�. For example, the
most commonly used standard procedures of trajectory dis-
cretization into step lengths assume that animal movement is
a continuous process. So, the transformation of a recorded
path into a discretized RW is somewhat arbitrary. In particu-
lar, the values of the “turning angles” between successive
RW steps depend greatly on the values of the step lengths,
which in turn, depend on different aspects of the discretiza-
tion procedure �e.g., whether the step length are fixed or
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variable�. Thus, intrinsically the discretization introduced by
RW methods is an artefactual technicality. These procedures,
used to digitize experimental data, typically lead to RW with
a Gaussian-like distribution of step lengths but having corre-
lations in the velocity vectors. A relevant parameter is the
maximum tolerance for the deviation between the discretized
random walk and the original trajectory. Smaller tolerances
lead to smaller RW step sizes on average, i.e., one obtains a
higher resolution for the RW.

For these reasons even a LW, after discretization, will
appear to have a Gaussian-like distribution of step sizes with
long-range �non-Markovian� correlations between successive
step velocity vectors. The asymptotic power law distribution
of step sizes in the original LW becomes lost in the discreti-
zation. To compensate this artefact, the discretized steps
maintain directional memory for distances equal to the origi-
nal LW step sizes. Hence, a major challenge in analyzing
experimental data concerns how to distinguish LW from
CRW processes. In this context, the criterion we propose
may represent a different approach to study and analyze ex-
perimental data.

II. METHODS AND RESULTS

A. Markovian correlated random walks

Consider two-dimensional CRW models, in which persis-
tence �or directional memory� is controlled by the probability
distribution of the relative turning angles. CRW models can-
not have scale invariance, presenting, instead, a characteristic
scale �or time �� associated with the exponentially decaying
correlations typical of Markov processes. To obtain �, we
define an adimensional two-point correlation function in
terms of the RW step vectors r j as C��j− i����r j ·ri	 / �rjri	,
where i, j are integer indices representing steps. We assume
that a CRW process has mutually independent and identically
distributed step lengths rj �of finite variance� and turning
angles 
 j. So, C�1�= �r j ·r j−1	 / �rjrj−1	 reads

C�1� = �cos�
�	 = 

−�

+�

d
 cos�
�fw�
� , �2�

with fw denoting the circular “wrapped” probability density
function �PDF� of relative turning angles. In the above equa-
tion 
 represents the angle between two successive step vec-
tors, so only the relative orientations, but not the actual turn-
ing angles, have correlations. For circular statistics �21� the

mean resultant length � and mean direction 
̄ are related to
the first circular characteristic function by 
1��exp�i
�	
=� exp�i
̄�. Unless 
̄=0, the CRW will contain “loops” that
prevent persistence. Therefore, we can restrict our attention

to the case 
̄=0, so that �=�1=C�1�. Note that �=1 for a �
distribution, and �=0 for a uniform distribution. The Mar-
kovian character of CRW implies C�t / t0���C�1��t/t0

=exp��t / t0�ln��cos�
�	��, where t0 is the typical time of one
step. We thus have �=−1/ ln��cos�
�	� as the the adimen-
sional correlation time �or length� measured in step units.
The validity of this general expression extends to all one-step
Markovian CRW models. For any scale a few orders of mag-

nitude larger than �, the CRW appears Brownian because the
model cannot keep the orientations correlated at such rela-
tively large scales.

B. Criterion for superdiffusion

The natural question is then whether a data set supports
genuine superdiffusion �e.g., a LW� as opposed to a CRW
that only appears superdiffusive at sufficiently small scales.
Our results suggest a natural criterion for determining when
a data set contains enough information to answer to this
question. Since a CRW only converges to Brownian motion
on scales much larger than �, any data set spanning a period
� not larger than the correlation time does not contain suffi-
cient information to make such a distinction with any level
of statistical significance. We can estimate �meas.
�−1/ ln��cos�
�	meas.�, in which the expectation �cos�
�	meas.

denotes the experimentally measured value of the first cosine
moment. Since we can typically infer �meas. from only a rela-
tively small stretch of data, we can practically always calcu-
late an upper bound for �. We thus propose a necessary but
not sufficient condition for establishing superdiffusive be-
havior:

� � �meas. = −
1

ln��cos�
�	meas.�
. �3�

Specifically, if a given finite data set corresponds to a time
scale � two orders of magnitude larger than the value of
�meas., then we can in principle distinguish CRW from true
superdiffusive RW. Indeed, a CRW process at this scale
would contain 102 or more independent RW stretches,
thereby providing adequate statistics.

A genuinely superdiffusive RW will have a correlation
time that diverges, but the estimated value �meas. via
�cos�
�	meas. can never diverge unless the turning angle dis-
tribution is a �. If a given data set does not span over such a
long period then only indirect methods of inferring genuine
superdiffusion can be employed, such as tests of self-affinity
or direct estimation of the correlation function to check for
long range power law decay of the turning angle memory
retention. On the other hand, if a given data set satisfies the
criterion, then a direct test of superdiffusion on scales larger
than �meas. can eliminate possible spurious false positives for
shorter scales that arise due to Markovian turning angle per-
sistence.

C. Applications and examples

To demonstrate how the criterion, Eq. �3�, helps distin-
guishing between normal and anomalous diffusion we con-
sider two distinct RW, but with identical turning angle PDF.
The RW model 1 is a genuine superdiffusive random walk,
constructed as the following:

�i� First, we generate a preliminary LW with increments
or step sizes � j �j=1,2 ,… ,N� given by Eq. �1�. We choose
�=2, �0=1, and truncate the flights larger than 10% of the
total RW length. Then, we use this LW as a blueprint or
skeleton to create N small CRW. In these CRW the individual
steps have length �0 and turning angles obtained from a

VISWANATHAN et al. PHYSICAL REVIEW E 72, 011111 �2005�

011111-2



wrapped Cauchy distribution �WCD; see Sec. II D below�.
For the jth set, the number of total steps Nj is given by the
largest integer �� j /�0. Furthermore, the WCD width param-
eter, � j, comes from � j = �e−1−exp�−�0 /� j�� / �e−1−1�. The jth
CRW will have a correlation length that increases as � j in-
creases.

�ii� Next, we concatenate the N CRWs from �i�, maintain-
ing the ordering according to j. This resulting single RW
with a turning angle sequence 
i

�a��i=1,2 ,… ,Nc=N1+N2

+…+NN� will appear locally as a CRW, but has Lévy-like
global properties because we “tune” the local CRW correla-
tion time according to the value of the original LW step size
� j via � j.

�iii� Last, we note that the concatenation introduces a
nonstationarity in the turning angle distribution, because
each segment j has a different WCD �i.e., a different � j�.
Therefore, to compensate for the nonstationarity, we generate
the set 
i

�b� �i=1,2 ,… ,Nc /2� from a WCD with �=0.9.
Then, we take as RW model 1 the sequence 
1

�a�+
1
�b�, 
2

�a�

−
1
�b�, … , 
2i−1

�a� +
i
�b�, 
2i

�a�−
i
�b�, … , 
Nc−1

�a� +
Nc/2
�b� , 
Nc

�a�−
Nc/2
�b� .

The addition of pairwise perfectly anticorrelated turning
angles will make the final distribution less nonstationary,
since locally the distribution of the sums will equal the con-
volution of a �=� j WCD with a �=0.9 WCD. Specifically,
we obtain a series with perfectly stationary mean and suffi-
ciently stationary variance ���=0.9�, so that the beginning
and end of segment j will no longer always be easily detect-
able without prior knowledge.

We construct the RW model 2 by shuffling the sequence
of turning angles of model 1 in step �iii�. By doing so we
destroy any Lévy-like property arising from the � j’s, and end
up with a model very similar to a CRW with �=0.9. The long
range as well as short range �i.e., all� correlations become
completely destroyed by this procedure.

In both models the measured �meas.�10 comes from the
dominant �=0.9 value of the set of anticorrelated turning
angles 
�b�. The two cases have similar visual appearance on
short scales �Fig. 1�a��, but differ quite considerably at larger
scales �Fig. 1�b��. Only the first model will also appear su-
perdiffusive on scales larger than �meas.. The point is that
model 2 maintains directional memory solely due to the turn-
ing angle distribution. On the other hand, model 1 maintains
directional memory by approximately following the underly-
ing Lévy walk skeleton. Regarding the amount of data
points, notice that Fig. 1�a� �with 800 points� shows approxi-
mately 800/�meas.=80 uncorrelated stretches of RW, whereas
Fig. 1�b� �with 105 points� contains thousands of uncorre-
lated stretches. Whereas thousands of independent data

points �Fig. 1�b�� are sufficient to characterize the type of
diffusion, note in contrast that 80 uncorrelated stretches of
RW, equivalent to 80 independent data points, do not provide
enough statistics �Fig. 1�a��. Here we see why � must span at
least two orders of magnitude of the correlation time.

Figure 2 shows the rms displacement for the two models
on a double log plot. A slope of �=1/2 indicates diffusive
behavior. We have performed the average by using a moving
window over the single RW, rather than averaging over an
ensemble of numerically generated walks, in order more
closely to match the typical experimental scenario, in which
large numbers of statistically similar RW cannot be easily
obtained. Moving window methods are often used when one
has limited amounts of experimental data. However, these
methods demand some care because the results can strongly
depend on the time separation of the different windows. If
the separation is not large enough, the input may not be
statistically independent. Thus, the ensemble average and the
moving window average may not converge to the same
value. Model 2 has no correlations besides those arising from
the nonuniform turning angle distributions, so there is no
effect due to the moving window. On the other hand, Model
1 is non-Markovian and has long-range correlations arising
from the underlying LW skeleton, and it is not possible to
obtain statistically independent windows. Nevertheless, since
we are measuring only rms displacement within the windows
as a function of the window size, therefore this procedure
can correctly estimate the scaling for these models, which
have no trends. Even with a moving window method, diffu-
sive motion will give an exponent �=1/2 and a superdiffu-
sive walk will give ��1/2 for both models. More sophisti-
cated moving window methods for analyzing the scaling
properties of RW include Detrended Fluctuation Analysis
and wavelet based methods �22�.

The two walks clearly differ in their scaling, confirming
quantitatively the results observed in Figs. 1�a� and 1�b�. It
exemplifies the fact that two data sets representing the same
system, but having distinct numbers of data points �i.e., “col-
lected” at distinct scales�, can appear qualitatively different,
i.e., sets corresponding to the t��meas. regime may not be
relied on to come to clearcut conclusions about the type of
diffusion.

D. Analytical results: � dependence on the distributions
parameters

The correlation time is a direct function of the parameters
�through �cos�
�	=�� of the different probability distribu-

FIG. 1. Two random walks with identical turning angle distri-
butions shown on a vertical�horizontal scale of: �a� 165�400
units, with t not very much larger than �meas.�10; �b� 7000
�12 000 units with t��meas.�10. Here �0=1 unit.

FIG. 2. Double log plot of rms displacement for the two data
sets shown in Fig. 1 on the relevant range of scales t	�meas.�t0

=1�. Circles �squares� represent model 1 (2).
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tions used to construct the CRW models. Thus, their varia-
tion towards �=1 leads to deterministic ballistic motion,
since � diverges as 1/ �1−�� for �→1. Values for which �
�1 introduce stochasticity, giving rise to Markovian pro-
cesses. Finally, parameter values giving �=0 result in pure
Brownian RW. To illustrate such dependence explicitly we
consider a CRW model based on a general class of circular
PDF recently proposed by Jones and Pewsey �23�, compris-
ing the whole family of circular symmetric unimodal distri-
butions ��	0 and � real�:

fJP�
;�,�� =
�cosh���� + sinh����cos�
��1/�

2�P1/�
0 �cosh�����

. �4�

Here, P�
n �.� is the associated Legendre function of the first

kind of order n and degree �. The above distribution does
reduce to some well known cases like the von Mises �vMD�,
cardioid �CD�, and the quite studied WCD, fWCD= �2��−1�1
−�2� / �1+�2−2� cos�
��, by setting, respectively, �=0, �=
−1, and �= +1.

For Eq. �4�, we have that �1=�= �cos�
�	 reads �23�:

�cos�
�	 =�
tanh
�

2
� , � = − 1�WCD�

I1���
I0���

, � = 0�vMD�

���P1/�
1 �cosh�����

�1 + ��P1/�
0 �cosh�����

, otherwise.
�

�5�

For the CD case ��=1� the last expression in the above equa-
tion reduces to tanh��� /2. So, it becomes clear from the
expression for � and from Eq. �5� that the correlation time is
directly characterized by the parameters � and � of the CRW
associated PDF, Eq. �4�.

III. DISCUSSION

We now comment on why the criterion, Eq. �3�, may rep-
resent a necessary but not sufficient condition for establish-
ing superdiffusive behavior in certain instances. Indeed, it
may happen that besides the directional persistence, the RW
can also have additional correlations �or, more realistically,
anticorrelations� in the turning angles themselves. So, for a
given data set corresponding to such a RW, the calculation of
�meas., based on the theoretical CRW �, will give a minimum
lower bound for the correlation time �thus leading to a nec-
essary condition�, but may not give the upper bound of the
correlation time of the system. Thus, even if the data set
satisfies the criterion and appears superdiffusive on scales
much larger than �meas., yet this is not sufficient to rule out
diffusive behavior at yet larger scales. The absence of loops
in the movement patterns of some organisms is evidence of
anticorrelated turning angles.

We also comment on how �meas., which is an average over
a finite data set, fluctuates as a random variable. Note that for
nonergodic processes, strong fluctuations in �meas. become a
possibility. For a genuinely superdiffusive RW, such as a LW,

the measured expectation �cos�
�	meas. will increase inside
the RW stretches corresponding to ultralong Lévy flight
lengths, but decrease inside the regions of many short flights.
Since the real correlation length of a LW diverges, for a finite
data set �cos�
�	meas. will usually underestimate the true
value �cos�
�	. For a genuinely superdiffusive RW, this will
not pose a problem. For a true CRW, on the other hand, such
fluctuations may lead to �meas. underestimating the CRW �,
which could in principle invalidate the criterion. However,
recall that the criterion specifies that the data should span at
least two orders of magnitude beyond �meas.. To violate the
criterion, a fluctuation would have to make �meas. change by
�at least� one order of magnitude. For this to happen, the
fluctuation �� in the measured mean resultant �meas. would
have to exceed −����−�10. For small � �i.e., small �� this
would mean −����, which is plausible �e.g., a uniform dis-
tribution�. However, the consequent reduction in �meas. would
pose no problem, since it would already have had a relatively
small value to begin with. As �→1, however, the criterion
becomes more sensitive to fluctuations. In practice we expect
such fluctuations not to cause serious problems. For instance,
only rarely does one observe, say, �	0.99, in experimental
data, and even for �=0.99 the fluctuation would have to
reach 8.5% to lead to a decrease in �meas. of one order of
magnitude. We thus see that the criterion remains fairly ro-
bust in the experimentally relevant range of the observed
values of �. On the other hand, if the fluctuation goes in the
opposite direction, leading to an increase in �meas., then the
criterion remains valid.

We also note that truncated Lévy distributions, i.e., where
there are cutoffs for large � in Eq. �1�, lead to superdiffusion
for a very long time, after which they crossover to Gaussian
�i.e., Brownian� behavior �24�. In this sense, the CRW is
nonunique, and has been chosen over other models mainly
due to its relevance to experimental data and the procedures
used to discretize RW trajectories.

Another important issue is that transitions between nor-
mal and anomalous diffusion typically lead to logarithmic
corrections of the form t��log�t��� in the time t �see, e.g.,
Ref. �25��. In the case of LW that follows Eq. �1�, for in-
stance, logarithmic corrections arise for �=3, which corre-
sponds to the transition between diffusive and superdiffusive
behavior. Since our results above do not consider logarithmic
corrections to the algebraic decay for the rms displacement,
therefore one may ask how the proposed criterion applies at
such transition points. We note that in such cases, the rms
displacement will grow linearly in time, but with a logarith-
mic correction that cannot easily be identified in the usual
double log plots. However, further analysis would reveal
their presence. The criterion on its own does not restrict the
choice of data analysis methods for characterizing the scaling
of the rms displacement. The criterion provides the necessary
minimum scale which allows one in principle to tell the dif-
ference between the two kinds of diffusion.

How does the criterion apply for subdiffusive behavior?
We note that if �cos�
�	�0, then a CRW will have a disper-
sive transport regime for small scales, although their Mar-
kovian properties lead to normal diffusion at sufficiently
large scales. Since
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C�t/t0� � �C�1��t/t0 = �− 1�t/t0 exp��t/t0�ln�− �cos�
�	�� ,

�6�

therefore the correlation time for such cases will be

� = − 1/ln�− �cos�
�	� . �7�

More complicated behavior can be modeled using n-step
Markovian CRW models instead of considering only one
step Markov processes.

Finally, we observe that experimentally measured angular
distributions can sometimes be multimodal and asymmetric.
Our examples were based on unimodal and symmetric PDF.
Nevertheless, the general result for � is valid regardless the

type of PDF, provided 
̄=0. The circular variance � is con-

ventionally defined by ��1−�, which, for the case 
̄=0, can
be expressed as �=1−�1. So, to write �=−1/ ln�1−�� may
have a more direct bearing on experimental studies, since �
is one of the most frequently studied parameters of turning
angles.
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