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The fluctuation-dissipation relation is calculated for stochastic models obeying a master equation with
continuous time. In the general case of a nonstationary process, there appears to be no simple relation between
the response and the correlation. Also, if one considers stationary processes, the linear response cannot be
expressed via time-derivatives of the correlation function alone. In this case, an additional function, which has
rarely been discussed previously, is required. This so-called asymmetry depends on the two times also relevant
for the response and the correlation and it vanishes under equilibrium conditions. The asymmetry can be
expressed in terms of the propagators and the transition rates of the master equation but it is not related to any
physical observable in an obvious way. It is found that the behavior of the asymmetry strongly depends on the
nature of the dynamical variable considered in the calculation of the correlation and the response. If one is
concerned with a variable which randomizes with any transition among the states of the system, the asymmetry
vanishes in most cases. This is in contrast to the situation for other classes of variables. In particular, for trap
models of glassy relaxation, the fluctuation-dissipation ratio strongly depends on the observable and the
asymmetry plays a dominant role in the determination of this ratio also if only neutral variables are considered.
Some implications of a nonvanishing asymmetry with regard to the definition of an effective temperature are

discussed.
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I. INTRODUCTION

The out-of-equilibrium dynamics of stochastic models has
gained intensive interest in the last decade. In particular, the
deviations from the fluctuation dissipation theorem (FDT),
relating the linear response to the two-time correlation func-
tion, have been investigated in great detail; for a recent re-
view see [1]. In the past, much attention has been paid to
study the behavior of the response and the correlation for
models of glassy dynamics. While in equilibrium the FDT
relates the response to the correlation in a unique way, this
does not hold in out-of-equilibrium situations. The violations
of the FDT usually are parameterized via the introduction of
the so-called fluctuation-dissipation ratio (FDR) X(z,1,,),
which is defined via [1]

R(.t) = X(t% ty) ﬁCg,tW) . ()

Here, the correlation function of a dynamical quantity M(z)
is defined by C(¢,1,,)=(M(t)M(t,,)) and the corresponding
response to a field conjugate to M(r) is  R(,t,)
=&M(1))/ SH(t,,)| o for t=1,. In case that M is a so-called
neutral variable [2], X(z,t,,) is expected to be independent of
M.

The FDR has been calculated for a variety of models and
it has been found that in some cases X(z,¢,,) can be expressed
as a function of the correlation alone, X(¢,7,,)=X(C). In this
case, it is tempting to use X(C) for the definition of an ef-
fective temperature T, characterizing the out-of-equilibrium
state of the system [3]. Particularly, the long-time limit of X,
X”, might be well suited for this purpose, as this has been
found not to depend on the variable under consideration,
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provided a so-called fluctuation-dissipation (FD) plot, a plot
of the integrated response versus the correlation, exists [2].

The FDR and the value of X* has been calculated for
different models with varying results. One class of models
that has been considered is coarsening models [4], for which
X” is known to vanish [5]. Examples are the well-known
spherical model [6,7] and the O(N) model in the limit of
large N [8], as well as the Ising models in one [9] or higher
dimension [10]. For some discontinuous mean-field spin
models a different behavior has been found [11]. In the con-
text of glass-forming liquids, models which exhibit one-step
replica symmetry breaking (1SB) are of particular interest.
For these models, one finds X(C)=1 for short times, whereas
X(C)<1 in the long-time sector, implying an effective tem-
perature which is higher than the bath temperature. In addi-
tion to the analytical calculations, a number of molecular
dynamics simulations have been performed on model glass-
forming liquids; for a recent review see Ref. [12].

Some of the quoted models are soft-spin models and the
stochastic dynamics is calculated from a Langevin equation.
The classical treatment of FDT violations for stochastic mod-
els with Langevin dynamics has been given in Ref. [13],
where various examples have been considered. In addition to
models obeying a Langevin equation, the out-of-equilibrium
dynamics of models with a dynamics determined by a master
equation (ME) [14] have been investigated, in particular in
the context of the aging dynamics in spin glasses. In this
context also the function A(z,7,), which will be a central
topic of the present paper, has been discussed [15,16]. An-
other simple model revealing glassy dynamics is Bouchauds
trap model [17] and a number of investigations of the FDT
violations have been presented [18-20].

In the present paper, I consider models for which the sto-
chastic dynamics is described by a Markov processes with

©2005 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.72.011104

GREGOR DIEZEMANN

continuous time. Furthermore, I assume that the transition
rates of the ME in the presence of a field are perturbed in a
multiplicative manner [19]. In particular, it is not assumed
that the transition rates obey the detailed balance condition.
The behavior of the function A(7,1,) and its impliciations on
the FDR will be discussed in detail for the trap model [17].
In order to explicitly calculate the response and the correla-
tion, one has to assign values M to the states k. This can be
done in a variety of different ways and I will consider two
special choices. One class of variables randomizes com-
pletely with any transition among the states of the system.
This type of variable is standard in the investigation of trap
models. Another class of variables is chosen in such a way
that there is no correlation to the transitions among the states
at all. Even though in both cases the variables can be chosen
as neutral, it will be shown that the behavior of all relevant
dynamic quantities is quite different. In particular, the asym-
metry vanishes for the first class of variables under very mild
conditions whereas this is different for uncorrelated vari-
ables.

The outline of the paper is the following. In the next
section the general formalism will be discussed and the FDR
will be derived for arbitrary Markov processes with continu-
ous time [21]. In addition, the choice of different dynamical
variables is described. Section III is devoted to a detailed
discussion of trap models. The trap model is chosen because
one generally finds that A(z,7,) vanishes for these models
[18-20]. Here, I will show that A(z,7,)=0 holds only in the
case of randomizing variables. Also the implications of a
nonvanishing asymmetry on the FDR are discussed in detail.
The paper closes with the conclusions in Sec. IV.

II. MASTER EQUATIONS AND FDT VIOLATIONS

A. General formalism

The time evolution of complex systems is often described
in terms of Markov processes. Therefore in the present paper
a stochastic dynamics according to a ME [14] is assumed. It
should be pointed out that in the context of glassy systems
one often is interested in a coarse grained description and
that the coarse graining procedure may result in a nonstation-
ary Markov process [1]. In order to keep the treatment as
general as possible, in the following, I will treat the case of a
nonstationary Markov process. The results obtained are then
specialized to stationary processes in the next section.

In a discrete notation, let G;(z,1,) be the conditional prob-
ability to find the system in state k at time ¢ provided it was
in state [ at time 7, (Greens function). At this point it is not
necessary to specify the meaning of the term “states” apart
from the fact that it is the various realizations of the stochas-
tic process under consideration. If continuous variables are
considered, all sums in the following expressions are to be
replaced by the corresponding integrals. Denoting the rates
for a transition from state k to state [ by Wy ())[=W,_(r)], the
ME reads

%le(h 10) == 2 WGt tg) + 2 WG (1,10).

2)

Only if the transition rates W (¢) are time-independent the
process considered is stationary. Note that the same ME is
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obeyed by the populations of state k, the one-time probabili-
ties py(t), p(t)==2, W (6)p(t) + 2, W, (1)p,(2). These popu-
lations are related to the Gy (z,1,) via pi(t)=2,G/(t,10)pi(to).
In addition to the ME, Eq. (2), one has the so-called “back-
wards equation,” giving the propagation in the initial time
[22]

jfocer, 1) = S W[ Gult.tg) - Gultty)].  (3)

The W;(f) can be related to the elements of the master-
operator W(z) via [14]

W)= Wi(1) = 82 Wi(0). 4)
Here W(t);,=0 holds for all k#/ and the sum rule

2 W(M)y=0 V1 (5)
k

is fulfilled. The sum rule is a general property of the transi-
tion rates for any Markov process and it follows from the
short-time behavior of Gy(t+Ar,1)=8,[1-2,W,,(1)Ar]
+ W, (1)At and 2,G,/(t+At,t)=1. Equation (2) or (3) has to
be solved with the initial condition G,(ty,%,)= &, where &,
denotes the Kronecker symbol. In all calculations that follow
it is assumed that the system is prepared in some initial state
described by a fixed set of populations, pi=p,(r=0) with
Ekp,?: 1. These populations evolve according to p.(7)
=3,Gy(t,0)p).

Central to the topic of the present paper is the two-time
correlation function of a dynamic variable M(z) of the sys-
tem,

C(t»tw) = <M(t)M(tw)> = 2 Mlele(t5 tw)pl(tw) s (6)
k.l

where M, is the value of M(¢) in state k. In this expression,
t,, denotes the time that has elapsed after the initial prepara-
tion of the system in the populations p,?. In the following ¢
=t¢,, will always be assumed. I only mention that cross-
correlations can be treated in a similar way. If (M(r)) #0, it
is advantageous to consider the connected correlation func-
tion C(,1,)=(M()M(t,))— (M) XM(t,,)).

In order to calculate the linear response of the system to a
field conjugate to M applied at time ¢,,, H(r)=Hd(t-1t,,),

XM(1))
5H(tw) H=0 '

R(1,1,) = (7)
the dependence of the transition rates on the field H has to be
fixed. In principle there is no restriction regarding this de-
pendence. From equilibrium considerations one expects a
Boltzmann-like dependence, ¢f™k. This is because if the
states k are determined by their energy E;, one would expect
a change according to E,— (E,—MH) [19]. However, these
considerations are not sufficient to fix the dependence of the
transition rates on the field. In the present paper, following
Ritort [19], T choose the following form of multiplicatively
perturbed transition rates:
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WP (1) = Wi(1)eP ™ where X, = yM, - uM,.  (8)

Here, y and w are arbitrary parameters. The rates W;(Il{)(t)
only fulfill detailed balance, if w+y=1 holds. It has to be
pointed out that other forms for W;(IIJ)(I) than the one given in
Eq. (8) might be appropriate in some cases. For the purpose
of the calculation of the linear response any form of
Wff)(t) that can be expanded in linear order with respect to
the field is acceptable.

The calculation of R(z,1,,) is performed in the same way
as it is usually done in linear response theory [23]. Time-
dependent perturbation theory is used to calculate G,((If)(t,to)
in linear order with respect to the field. The details of the
calculation are presented in Appendix A. The response ac-
cording to Eq. (7) follows from the difference ((M(z))y
—(M(1)),) in the limit of vanishing H. As detailed in Appen-
dix A, the resulting expression for the response is given by a
sum of two terms,

R(t,1,) =R,(t.1,) + R,(1.1,) )
with
R(t.1,) = By 2 MiM[Gy(t.1,) = G (t,0,)IW,,(1,)p, (),
kJ.n
(10)
R,u,(t’tw) = IB/“LE Mle[le(t’tw) - Gkn(t’tw)]Wnl(tw)pl(tw)-
kJ.n

Next, one tries to relate the response to the time-derivatives
(?,WC(t,tW) and 9,C(z,t,) of the correlation function C(z,1,,),
Eq. (6). In the calculation of

g, C(t.1,,) = EMM WMl{9, Gu(t.t,)ip((t,) + Gt {0, pi(t,)}]
one uses the backward equation, Eq. (3), for d, G(t,t,) and
the ME, Eq. (2), for 4, p/(z,). After a lengthy but straightfor-
ward calculation one finds that R (z,1,) can be written in the
form

aC(t,t,,)

Ry(tJW):B’y T_An.s.(t’tw) s (11)

where I defined the function

An.s.(tatw) = E MleGkn(tatw)[Wln(tw)pn(tw) - Wnl(tw)pl(tw)]'
k,,n

(12)

This function also plays an important role in case of station-
ary Markov processes treated in the next section. Using
the ME, Eq. (2), in the calculation of 4,C(¢,t,,)
=3 MM {9,Gy(t,1,)}p(t,) it becomes evident immediately
that there is no relation to the response function in general.
This is because in the expressions for the response given
above, Eq. (10), only the transition rates evaluated at ¢,
Wy(t,,), occur, whereas d,C(t,t,,) contains only terms involv-
ing Wy(1), cf. Eq. (2). It does not appear to be possible to
relate R,(z,1,) to a time-derivative of the correlation func-
tion in a way similar to Eq. (11). This means that there is no
simple relation between the response and the correlation for
nonstationary Markov processes. Instead one finds
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aC(t,t,,)

-A,(tt,) . (13
o At | 013)

R(1.1,) =R,(1.1,) + By
It is evident that one has to calculate the response and the
correlation separately in order to determine the FDR. It
should be mentioned that the FDR given in Eq. (13) cannot
be compared directly to the corresponding expression given
in Ref. [1] because there detailed balance has been assumed
to hold also in the presence of the field. In addition, the
expressions given in Ref. [1] have been derived using a
discrete-time ME.

As a special case, consider a process which is such that
equilibrium populations p;? exist in the long-time limit and
additionally detailed balance Wy (z,,)pi!=Wy,(t,)p;? holds. In
equilibrium (i.e., #,,— ) one then finds from Eq. (13)

R(t.1,) = Bly+ Wi, C(e.,).

In order to show this, one uses p,(t,—>)=p: and
W8Py =W,(t,)p;? in Eq. (10) for R (¢,t,), which shows
that R ,(,7,)=R,(t,t,) in this case. The same argument al-
lows one to show that A,  (7,t,,) given in Eq. (12) vanishes in
equilibrium.

Examples of nonstationary Markov-processes have been
discussed in various fields of chemistry and physics, e.g., in
the context of single molecule kinetics [24]. As a particularly
simple example of a nonstationary process, in Appendix B, I
consider a model for which the transition rates are chosen to
be of the form Wy (t)=g(t)a;. In this case the ME can be
solved analytically if all states k=1,2,...,N are connected
with each other [25]. In this example one explicitly finds
R, (t.t,)=—Pulg(t,)/g(1)]d,C(t,1,) demonstrating the im-
portance of the inital time #,,. Thus even for this simple ex-
ample R,(t,t,) is not simply related to a time-derivative of
the correlation. Only for long times one finds R(z,t,)=8(y
+um)d, C(t,t,) provided that [g(z,)/g(r)]— 1 in this case, cf.
Appendix B.

B. Stationary Markov processes

For many models considered in the analytical treatment of
glassy dynamics the corresponding stochastic processes are
Markovian as well as stationary. For such processes the tran-
sition rates are independent of time, W,(1)=W,,. The same
holds for the transition rates in the presence of a field, cf. Eq.

(®)
Mc[;() = WyePHXu;

As a consequence of the time-independence of the W,,, the
Greens functions Gy(t,,t,) depend only on the difference of
the times involved, Gy/(t,,1,)=Gy(t,—1,).

All formulas of the last section hold also in this situation.
A very important difference is that now there exists a simple
relation between R, (t,t,) and d,C(t,t,), namely

Xy =yMy— pM;. (14)

dC(t,t,,)

T (15)

R/_L(t7tw) == Blu’

In order to obtain this expression, one can use the fact that in
case of a stationary Markov process the backwards equation,
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Eq. (3), can be cast into the form 9,Gy(7)=-2,[Gy(7)
—Gy,(7)]W,,;, which is an equation for the evolution in the
second index of Gy, (z) [22]. If this is used in the calculation
of 9,C(t,1,) =2, MMA3,Gy(t—1,)}p(t,), a comparison with
the expression for R,(z,t,) according to Eq. (10) with time-
independent transition rates directly yields Eq. (15). The
combination of the expressions (13) for stationary processes
and Eq. (15) gives the FDR:

aC(t,t,,) aC(t,t,,)
ot K ot

R(t’tw) = B Y - yA(t’tw) (16)

w

with

A(tvtw) = E MleGkn(t - tw)[Wlnpn(tw) - Wnlpl(tw)l
k,,n

(17)

It is important to point out that Eq. (16) holds for arbitrary
stationary Markov processes described by a continuous time
ME. Additionally, the function A(z,¢,) cannot be related to a
time derivative of the correlation function and therefore the
response is not determined by C(z,7,,) alone in the general
case. A(t,t,) plays a similar role as the asymmetry in the
treatment of the response derived from a Langevin equation
[13]. This is because the ME reduces to a Fokker-Planck
equation in this case [26]. Therefore I will refer to A(z,1,,) as
asymmetry in the following. Of course, a relation between

R(z,t,) and C (¢,t,,) mentioned above is easily obtained from
Eq. (16). If the system is prepared in an equilibrium state
initially, p)=p¢, one has p(t,)=2,Gy(t,)pt=p and the
detailed balance condition W,;,pi’=W,p/? shows that
A, (t,1,)=0. Furthermore, the response and the correlation
in this case are time-translational invariant, i.e., Ceq(t,tw)
=C,,(t-t,) and R,,(t,1,)=R,,(t~t,) and one thus finds

R, (0)=-Bly+ M)d&;@ (18)
which for u=1-1 is just the well-known FDT.

To the best of the authors knowledge, Eq. (16) has not
been derived in this form before. However, equations similar
to Eq. (16) have been given for various models in the litera-
ture. Hoffmann and Sibani [16] have derived Eq. (16) for the
special case y=1, u=0. Later on Bouchaud and Dean [18]
gave a similar expression with, however, A(¢,1,)=0. Further-
more, Fielding and Sollich [2] derived Eq. (16) for the spe-
cial case of y=0, u=1. Additionally, it has recently been
shown that in the special case of Ising spins the asymmetry
can be expressed in the form of a special correlation function
[27]. In that work also the choice for the transition rates in
the presence of the field, Eq. (14), has been justified for y
=u=1/2.

As noted by Hoffmann and Sibani, A(¢,¢,,) vanishes if the
relaxation to equilibrium is determined by distribution func-
tions that are equilibrated with respect to the states k and
depend on time only parametrically. In order to see this ex-
plicitly let us assume that the initial conditions are such that
one can write p(t,)=p?8(t,) with unspecified functions
&(t,,). In this case Eq. (17) reads as
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A(t1,) = 2 MM Gy (t = 1,)W,pi[8,(1,,) - 8(1,,)],
kJ.n

which shows that A(z,1,,) vanishes if §(z,,)=(t,,) Vk. Such a
situation may be expected if the populations obey some scal-
ing relations.

If Eq. (16) is compared to the more general relation for a
nonstationary Markov process according to Eq. (13), one can
see that formally the results are similar only in the special
case u=0, i.e., if the field-dependence of the transition rates
regarding the initial state of a transition vanishes.

Another remark concerns the transition rates in the pres-
ence of a field, W;ff), according to Eq. (14). As already men-
tioned in the previous section, these transition rates do not
fulfill a detailed balance if w+# 1—. This also holds if the
unperturbed W,; do obey the detailed balance condition
Wup\“P=Wyp?. Equation (14) with u=1-7 has, for in-
stance, been used by Bouchaud and Dean [18] in a study of
the aging properties of the trap model [17]. Even though vy
also in the case w=1-y in principle can take on any value,
there often will be some guiding principle. For example, if
the states k denote the energies in a canonical ensemble, one
expects that y can be determined from the dependence of the
unperturbed Wy, on k and /. If, on the other hand, the W, are
of a form allowing a Kramers-Moyal expansion [26], and
therefore the ME has a well-defined Fokker-Planck equation
as a limit, one would naturally choose y=u=1/2.

However, it has to be pointed out that usually the states k
are understood as metastable states or components [28] in
connection with glassy systems. Then the corresponding free
energies are to be viewed as coarse-grained quantities [1]
and one does no longer have a strict relation of y to the
unperturbed W, and also the choice pw=1- 7y is not guided by
some underlying general principle. Furthermore, if the un-
perturbed transition rates do not fulfill detailed balance, one
cannot even expect that the perturbed transition rates will. In
addition, it has to be pointed out that the choice made for the
perturbed transition rates in Eq. (14) itself is not the only
possible one. In the linear regime, however, one expects the
perturbed transition rates to depend on the unperturbed ones
multiplied by the field amplitude H [27].

C. Choice of variables

Usually the dynamical quantity M(z) is interpreted as
some (generalized) magnetization in the context of the dy-
namics of glassy systems. In order to perform explicit calcu-
lations for some model one has to specify the definition of
the M(r) and their coupling to the dynamics. In the usual
treatment of magnetic models one assumes that a “magneti-
zation” M, is assigned to the state k [2,16]. In practice one
has to choose the dependence of the transition rates on the
values of the M, i.e., one has to consider composite transi-
tion rates Wy, (M| M) instead of the W,,. In particular, one
has to specify what happens to M,(¢) in case of a [— k tran-
sition. In the following, I will consider two different classes
of variables, defined by their coupling to the dynamics.
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1. Uncorrelated variables

With this term I mean variables which are completely
decoupled from the transitions among the various states k.
This choice has, for example, been made by Koper and Hil-
horst [29] in their treatment of the kinetic random energy
model. For the composite transition rates Wy, (M;|M,) this
simply means that they are independent of the values of M,
and M, in the initial and the destination state of the transi-
tion:

Wi(M|M)) = Wy,. (19)

In order to calculate the correlation, the response, and the
asymmetry according to Egs. (6), (16), and (17), one has to
replace Wy, in the expressions by Wy (M,|M,), use Eq. (19)
and then average over the distribution of the M,;, to be de-
noted by o3(My).

In calculating the averages some care has to be taken in
performing multiple summations. For instance, in an abbre-
viated form one has

C(f,fw)=2k,, fdefdMlUk(Mk)Ul(Ml)MleCk,l-

In such an expression, one has to treat the terms k=/ and k
# 1 separately and then perform the integrations. This way
one finds

C(t7tw) = E <AMi>Gkk(t - tw)pk(tw)
k

+ E (MM )Gyt —1,)p(t,) (20)
Kl

with the moments (M})=[dM;o(M;)M} and the variance
(AM%):((M w—{(M))?). For the asymmetry A(t,t,) one finds

A(t’tw) = E <AMI%>G/<I([ - tw)[Wklpl(tw) - Wlkpk(tw)]
k.l

+ 2 <Mk><Ml>Gkn(t - tw)[Wlnpn(tw) - Wnlpl(tw)]-
kJ.n

(21)

If even distribution functions, o,(M;)=0.(-M,), for which
(M,;)»=0 are chosen, the second term in the above expression
for the correlation function vanishes and the same holds for
the second term in Eq. (21). Note that the asymmetry A(z,?,,)
does not vanish for this choice of variables that are uncorre-
lated from the dynamics of the states k.

2. Randomizing variables

In contrast to the above choice, I now consider a class of
variables that randomize completely whenever a [—k tran-
sition takes place. This means that after such a transition the
value of M is drawn randomly from the distribution o(M),
where k denotes the destination state of the transition. This
scenario is realized if one chooses the composite transition
rates according to

WM M) = o (M) Wy (22)

Using the ME and this choice for the transition rates it can be
shown that the solution for the conditional probability
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Gy(My,t|M;) can be terms of the

M-independent Gy,(1) via

expressed in

Gu(My,t

M) = 640y, me ™ + o (MPLGy(t) = Se™].
(23)

Here, I used the abbreviation k,=2,.,k; for the inverse life-
time of state k. Using Eq. (23), one finds the following ex-
pression for the correlation:

T1(1,1,,) = > (AMpPe™=p,(z,,)
k
+ 2 AMXMYG (1= 1,)pt,),  (24)
k,l

which has been denoted by I1(z,7,) because for symmetric
distributions o(M};)=o0(—M,) this coincides with the prob-
ability that the process has not jumped at all during the time-
interval (r—1,,), and this is exactly the function that usually is
considered in the treatment of trap models [30]. In that case,
I1(z,1,,) can be considered as an intermediate scattering func-
tion in the limit of large scattering vectors. In the context of
molecular rotations this has been termed a random jump cor-
relation function [31,32].
The asymmetry is found to be given by

Arand(t’tw) = 2 <Mk><Ml>Gkn(t - tw)[Wlnpn(tw) - Wnlpl(tw)]
kJ.n

(25)

from which it is evident that the asymmetry vanishes in the
case of symmetric distributions o(M}) =0 (—M,).

In the usual treatment of trap models, it is assumed that
the value of M, is independent on the state &,

(M) =(M"). (26)
This choice yields for the correlation

T(t,1,) = (M)? + (AM?) X ™ (1,,) (27)
k

and for the asymmetry
Arand(t’ tw) =0. (28)

The last fact naturally explains why the asymmetry up to
now has not been considered in the context of trap models. It
should be noted that an explicit variable-dependence of the
FDT and its implications for the definition of an effective
temperature has been investigated by Fielding and Sollich
[2]. These authors, however, chose y=0 in their calculations
and therefore the asymmetry did not appear and they ob-
tained Eq. (16) with y=0 in their derivation.

A remark concerning neutrality of the variables consid-
ered is in order. For both cases, randomizing and uncorre-
lated variables, one obtains so-called neutral variables if one
assumes that M, is independent of k and that the distribution
o(M) is symmetric, o(M)=0(-~M) [19]. The actual calcula-
tions performed in the following are based on these assump-
tions.
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III. TRAP MODELS

As already mentioned above, Bouchaud and Dean [18]
derived Eq. (16) for a trap model, although with A(z,z,,)=0.
This becomes clear from the fact that in the usual treatment
of trap models variables are used, which I have termed as
randomizing. Then for symmetric distributions o (M)
=0(—M,), the asymmetry vanishes. Such distributions have
been considered also by Monthus and Bouchaud (MB) [30]
in their analytical treatment. Fielding and Sollich, on the
other hand, considered the variable-dependence of the FDR
in trap models [23] and therefore did not assume a definite
form of the distribution from the outset. However, in their
investigation they calculated the linear response solely for
m=1 and y=0, as already noted in Sec. II. Later on, Sollich
[20] and Ritort [19] treated the FDR in trap models quite
generally. Again, both authors considered randomizing vari-
ables only. Their treatments were aimed at discussing analo-
gies and differences between the MB model [30] and the
entropic Barrat-Mezard model [34].

In the present paper, I will consider the MB model and
compare results for a randomizing and uncorrelated variable.
In the discrete formulation of the preceding chapters, the
transition rates for this model read

Wkl = PrK; with Pr = Boe_'BOEk and K= KOOE_BEI (29)

with ,80=T61 the inverse of the transition temperature and «.,
a constant to be set to unity in the following. The lack of a
stable equilibrium population below the transition is ex-
pressed by the fact that the quantity Z=23,(p,/k,) diverges.
As in the preceding section, the system is assumed to be
quenched from infinite temperature to 7<<T, in the begin-
ning of the experimental protocol. In the present treatment
for simplicity only symmetric distributions oy (M})
=0(—-M,) will be used, although this restriction is by no
means necessary. Additionally, I will not consider a depen-
dence of the variables M on the energies and only the case
M, =M will be considered with zero mean and unit variance,
(M)=0, (M?)=1. In this case the general expressions given
above simplify somewhat. The numerical approach used to
solve the ME is outlined in Appendix C.

Before discussing the case of uncorrelated variables, I
will briefly recall the known results for randomizing vari-
ables [19,20].

A. Randomizing variables

For the case considered here, the correlation function, Eq.
(27), reads as

T1(1,1,) = >, e =p, (1) (30)
k

and the response is given by R(z,t,)=8[ yé’,wl_[(t,tw)
—udI(z,t,)], cf. Egs. (16) and (28). This is identical to the
expression given by Ritort [19]. For long times, the correla-
tion function obeys the scaling relations [30]

I(z,, + t,t,,) = p(x)(¢/t,,) ™ with x=T/Ty, < 1, (31)

with the amplitude p(x)=sin(7x)/(7x). This scaling is found
to be obeyed with an excellent accuracy from numerical cal-
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culations. Fits of I(z,,+¢,t,) to p(x)(t/t,)™1 in the scaling
region (roughly r=10%) yield Ag=x with an error of the
order of 1072% and p(x)==sync(mx) with slight deviations
for higher temperatures (on the order of 10% for x=0.85).

If the FDR, X(z,t,,), according to Eq. (1) is considered,
one finds in the scaling regime, cf. Ref. [19],

X(t,1,) = y+ u(t,/1) (32)

the long-time limit of which is given by X*=. The FDR and
its implications for the shape of FD plots have been dis-
cussed in detail by Ritort, to which I refer here [19]. In
particular, only for ©=0 one finds a unique slope in the FD
plot, reminiscent of 1SB behavior. For y=0, the slope of the
integrated response in such a plot changes continuously until
for small correlation it vanishes [20].

B. Uncorrelated variables

Now I consider the case of variables that are uncorrelated
from the dynamics of the traps. For symmetric distributions
0(M,;) and €,-independent values of the variables M,=M,
the correlation depends on Gy(7), the probability of finding
the system in state k at ¢ provided it was in this state at ¢
=0. According to Eq. (C8), this probability can be written as
Gut)=e "+ i [hdTe™""Dp (7). The first term gives the
probability that no jump has taken place in the time ¢. The
second term accounts for all jumps that have taken place out
of state k at a time 7= and the process then started anew.
Using Eq. (20), the correlation function C(z,1,,) reads

C(t’tw) = 2 Gkk(t_ tw)pk(tw) = H(t’tw) + AC(I’ tw) (33)
k

where I1(z,1,,) is given in Eq. (30) and the second term

(t-t,,)

AC(1,1,) = 2, Ky dre = Dp (Dpy(t,)  (34)
k

0

stems from the second term in the expression for Gy(r), as
discussed above. Accordingly, Eq. (33) can be interpreted as
follows. The Greens function G (t—t,,) gives the probability
to find the system in the same trap at times z,, and (¢—1,,).
While IT gives the probability that no transition has taken
place during the interval (z—t,,), AC(z,t,,) is a measure of the
probability that a back-jump to the original trap has taken
place during (¢—1¢,,). This means that the system was in trap k
at t,,, has jumped out of that trap, and still is found in the
same trap at (¢,,+¢). Therefore it will be denoted as back-
jump probability in the following. This term has been ne-
glected in a previous study of the aging phenomena in the
random energy model [33], which, however, is not justified,
as will soon become clear.

In Fig. 1(a), I show two examples of C(z,,+1,1,,) for vari-
ous f,, and x=0.6 (upper panel) and x=0.3 (lower panel). The
curves for different #,, are undistinguishable for #,,=10,
meaning that a (¢/1,,) scaling is perfectly obeyed. The slopes
of the scaling functions, however, are different. Whereas C
follows a (¢/t,,)*"! scaling for x=0.6, this changes to (¢/t,,)*
for x=0.3 (dotted lines). It should be kept in mind that IT
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FIG. 1. (a) C(t,,+1,1,) vs (t/t,), for x=0.6 (upper panel) and
x=0.3 (lower panel) for various waiting times ¢,, for the MB model
with an uncorrelated variable. Additionally shown as dotted
lines are the scaling forms for both temperatures. (b) C(t,,+17,1,,),
II(tw+1,tw), and AC(z,,+1,t,,) vs (t/t,,), for x=0.6 and x=0.3 for
the MB model with an uncorrelated variable for #,,=107. (c) Fit-
ting parameters c(x) and A (x) vs temperature x obtained from
least-squares fits to Eq. (35).

scales like (¢/t,)™ in the whole low-temperature phase of the
model. In order to see why the scaling of C is different, Fig.
1(b) shows plots of C, II, and AC for x=0.6 and x=0.3. For
x=0.3 the slope of all quantities is the same. This is quite
different for x> 1/2, as can be seen from the shown example
for x=0.6. Here, AC~ (¢/t,,)*"" while I1~ (#/t,)™*. Thus at
long times C is dominated by AC in this case. This can be
understood as follows. For x>1/2, frequent jumps take
place because many barriers can be overcome thermally.
Therefore I decays quickly. For the same reason the back-
jump probability is quite large and AC dominates the corre-
lation function. Also the short-time behavior of AC is easily
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understood from the above considerations. At short times, no
back-jumps to the starting trap have yet taken place and
therefore AC vanishes. It only starts from zero in a linear
way with a slope given by X, k.ppi(2,,), as can be shown
from Eq. (34).

In a next step, I have calculated C(r,,+1,t,) for various
temperatures in the scaling regime (typically, #,=10° and
107) and fitted the results to a power-law, C(t,,+1,t,)=c(x)
X (t/1,) 7Y for 1= 10°. The fitting parameters c(x) and X (x)
were averaged afterwards. The absolute errors of the fits
were smaller than 1072% in all cases. The results of this
procedure are shown in Fig. 1(c) and can be summarized as

C(t,, +1,1,) = c(x)(t/1,) %) with

1-x for x>1/2,
Ao(x) = (35)
x for x<1/2.

It is obvious from Fig. 1(c) that this equation holds with high
accuracy for x>0.6 and x<<0.4. Therefore, for x>1/2, the
scaling behavior of the correlation of an uncorrelated vari-
able is quite different from that of a randomizing variable,
while for x<<1/2 the qualitative behavior is similar
[correlation~ (¢/t,,)™].

An important difference to the case of a randomizing vari-
able is the fact that the asymmetry does not vanish if an
uncorrelated variable is considered. Instead, it is explicitly
given by, cf. Eq. (21),

A(t,1,) = 2 GOl perip (1) — pripi(t,)]- (36)
Kl

In the calculation of A only the off-diagonal term in the
expression for Gy (7) is relevant, since the “diagonal” term
with k=[ in Eq. (36) vanishes. As a technical aside I mention
that in the actual numerical calculation, both expressions for
Gu(1), Eq. (C8) as well as Eq. (C9), have been compared to
the direct integration technique and all three methods yield
identical results. In Fig. 2(a) A(r,+1,t,) is shown for x
=0.6 and several values of the waiting time ¢,,. In the upper
panel a linear scale is chosen in order to show that the sign of
A changes as a function of time for f,, roughly larger than
10, The lower panel shows A on a logarithmic scale. For
short 7, it is seen that A ~ (¢/t,,) for short times and that there
is a scaling regime in the long-time limit, (¢/t,,) > 102, where
the asymmetry behaves as A~7;'(¢/t,)*"'. For long times,
scaling plots for the asymmetry can be obtained from either
scaling A to its maximum value A, or from considering
Alt,. The latter way will be used in the following. For
(t/t,,)>10°, I have fitted the asymmetry to a power-law (z,,
=10%) with the results

A1, + 1,1,) = a(x)t; (t/1,) ™M with

e 1-x for x>1/2, (37)
A = x for x<1/2,

cf. Fig. 2(b). As for C(z,,+1,t,,), a crossover in the exponent
from N\ 4(x)=(1-x) to \y(x)=x near x=1/2 is found.
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FIG. 2. (a) The asymmetry A(z,,+1,t,) vs (¢/t,,), for x=0.6 for
various waiting times ¢, for the MB model with an uncorrelated
variable. Upper panel: linear scale, lower panel: logarithmic scale.
In the lower panel the dotted lines are proportional to (z/t,) and
(¢/t,)<"'. (b) Fitting parameters a(x) and A\(x) vs temperature x
obtained from least-squares fits to Eq. (37).

The additional diminishing of Ax7,' can be understood
qualitatively from the following argument. As stated in Sec.
II, the asymmetry vanishes for populations that are equili-
brated with respect to the states k and only parametrically
depend on time. For the MB model, the populations obey the
scaling form p(1)=r"'(p,/ ;) for long times [2]. If this
expression is used in Eq. (36), one finds that A vanishes.
However, for larger ¢, it takes a longer time until p,(r) fol-
lows the scaling-law, as can be seen from Fig. 3. In that
figure, I have plotted (k;/p;)pi(t) versus time for x=0.3 (up-
per panel) and x=0.6 (lower panel) for different €. It is
obvious that the ! scaling is followed only for times much
longer than the lifetime of trap k, > (1/k;). This means that
with increasing #,, the fraction of the populations in the scal-
ing regime increases and therefore A diminishes. However,
even for very long 7, A still remains finite, a fact that will
prove to be very important for the FDR. This also means that
the assumption of a vanishing asymmetry is not justified in
the present case.

Next, I will consider the FDR, which always can be de-
composed into two separate contributions, cf. Egs. (1) and
(16),

PHYSICAL REVIEW E 72, 011104 (2005)
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FIG. 3. The reduced populations [«(€)/p(€)]p(e, 1) vs time for
some values of the energy-variable € for the MB model. Upper
panel: x=0.3, lower panel: x=0.6. For comparison the scaling be-
havior #~! is shown additionally. For larger € it takes a longer time
to reach the scaling regime.

X(t,t,) =X,(t.1,) +X,(t.t,) (38)

with obvious definitions of the summands. Therefore the two
functions can be discussed seperately. For a discussion of the
FDR, the scaling behavior of the time-derivatives of the cor-
relation are needed in addition to those of the correlation and
the asymmetry.

Using the scaling-law for the correlation, Eq. (35), and
o'QC(t,tw)=—(tw/t)(9,wC(t,tw) [19], one finds for X,

gC(t1,) <tl>

X, (t,1,)=— =
u(t.1,) M%C@M) M

(39)

This behavior is identical to the case of randomizing vari-
ables and X, tends to zero for long times.
For X, on the other hand, from the general expression

Alt,1,) }

- 40
g, C(t.t,) 10

X (t.t,) = y|: 1

and the scaling of A and d, C(r,1,) one would assume
X,(t,t,) in the scaling regime to be given by

__aw) (t—_tﬂ
! Ne(x)e(x)\ ¢t (41)

with the long-time limit Xi;(x): y(1=[a(x)/\(x)c(x)]). This
expectation is, however, not found numerically.

In Fig. 4(a) the results of calculations of X, and X, ac-
cording to Egs. (39) and (40) are shown for a long waiting
time #,,=10% and several temperatures. For X » only a single
curve (dashed line) for x=0.2 is shown because it is
temperature-independent. The dotted line shows the (z,/t)
behavior. For X, the lines are for x=0.8,0.6 (full lines) and
x=0.4,0.2 (dotted-dashed lines) from bottom to top. It is
evident that only for x=0.2 and 0.4 there is a finite long-time
limit, X7 #0, which is reached for approximately (#/1,)
=103. For x>1/2, the long-time limit vanishes. The dotted
lines have slopes (#/1,,)">*1. Thus only for x<1/2, the ex-
pected behavior according to Eq. (41) is found. The inset

Xy(t’ tw)expected = 7|:

011104-8
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FIG. 4. (a) X,(1,+1.1,) and X, (t,+1.1,) vs (t/1,) for 1,=10°
and several temperatures x. Dashed line: X, for x=0.2. X, is
temperature-independent. Full lines: X, for x=0.8 (lower line) and
0.6 (upper line). Dotted-dashed lines: X, for x=0.4 (lower line) and
0.2 (upper line). The dotted lines have slopes —1, —0.6, and —0.2
from bottom to top. Inset: The short-time behavior of the same
curves on a linear scale. (b) Fitting parameters x,(x) and X (x) vs
temperature x obtained from least-squares fits to Eq. (42). Addition-
ally shown in the upper panel is [xp(x)/a(x)] for x>1/2 as the
dashed line. The inset shows x,(x) (full line) and {1
—a(x)/[xc(x)]} (dotted line) for x<<1/2.

shows the short-time behavior on a linear scale. It is evident
that both X, and X, start from unity for short times, i.e.,

X(t,+t.1,)=y+puforr<i,

which is the same behavior as for randomizing variables.
This is because in this limit both A and AC vanish. Also the
fact that X, exceeds unity in some time regime is easily
understood because the asymmetry A becomes negative for
short times, cf. Fig. 2(a). For X,, one finds a power-law
behavior according to X (z,,+1, tw) yx, (xX)(t/1,, )M in the
scaling regime (z,, >10) Fitting the data to such a law

yields the following result:
_ =\ (x :
X,(t, +1,t,) = yx,(x)(t/t,,) " with

A(2) 2x—1 for x>1/2, (42)
= 0 for x<1/2.

The fitting parameters x,(x) and \,(x) are plotted in Fig. 4(b)
as a function of temperature, x. It is obvious that the above
relations for \,(x) are perfectly obeyed apart from some
small temperature range around x=1/2. Thus, only for x
< 1/2, the expected behavior according to Eq. (41) is found
numerically. In Fig. 4(b), I have additionally plotted
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[1-a(x)/(xc(x))] as the dotted line for x<<1/2 in the inset in
the upper panel. The deviations to x,(x) are less than 10% for
x<0.45.

In order to understand the discrepancy between the behav-
ior naively expected, Eq. (41), and the one found numeri-
cally, Eq. (42), for x> 1/2 one has to take a somewhat closer
look at the correlation again. As mentioned already above,
C(t,1,,) consists of two terms with different scaling behavior,
cf. Eq. (33). While I always scales like (#/1,,)™", AC behaves
like (¢/1,,)*V for x> 1/2. Explicitly, one has for the leading
behavior in this case d, C(t t,)=(1-x)Ac( x)t"l(t/ t,)"!
+xp(X)7, 1(¢/1,,)™* with the second term being much smaller
than the first one, cf. Fig. 1(b). The scaling behavior of
X,(t,t,) found numerically for x>1/2, Eq. (42), can be un-
derstood in the following way. One considers the term
Ald, C  and uses 0, AC>8 H yielding  A/d, C

(A/& AC)[I (19 H/é’ AC)] In order to proceed, one
compares A to (?WAC Numerlcally, it is found that

A1) =49, AC(t,1,); x> 1/2 (43)

holds with high accuracy (deviations less than 1072%) for
long times. One therefore finds

a,WH (t,t,)
Y a,wA C(1,t,)

&IWH(t’ tw)
Alt,1,,)

X,(t.t,) = =y x> 1/2.

(44)

Now, using é’,WH(tWH,tW) =xp(x)t;'(¢/1,)* and Eq. (37) for
x>1/2 one recovers Eq. (42) with x,(x) =xp(x)/a(x). This
behavior is additionally shown as the dashed line in the up-
per panel of Fig. 4(b). The deviations of x,(x) =xp(x)/a(x)
from the fitted values are on the order of 10%. Given the fact
that the values stem from completely different fits, and only
the leading behavior of 19,W1_I(tw+t,tw) has been used this
confirms the consistency of the data.

The finding that A:&,WAC for x>1/2, Eq. (43), explicitly
shows that the asymmetry cannot be expressed as a time-
derivative of the correlation function. Instead, A is related to
AC and this accounts for the correlation decay only partly.

Summarizing the results for the FDR, it is seen that only
for x<<1/2 there is a finite long-time limit XOC const, while
for x>1/2 one has X=0, i..,

X*() 0 for x>1/2,
V= X (x) for x<1/2.

As a consequence, for x<<1/2, the FDR behaves similarly to
the case of randomizing variables with the only difference
that in the case of uncorrelated variables X” is temperature-
dependent. For x> 1/2, however, one has X*=0. In particu-
lar, this means that different variables do not even give rise
to a well-defined long-time limit, which one would like to
use for the definition of an effective temperature. It should be
noted that the prominent difference regarding the FDR is
given by the nonvanishing asymmtery in the case of uncor-
related variables. If one simply would have assumed the
asymmetry to vanish in the scaling regime, the FDR for un-
correlated variables would be identical to the corresponding

(45)
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FIG. 5. (a) FD plots, integrated response vs correlation, for the
MB model with an uncorrelated variable for different temperatures
x. Upper panel: (yB)™'x,(t,+1.1,) vs C(t,+1.1,), lower panel:
(/.LB)_IXM([W+I,IW) vs C(t,+t,1,). In both cases the temperatures
are x=0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 from bottom to top. The
inset in the upper panel shows (yB)™ x,(1,,+1.t,) vs C(1,,+1,1,) for
x=0.2, 0.3, and 0.4 from bottom to top. Note the change in slope.
(b) The long-time limits x7, and x,, for t,=10% as a function of
temperature.

one for randomizing variables, as is obvious from a compari-
son of Egs. (39) and (40) for A(z,t,,)=0 with Eq. (32).

The integrated response also can be decomposed into two
independent functions

x(t.6,,) = x,(t.1,)) + x,(1.1,,) (46)

and consequently the same holds for the FD plots, i.e., plots
of x(t,t,) versus the correlation C(z,t,,). Figure 5(a) shows
FD plots for several temperatures x for a long waiting time
t,,=10% with x increasing from bottom to top. No ¢, depen-
dence of the integrated response and the correlation are ob-
served for ,,=10% for any temperature. In the scaling regime,
the FDR gives the slope in the FD plot [1], X=-8(dx/JC)
and this is nicely confirmed in the plots. Note that for this
expression to be valid it is sufficient that all quantities ex-
hibit a (¢/t,,) scaling. It is thus not necessarily required that X
is a function of the correlation alone. The dotted lines in the
upper panel for x<<1/2 have slopes X”(x). Thus from the
above discussion of the FDR, one expects that the limiting
slope of the FD plots for x> 1/2 vanishes. For x<1/2, on
the other hand, for finite y a nonzero limiting slope in the FD
plots is expected, cf. Eq. (45). However, also for x<1/2,
there are no straight lines in the FD plot, as can be seen in
the inset of the upper panel of Fig. 5(a), where y,, is shown
for x=0.2, 0.3. and 0.4 for large C.
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In summary, one can state that in the case of uncorrelated
variables the situation is similar to the case of randomizing
variables as discussed in detail by Ritort [19]. A prominent
difference, however, is given by the fact that one does not
find straight lines as expected for 1SB-like FD plots for un-
correlated variables. Instead, the slope varies until the limit-
ing slope X°y° is reached. For x>1/2 the situation changes
completely. Here, the limiting value of the FDR vanishes,
X*=0. This is another important difference to the case of
randomizing variables. Still another difference is given by
the limiting value of the integrated response itself. Whereas
one can show that y— (By+Byu) for C—0 [19] for ran-
domizing variables, in the present case such a universal be-
havior is not observed. Instead, both functions are increasing
functions of temperature, as is obvious from Fig. 5(b), where
I plotted the long-time limits x7; and x7 as a function of
temperature, x. Finally, it should be noted that I solely con-
sider variables with no dependence on the trap-energy. From
a discussion of various randomizing but energy-dependent
variables it has been shown that in some cases not even a
limiting FD plot exists [2]. In that work it has been found
that the limiting FDR is X*=0 in all cases in which a limit-
ing FD plot exists and therefore one might expect T =2 in
the trap model for y=0. It is not clear at this point whether a
similar situation occurs if uncorrelated variables with an en-
ergy dependence are considered. However, the present calcu-
lations clearly show that for y# 0 X* behaves different for
randomizing and uncorrelated variables. More importantly,
both types of variables considered here are so-called neutral
variables. It thus appears that the definition of an effective
temperature in a trap model is not unique even if only neutral
variables are considered.

IV. CONCLUSIONS

In the present paper I have considered the fluctuation-
dissipation relation for a general class of stochastic models
obeying a master equation. I have chosen transition rates
which in the presence of a field are perturbed in a multipli-
cative way. For a nonstationary Markov process, in general
no simple relation between the response and the correlation
exists. If the process considered is stationary, the situation
simplifies somewhat. The main result of the present paper is
given in Eq. (16) and it shows that also for stationary Mar-
kov processes the response cannot be related to time-
derivatives of the correlation function alone. Instead, the
asymmetry A(¢,f,,) occurs additionally in the expression for
the response, which is not related to any physical quantity in
an obvious way. It is only in equilibrium that A(z,¢,) van-
ishes, the system becomes time-translational invariant, and
the FDT holds, if the dependence on the field of the transi-
tion rates is chosen in a symmetric way (y+u=1). To the
best of my knowledge, Hoffmann and Sibani [15,16] were
the first who considered the asymmetry A(z,7,,). Their ex-
pression for the FDR coincides with Eq. (16) for the special
case y=1. However, they did not further discuss the meaning
of this function apart from the fact that it vanishes if the
relaxation is determined by probability distributions that are
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homogeneous with respect to the states of the stochastic pro-
cess under consideration.

Motivated by the fact that in several treatments of the
FDR for trap models the asymmtery does not occur, I con-
sidered different classes of dynamical variables. In the case
of variables that randomize with a single transition among
the states of the system the asymmetry vanishes under very
mild conditions, cf. Eq. (28). On the contrary, for variables
that are completely uncorrelated from the underlying dynam-
ics, the asymmetry is finite. As both types of variables can be
chosen to be neutral, these considerations already show that
the use of the FDR for the definition of an effective tempera-
ture might be problematic in some cases.

As an example, I considered the trap model with transi-
tion rates chosen according to the version of the model given
by MB [30]. For randomizing variables the known results
derived by Ritort are recovered [19]. For uncorrelated vari-
ables, the situation is very different. First, the asymmetry is
finite and shows a similar scaling behavior as the correlation
function, which is different from that of the correlation for
randomizing variables for x>1/2. For randomizing vari-
ables the correlation shows a (#/1,)™ scaling, whereas for
uncorrelated variables this is found only for x<<1/2. For x
>1/2, one finds a (¢/t,)*"! scaling instead, which is the
same as for the populations. In contrast to the case of a
randomizing variable, the correlation function contains two
terms, one of which gives the probability that the value of
the variable has not changed at all in the time-interval con-
sidered. This term coincides with the correlation function for
a randomizing variable. However, there is another term
which gives the probability of back-jumps to the original trap
and thus accounts for the correlation among different traps.
For x>1/2, this term dominates the correlation function for
long times. It is found that the asymmetry equals this term
for x>1/2. As discussed above, the asymmetry diminishes
due to the scaling behavior of the populations, but this is not
enough to allow one to neglect it. The fact that the asymme-
try does not vanish implies a behavior of the FDR that is
qualitatively different from the case of randomizing vari-
ables. In particular, the time-dependence of X(¢,z,,) changes
with temperature in a different way. The same holds for the
long-time limit of the FDR, X”. Also this limit is different for
randomizing and uncorrelated variables. Only if one would
assume the asymmetry to vanish for uncorrelated variables,
the results regarding the FDR would be identical to the case
of randomizing variables even though the correlation func-
tions would still behave differently.

Regarding the possible definition of an effective tempera-
ture using X(z,t,,), one faces the same problems that have
already been discussed earlier [2]. The model only has a
single time scale. Therefore, in order to have a sensible defi-
nition of T, one should have a straight line in a FD plot.
Otherwise, T defined via X(z,¢,) would change within a
single time-sector, which makes X inappropriate for a mean-
ingful definition of T. [3]. If a randomizing variable and
wm=0 is chosen, one obtains straight lines in a FD plot, but
not for w# 0 [19]. For uncorrelated variables, one never ob-
tains straight lines. Also the idea to use the long-time limit
X* for the definition of T is hampered by the fact that it
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behaves differently for randomizing and uncorrelated vari-
ables. Apparently, the fact that both types of variables are
neutral is not enough for such a definition. At present, it
appears not clear which additional properties of a variable
are required in order to allow a unique definition of T It
also is not clear how the FDR changes in the case of uncor-
related variables, if an additional energy-dependence is con-
sidered, as has been done by Fielding and Sollich for ran-
domizing variables [2].

Finally, it should be mentioned that the asymmetry can be
shown to be finite also for some models in which equilibrium
can be reached for long times. An example is provided by the
MB model with a Gaussian density of states [30]. In these
kinds of models all aging effects are of a transient nature. It
can be shown that at least for some models the same holds
for the asymmetry, as will be shown in a forthcoming publi-
cation [36].

To conclude, I have shown that for some general class of
models the fluctuation dissipation relation is determined by
time-derivatives of the correlation function and an additional
function, the asymmetry A(z,7,,). In general, the asymmetry
can be shown to vanish for randomizing variables under the
conditions considered usually. For the models considered in
this paper, A(7,1,) has a strong impact on the behavior of the
FDR and complicates the definition of an effective tempera-
ture.
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APPENDIX A: CALCULATION OF THE LINEAR
RESPONSE

In this Appendix the calculation of the response for a
system obeying the ME, Eq. (2), using time-dependent per-
turbation theory is described. For the calculations it is pref-
erable to use a matrix notation for the Gy /(z,1,), G(¢,10)y
=Gyl(t,t). Using Eq. (4) for the master-operator, the ME
reads

3,G(t,1) = W(t)G(1,1,).

In the following, it is assumed that the solution of the ME in
the absence of the field is known. In general, it can be written
in the form

Gg(t,1y) = Texp(f

0

(A1)

dTW(T))g(fo»fo)a (A2)

where 7 denotes the time-ordering operator and G(zy,%)y
= J. In the presence of the field the transition rates are given
by Eq. (8) and the corresponding master-operator accord-
ingly reads as W(H)(t)klzwgf)(t)—6,<,E,,Wf>(t). The ME is
written as d,G™(t,15) =W () GH(1,1,).

In order to calculate the response of the system to an
external field applied at time #=t,,, the ME in the presence of
the field is solved using time-dependent perturbation theory.
A solution of the problem in terms of a series, G")(z,1,)
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=GO(t,10)+ G (r,14) ++ - can be used to calculate the expec-
tation value (M (1)) =2yM kGf:)(t,O)pg in linear order with
respect to the field. According to Eq. (7) the response can be
obtained via R(,1,)=8(Z,M,G\, (1,00p)/ SH(t,)|yo- In
order to perform the calculation, one proceeds in the follow-
ing way. First, one writes Q(H)(t,to)=g(t,t0)g(’)(t,t0),
[G(1,15)=Gt,1,)], thus defining an “interaction represen-
tation” /. This yields

3G (t,10) = [G(t.1) " V(D G(1,10)1G(t.1,).

The matrix elements of the perturbation, (1), follow from a
first-order expansion of the transition probabilities Wﬁf)(t).
Thus any form of the Willi)(t) allowing for a Taylor expansion
can be used in the calculation. Here, I use the form given in
Eq. (8) which explictly gives

V(t)y = BH(r)(sz(r)Xkl S Wnl(t)Xm)- (Ad)

(A3)

Using this expression and the first-order approximation to
the solution of Eq. (A3),

g“)(t,to):j dr' Gt W' )G(t' 1),
one finds for H(t):H&(tEZW):

GW(1,10) = O(t - 1,) BHY, [Gim(t.1,,)

- Gkn(t’ z‘w)]van(tvuz))(rr1r1Gi1l(t1/v’Z‘O) (AS)

and therefore for 1>1,,
R(t’tw) = BE Mk[Gkn(tatw) - le(t»tw)]Wnl(tw)anpl(tw)'
k,.n

Insertion of X;,=yM;—uM, yields Egs. (9) and (10) given in
the text.

APPENDIX B: A SIMPLE NONSTATIONARY MARKOV
PROCESS

Here, I will consider the following simple model. All tran-
sition rates are chosen to depend solely on the destination
state,

Wi(t) = g(t)a, = Zp; g (1) (B1)

where I defined Z=3,a; and p{?=Z"'a;. In this case, the

solution of the ME is trivial [25]. Defining &(z,1)

=exp(-Zf ;Odrg(r)) one finds for the Greens function:
Gult,tg) = p[1 = E(t,10)] + 84E(t.10).

The system reaches an equilibrium state for long times if

lim &(t,15) =0

11—

(B2)

resulting in Gy(t, 1) — pi’.
Using Egs. (6), (10), and (12) allows one to calculate all
quantities of interest explicitly. With the definitions

(M) =2 Mip{®;  (AM?) = (M - (M),
k
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(M"yy= 2 Mipl;  (8M™y=(M"y~(M"),  (B3)
k

one finds
C(1,1,) = {(M?) + (AM*)E(1,1,,)} + (M) SM)[£(1,0)
- g(tvwo)] - <6M2>g(t70)’

R.(1,1,) = ByZg(t, )[(AM*)E(1,1,) + (M) SM)E(1,0)],
(B4)
R, (1.1,) = BuZg(t,[{AM®)E(t,1,) + (M) M)

— (SM*))E(1,0)],

Ans (1.1,) = Zg (1, XM)(SM)[£(1,,,0) - £(1,0)].

While it is easy to see that Ry(t,tw)=r9,wC(t,tw) —A,(t,t,),
one finds

g(t,)
" e

If the system is prepared in an equilibrium state initially,
pY=pi4, one has (SM")=0 and the asymmetry vanishes,
A, (t,t,)=0. If the function g(¢) is of a form with finite
values g(0) and g(), e.g., g(t)=1+Te™"" with some rate T,
it is evident from Eq. (B5) that for long times [g(z,,)/g(7)]
— 1 and the FDT holds if y+u=1.

R, (t.t,)==-p 3,C(t,1,,). (BS)

APPENDIX C: NUMERICAL SOLUTION OF THE ME FOR
THE TRAP MODEL

For the trap model with the transition rates given in Eq.
(29) and an exponential density of states,

p(e) = Bye P with B,=T,'; ee[0,2]  (Cl)

the ME,
pler) =— k(e)p(er) + p(e)f de' k(e )p(€e',r), (C2)
0

can be solved numerically using various techniques. One
technique that can be used for direct integration has been
proposed in Ref. [35] and allows one to calculate p(e,r) for
long time intervals. However, due to the special form of the
transition rates, W(e|€e')=p(e)x(€'), it is also possible to
symmetrize the matrix of transition rates using the symmetry
relation:

W(ele') X [p(e')/x(€")]=W(€'|e) X [p(e)/k(e)]. (C3)

Thus one can consider the symmetric matrix with elements
W(ele')® =[W(ele')W(e'|e)]"? and W(e|e) = — k(e),

(C4)

which is obtained from W(e|le’) via W(e|€e)®
=[p(e)/k(e)]"*W(e| €)[p(€')/ k(e')]"?. The symmetry of
this matrix ensures that all eigenvalues are real.

In order to proceed with the numerical diagonalization of
the matrix of transition rates and thus the calculation of the
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time-dependent populations p(e,t), one uses a discrete ver-
sion of the model. The values of € are given on a grid with
values €, k=1,2,...,N with typical values for N being N
~200-1000. Then, using the abbreviations k;,=k(€), py
=p(e), p(t)=p(€.1), and G (1)=G(€, €;;1), one only has to
replace all integrals by the appropriate sums and proceeds
with the numerical analysis.

The populations are given in terms of the eigenvectors Sy,
and the eigenvalues A\,

e =[pd k"2 pUO kP )22 SipSime™. (C5)
1 m

In order to calculate the G/(r), one writes the backward
equation in the form

Gu(1) == kiGy(1) + 6,2, G(Dp, (Co)
and uses p(t)==,G,(0)p°==,G (1) p,. Remember that at ¢
=0, the system is quenched from infinite temperature and
therefore one has pgzpn. This way, one finds

Gu(t) = — kiG(t) + k(1) (C7)
with the formal solution
t
Gy(t) = Sye ™ + K,f dre™ " p, (7). (C8)
0

Thus, in order to calculate Gy (1), it is sufficient to solve the
ME for the populations p,(r). For the off-diagonal contribu-
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tions, one can furthermore avoid the explicit calculation of
the time-integral on the right-hand side of Eq. (C7), if one
uses the formal solution of the ME for the populations,
pit)=pre "+ pifdre™ "%, ke,p, (7) yielding

(3
f dTe_K’(t_T)Pk(T ) =[p(0) = (P )P i) (K, — 1)
0
for k# [. This allows one to write

Ki

Gy(1) = [px(t) = (ol p)Pi(D)],  k#1. (C9)

Kp— Kg

For the calculation of the diagonal elements G(z), Eq. (C8)
together with Eq. (C5) is used.

Summarizing, the numerical treatment of the ME is in
complete analogy to the case of an ME which fulfills detailed
balance [14]. It is important to point out that for large values
of €, the prefactor in Eq. (C5), [py/ x> oc e (112 Bo-Ple pe-
comes quite large for 7<<T,. This, however, poses no prob-
lem in the numerical work. In order to assure that this is so,
I have compared the solutions of the ME obtained by diago-
nalization with the direct integration in the time domain and
found identical results for many values of 3. Additionally,
the results obtained for the time-dependent populations, p;(z)
and the correlation function I1(z,z,,), cf. Eq. (27), coincide
with the analytical expressions in the scaling regime [30].
The numerical treatment via the diagonalization of the ma-
trix of transition rates has the advantage that it is much faster
than the integration in the time domain, in particular for the
long time scales considered in the present context.
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