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Power law tails of time correlations in a mesoscopic fluid model

M. Ripoll'? and M. H. Ernst**
Unstitut fiir Festkorperforschung, Forschungszentrum Jiilich - D-52425 Jiilich, Germany
2Dpto Fisica Fundamental, UNED,C/Senda del Rey 9, 28040 Madrid, Spain
3CNLS, Los Alamos National Laboratory, Los Alamos, New Maxico 87545, USA
*Institute for Theoretical Physics, Utrecht University, Princetonplein 5, P.O. Box 80.195, 3508 TD Utrecht, The Netherlands
(Received 14 February 2005; published 1 July 2005)

In a quenched mesoscopic fluid, modeling transport processes at high densities, we perform computer
simulations of the single particle energy autocorrelation function C,(z), which is essentially a return probability.
This is done to test the predictions for power law tails, obtained from mode coupling theory. We study both off

and on-lattice systems in one- and two-dimensions. The predicted long time tai

1 ~r9? is in excellent agree-

ment with the results of computer simulations. We also account for finite size effects, such that smaller systems

are fully covered by the present theory as well.
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I. INTRODUCTION

In classical fluids in thermal equilibrium the velocity au-
tocorrelation function (VACF) decays algebraically ~1 %2 at
large times, and so do all Green-Kubo integrands, as estab-
lished by molecular dynamics [1-3], mode coupling [4,5],
and kinetic theory [6]. These functions are equilibrium time
correlation function (J(£)J(0)), of single- or N-particle cur-
rents, whose time integrals give the transport coefficients,
such as self-diffusion, viscosity, or heat conductivity.

The long time tails are not restricted to current-current
correlations, but apply to large classes of time correlations,
such as single site correlations, provided the dynamics obeys
a conservation law. Similar single particle correlations with a
long time tail (LTT) exist in fluids [5]. These tails have a
rather universal shape, in the sense that they are determined
by the decay of the slow macroscopic modes of the system,
and are independent of the microscopic details.

Recently, we have discussed in paper I [7] a simplified
mesoscopic model for transport in fluids, in which the rapid
short range fluctuations are averaged out. It is referred to as
random DPD solid (dissipative particle dynamics), and de-
fined by a fluctuating heat equation (Langevin equation),
where the random force satisfies the fluctuation-dissipation
theorem. It is a special case of general DPD fluids [7,8],
in which point particles are characterized by positions
r;, velocities v; and possibly by an internal energy
€ (i=1,2,...,N).

The simplification has been obtained by quenching the
translational degrees of freedom of the DPD particles. The
only dynamic degrees of freedom left are the internal ener-
gies € (i=1,2,...,N) of the particles, where the total energy
3.€(t)=E is conserved. The only remaining transport pro-
cess is heat diffusion between fixed particles, where energy
hops instantaneously between interacting pairs {ij} within
the interaction range (r;;<r,). This transport mechanism is
called collisional transfer. The direction of the energy flow is
determined by the “local temperature gradient” (€;—¢;), and
heat conduction is only possible for densities above a perco-
lation threshold p,. In the underlying percolating structure
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two particles are connected (by a bond) if the distance be-
tween them satisfies, r;;<r.. So we are dealing with bond
percolation diffusion on the random proximity network,
where the transition rate or conductivity across a bond is
constant.

In this paper we study the energy autocorrelation function
of a single particle C,(z). It is the analog of the probability of
return to the origin, P(R=0,7), where P(R,?) satisfies a dif-
fusion equation.

The random DPD model is complementary to the Lorentz
gas with overlapping scatterers in several respects. The latter
has only kinetic transport of particles and the former has
only the transport mechanism of collisional transfer of en-
ergy. In classical fluids both mechanisms are present. The
former is dominant at low and moderate densities and the
latter at liquid densities.

The overlapping Lorentz gas also has a percolation
threshold, where diffusion only occurs below the percolation
density. A more detailed comparison is given in paper I,
where the similarities and differences between both models
for percolation diffusion are discussed. The diffusion phe-
nomena in both models occur on random percolation struc-
tures, which are essentially each other’s duals [7]. In Lorentz
gases the return probability has a LTT ~¢%2, and the VACF
has a LTT ~¢~'=%2, In the hydrodynamic interpretation of the
LTT of the VACF in classical fluids in terms of vorticity
diffusion, as given in by Alder and Wainwright, the velocity
autocorrelation function of a tagged particle may also be in-
terpreted as the return probability of the initial momentum to
the tagged particle itself, where d is the spatial dimension of
the system [9-11]. A further property of the Lorentz gas is
that the power law tail is absent when the scatterers are
placed on a periodic lattice [12]. The present paper also ana-
lyzes what happens to the long time tails when the particles
are put on a lattice. In fact, the interpretation of C,(¢), being
a return probability in a diffusion process, already suggests
that C,(rf)~ P(R=0,¢) should also have a power law tail
~1t%? on a regular lattice.

As the long wavelength decay modes of classical fluids
and DPD models are essentially the same, the decay of the
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corresponding equilibrium correlations should also be the
same. This is in fact implied by Onsager’s regression hypoth-
esis [13]. For the VACF in DPD fluids [14] and for the en-
ergy autocorrelation function (EACF) in a DPD solid [15]
more specialized mode coupling arguments have been devel-
oped to show the existence of a power law tail ~#%2. Un-
fortunately the predictions, in particular the one for the DPD
solid, could not be confirmed by the existing computer simu-
lations of three-dimensional DPD systems, because the sys-
tems studied were too small, e.g., N=1000,L/r.=5 and
N=2000,L/r.=6, where V=L [15]. Consequently, the short
time kinetic decay, exp[—wyt], and the slow decay of the
macroscopic diffusive modes, exp[—k>Dt], were equally fast
(no separation of time scales), and power law tails in the
EACEF could not be observed because of strong finite size
effects. The system sizes in our present computer simulations
of the two-dimensional DPD solid are sufficiently large to
observe the power law tails.

The plan of the paper is as follows. In Sec. II the defini-
tions and results for the DPD solid are briefly summarized
insofar as needed in the present paper. In Sec. III the mode
coupling theory of Refs. [4,5] is applied to obtain the explicit
form of the LTT of C,() in the random DPD solid. In Sec.
IV the results are compared with computer simulations of the
two-dimensional case. In Sec. IV it is also explained how the
same results for the time correlations can be obtained from
deterministic simulations, where the dynamics is free of sta-
tistical noise. In Sec. V the LTT’s of time correlation func-
tions are studied on a lattice. Conclusions are presented in
Sec. VL.

II. RANDOM DPD SOLID

The system consists of N=nV point particles at fixed ran-
dom positions r;(i=1,2,...,N), contained in a volume V
=L, and obeying periodic boundary conditions. Each DPD
particle interacts with all particles inside its interaction
sphere of radius r... The only dynamical variables in the sys-
tem are the internal energies ¢; of the particles, and the time
evolution is given by the Langevin equation

dfi
— =\
dt

J

02 wiry)(e—e)+ 2 Fiy). (1)
J

Here w(r) is a positive interaction function of finite range
r., normalized as [drw(r)=r’. In the present paper
w(r)=const 6(r.—r) is proportional to the unit step function,
which vanishes for r>r.. The kinetic rate constant A is a
model parameter that determines the interaction frequency.
The prime on the summation sign indicates that j#i. Here
fij:—fji is Gaussian white noise, whose explicit form is
given in paper I. It satisfies the detailed balance conditions,
guaranteeing that the system reaches thermal equilibrium.

To discuss the short time decay of an energy fluctuation
we consider

v=2 (0.~ ry)) = po. @)

where v is the mean number of j particles inside r;<r,

that interact with the ith particle. Moreover, @, =n"%?/
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I'(1+d/2) is the volume of a d-dimensional unit sphere
(d=1,2,...), and p=nrf is the reduced density.

The average (---) denotes a quenched average over the
random configurations of the fixed DPD particles. The basic

relaxation rate at short times can be estimated from Egs. (1)
and (2) as

wo =N (w(ry)) = pho. 3)

J

Each DPD particle is a mesoscopic subsystem with a density
of internal states ~ €%, where « is proportional to the number
of internal degrees of freedom of a DPD particle, and satis-
fies a> 1. In thermal equilibrium the single particle distribu-
tion function is

(€)= oy B exol- el @

where T=1/kgf is the temperature. Also note that the evo-
lution equation conserves the total energy, i.e., 2;€(1)=E
=const, as both terms in Eq. (1) are antisymmetric in i and j.

A final comment regarding the stochastic differential
equation (1), which contains multiplicative noise: As dis-
cussed in paper I, the difference between the ito and Stra-
tonovich interpretation of the Langevin equation and the cor-
responding Fokker Planck equation can be neglected to
leading order in O(1/a) in the present model.

In this paper we study the long time tail of the energy
autocorrelation function (EACF) in thermal equilibrium,

€)= 1.3 (560360, 5)

where (--+), is an average over the canonical distribution
IL;y(€)). Here J€;(r)=¢€;(1)—(€;)y is the energy fluctuation
with (€;)g=a/B. It is essentially the return probability of the
initial energy J¢;(0) to the particle, from which it originated.
It is the analog of the velocity autocorrelation function,
C,(1)=(v,()v,(0)), in the same sense as the VACF is the
return probability of the initial momentum. The latter picture
explains its LTT ~¢~%2 [1]. However, the time integral of the
VACEF equals the coefficient of self-diffusion D, whereas the
time integral of the EACF is not related to the heat diffusiv-
ity Dy, or to any other transport coefficient.

The explicit form of the power law tail of the EACF has
been given in Refs. [5,15]. The derivation can essentially be
copied from the corresponding derivation for the VACF in
fluids [4]. We only give an outline. We first express
S€,(t)=[drSe(r,t) where e (r,t)=35€,(t)8(r—r,) is the lo-
cal energy density of tagged particles. According to the On-
sager regression hypothesis, the average decay of fluctua-
tions around thermal equilibrium follows the macroscopic
approach to equilibrium. This implies that a local fluctuation
de, rapidly decays to its value in local equilibrium, i.e.,
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C
O¢ (1) = f dréey(r,t) = f drn(r)C8T(r,1) = ‘—/2 ST (Dn’y,
K

(6)

where C=aky is the specific heat per DPD particle, and
ST(r,1) is the local temperature fluctuation, ny(r)=8r-r)
the quenched local density of tagged particles, and ay
denotes the Fourier transform of a(r). The subsequent
slow evolution is controlled by the heat mode
ST\(t)= 8Ty (0)exp[-k>D;t]. The tagged particle density nj is
a static mode. Inserting 6T} in Egs. (5) and (6), and using the
relations n;— 1 as k— 0, and 6T(0) — 6¢,(0)/C as k— 0, we
obtain in the long time limit

1
C.(1)= —VE exp[— k*D71]C,(0). (7)
nv g

This yields in the thermodynamic limit as N=nV— at
fixed n, the power law tail,

C,(1) 1 dk

) 2

c,00 n) 2w
-
"~ n(4mwD1)"?

exp[— k*Dyt]

1 *
= p(4m*)d’2(t >1) ()
In the first step we used the relation C,(0)={(5€)*),= a/ %,
and in the last we introduced the dimensionless time
t'=Dqt/ rf, where tD:rf/ Dy(p) is the characteristic time for
heat  diffusion. The integral representation (),
JdkP\(t) ~ P(R=0,1)=(4mD;#)~?, of the long time limit of
C,(t) shows that P(R,) is the solution of the heat diffusion
equation, and that P(R=0,¢) is a return probability.

The main goal of this paper is to test the theoretical pre-
diction about the long time tail (LTT) in C,(z).

III. LONG TIME TAILS IN STOCHASTIC
AND DETERMINISTIC SIMULATIONS

The goal of this section is to compare the predictions (7)
for the long time tails with the results of computer simula-
tions in the two-dimensional random solid described by the
Langevin equation (1). The values of the heat diffusivity, to
be used in the comparison, have been obtained from com-
puter simulations, using the methods of paper I, and agree
well with the mean field result Dm(p):)\oprf/[Z(d+2)] at
high densities. As p decreases, Dy(p) decreases faster than
linear, and vanishes at a nonvanishing threshold density p,,
which coincides with the percolation threshold for con-
tinuum percolation of overlapping spheres. In two dimen-
sions it has the value p,=1.436 29 [16], and in three dimen-
sions one has p,=0.652 96 [17].

To measure LTT’s of equilibrium time correlation func-
tions the DPD solid has to be in a state of thermal equilib-
rium. This is achieved by initializing the system in a state
with a uniform energy distribution €(0)=E/N, where E is
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FIG. 1. (Color online) Simulation data for EACF, C,(z) vs t at
different reduced densities p [defined below Eq. (2)] in the two-
dimensional random solid for a system of N=p(L/r,)?>=5 X 10* par-
ticles, compared with theoretical predictions: the dashed lines rep-
resent the short time exponential decay, and the solid lines the
algebraic LTT ~1/¢. The higher the density the sooner the LTT is
reached.

the total energy. In principle the Langevin forces, which sat-
isfy the detailed balance conditions, drive the system to a
state of thermal equilibrium, described by # in Eq. (4). This
is only the case in a pure ergodic system. However, with
decreasing density larger fractions of particles are contained
in small disconnected islands, which have no interactions
with the bulk of the particles in the system, i.e., belong to
small independent ergodic subsystems, and cannot redistrib-
ute their initial energies over the bulk system. Hence initial-
ization of the system in the canonical equilibrium state can
only be guaranteed if the fraction of island particles is neg-
ligible, i.e., for p>p,.

Figures 1-3 show the simulation data for the energy au-
tocorrelation function C,(f) of a DPD particle in a two-
dimensional system of N=p(L/r,)?* particles at different den-
sities. There is excellent agreement of computer simulations
with theoretical predictions. In the simulations we measure
length in units of r,, and times in units of 1/\,. At short
times the decay is exponential, exp[—wyt], with a rate con-
stant wy=p\, as given in Eq. (3), in very good agreement
with the simulation data. At large times the plots show the
long time tail ~¢ 2.

10' & o

p Cq(t")/Cq(0)

-1

10° 10

t* = Dy(p) t /12

10

FIG. 2. (Color online) Collapse plot of the LTT’s in Fig. 1
obtained by plotting pC,(£)/C,(0) in Eq. (5) vs ¢, compared with
the predicted LTT (solid line). Note that the crossover from expo-
nential to algebraic decay is at 1p=r>/D(p).
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FIG. 3. (Color online) A more sensitive comparison of the col-
lapse plot with the theoretical prediction (solid horizontal line), fo-
cusing on relatively short times.

By plotting the simulation results as pC,(¢)/C,(0) versus
the dimensionless time 7“=D(p)t/r? the data for different p
can be collapsed on a single LTT curve. Moreover, the com-
bination of Figs. 1-3 shows that the crossover time from
exponential short time decay ~exp[—wyt] to power law de-
cay is for all densities given by 1,=r>/D(p).

The finite size effects on the dynamics are controlled by
the ratio L/r,=(N/p)"?. As DPD particles in absence of con-
servative forces are point particles, the density can become
arbitrarily high. So, as p increases at fixed N the finite size
effects increase. Consider the data in Figs. 1-3 at (p=5,
L=100), corresponding to N=5 X 10* particles. If the num-
ber of particles is reduced to N=10* a faster decay than 1/¢
decay becomes noticeable, which is statistically significant.
For N=10? the decay is even faster, and looks exponential. It
is caused by finite size effects. We return to this point later
on.

The stochastic simulations above were described by the
Langevin equation (1). The subsequent deterministic simula-
tions of this section correspond to the same equation with the

Langevin forces switched off [F ;()=0]. Moreover, the sto-
chastic forces have no effect on the decay of the equilibrium
time correlation functions {da(z) 8a(0)),, provided both types
of correlation functions are at =0 in thermal equilibrium.
This observation follows from Onsager’s regression hypoth-
esis on the average decay of fluctuations. The purpose of
driving the system by Gaussian white noise, that satisfies the
detailed balance conditions, is to maintain the system in ther-
mal equilibrium, but does not affect the decay of these
functions.

The above observations offer the interesting possibility to
measure the LTT of equilibrium time correlations determin-
istically, i.e., the dynamics is free of statistical noise, pro-
vided the system is prepared initially in the proper thermal
equilibrium state. Here the thermal fluctuations are only ac-
counted for in the initial distribution. This method has also
been used in Ref. [18] where the kinetic part of the stress-
stress correlation was measured using the lattice Boltzmann
equation.

Next we discuss the results of the deterministic simula-
tions of C,(¢) in the two-dimensional random DPD solid at
density p=5, where on average mp particles are surrounding
the central particle in the interaction sphere. In order to simu-
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FIG. 4. (Color online) The log-log plot shows the EACF vs 7 in
the deterministic simulations at p=5 for L/r.=20,40,100, corre-
sponding to N=2X%10%,8 X 10%,5X 10* particles. The scattered
black circles (L/r.=44) show stochastic simulations for compari-
son. The straight solid line shows the predicted power law tail (8),
and the dashed line indicates the short time exponential decay.

late the equilibrium time correlation function C,(), we pre-
pare the system in the initial state, described by the
N-particle distribution, [T ,[#(e;)/ V], and average over dif-
ferent runs with independent initial configurations. In spite of
the additional average over different runs the computational
effort for the deterministic simulations is considerably
smaller than for the stochastic ones. Figures 4 and 5 show
log-log plots of C,(1)/C,(0) vs t at different system sizes
L/r. with N=p(L/r.)? particles. Figure 4 is focusing on the
short time behavior exp[—\opt] and power law tails (1/p)
X[4mD(p)t/r*]¥?, and Fig. 5 on the power law tail and the
ultimate exponential decay. Both figures also show for com-
parison the stochastic simulation at L/r.=44 as scattered
black circles. This confirms that the exponential short time
and the intermediate power law behavior of the deterministic
and stochastic simulations are the same, and agree with the
theoretical prediction, until the time where the statistical un-
certainty in the stochastic simulations has become too large.
This behavior beautifully confirms Onsager’s regression
hypothesis.

Figure 6 shows that the ultimate decay is again exponen-
tial. This is a finite size effect, which is in excellent agree-

102 g

Co(t)/C4(0)

FIG. 5. (Color online) The log-log plot shows the same deter-
ministic simulations as in Fig. 4, but focuses on the intermediate
algebraic tail. The straight line is the LTT in the thermodynamic
limit. The ultimate long time decay is again exponential. For the
scattered black circles see the caption of Fig. 4.
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FIG. 6. (Color online) The half logarithmic plot focuses on the
ultimate exponential decay in the simulations of Figs. 4 and 5,
which are finite size effects, and are quantitatively accounted for by
the first term in Eq. (9), (4/N)exp[—(27/L)>D4t]. The solid line at
the top right is again the algebraic LTT for thermodynamically large
systems. For the scattered black circles, see the caption of Fig. 4.

ment with the mode coupling prediction (7) for finite sys-
tems, where the k summation cannot be replaced by a k
integral. On a square lattice with periodic boundary condi-
tions k,=2mn,/L with a=x,y and n,=0,+1,%2,.... The
integral approximation to Eq. (7) is only valid in the limit of
large t, and small k, such that k’t=const. This asymptotic
approximation is appropriate as long as kaimt<1, and
breaks down at r,,;, for, say, Drklzmt,nmz 1/3, where the
minimum k value is k,,;,=27/L. The first few terms in the
finite size mode coupling formula on a square lattice follow

from Eq. (7) in the form

C 1
10 =y el s

1
= ]T,(4e_s +4e B +4e™ 48+ +0),  (9)

where =k, Dyt=47"Dyt/L%, and n=(n,,n,). In Fig. 6 the
straight lines of simulation data are well represented through
the first term (4/N)e™ of the right hand side of Eq. (9).

Furthermore, our method is not suitable to study equilib-
rium time correlations close to the percolation threshold, be-
cause the equilibration time #, diverges as p | p, on the per-
colating cluster. Moreover the finite fraction of particles
contained in smaller disconnected islands form uncoupled
ergodic subsystems. This prevents the system from reaching
the canonical equilibrium state I1;(e;)).

IV. DPD SOLID ON A LATTICE

In this section we introduce a lattice version of the DPD
solid in Eq. (1), where N particles fill the N sites of a hyper-
cubic lattice with lattice distance a, and volume V=L4
=Na“. In this model the interaction range r, is the control
parameter and heat diffusion only occurs for r.=a. We will
observe that the LTT of C,(¢) in the random DPD solid sur-
vives when the DPD particles are put on a periodic lattice, as
is expected for a return probability. To do so we consider the
special case of the DPD solid on a lattice, where C,(¢) can be
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FIG. 7. (Color online) The plot shows the simulated EACF on a
one-dimensional lattice with nearest neighbor interactions after dif-
ferent equilibration times 7y=5,50,500,10% and 5 X 10°, as well as
the exact solution (11) for the one-dimensional lattice model.

calculated exactly [5]. However, in periodic Lorentz gases
the power law tail disappears in the VACF, as shown in
Ref. [12].

Consider the evolution equation for the lattice space-time
correlation function C(n,7)=(5€,(t) 5¢y(0)), in thermal equi-
librium, where n=(n,,n,,...,n,) labels the sites of a
hypercubic lattice with periodic boundary conditions, and
n,={0,1,2,...,L—1} with a={x,y,...,d}. The evolution
equations are obtained by replacing ¢; in Eq. (1) with Se,(1),
multiplying that equation with J€,(0), and averaging over the
N-particle equilibrium distribution function. As dey(0) is un-
correlated with the Langevin force, the equations of motion
of the lattice space-time correlation functions follow as:

dCm,0)/dt =Ny, w(ram)[C(m,1) = C(n,n)]  (10)

with initial condition C(n,0)= 8,0((5€)*)y= S,/ B>. This is
a discrete diffusion equation, which can be solved exactly for
general dimensionality [5], and the single site correlation or
return probability C(n=0,7)=C,(z). For w(ry,) restricted to
nearest neighbor interactions (r,=a), the solution is given
by [5]

C(/C(0) = [e7Iy(D]* — 2mr)~". (11)

Here — denotes the long time behavior for 7> 1. Moreover,
I(7) with [=0 is a modified Bessel function with
7=2Dqt/a? and the heat diffusivity, D;=\ga*/w,, where
units of time are consistent with Egs. (1) and (3).

In the lattice model both characteristic time scales, the
short kinetic time scale, 1/wy=1/p)\, and the long diffusive
time scale tDzrleT(p), are roughly inversely proportional
to the mean number of j particles inside the interaction
sphere (r;;<r,) of the central particle i, and differ roughly by
an order of magnitude in size. As p|p, this number de-
creases rapidly, and the equilibration time ¢, at p, diverges,
as the interactions become weaker and weaker.

For the exactly solved case of the lattice DPD solid in d
dimensions with nearest neighbor interactions, Figs. 7 and 8
show for the one-dimensional case that a very long equili-
bration time \yfy=15 X 10° is required. After that period the
exact solution C,(¢) can be observed with its full 1/ Vi tail
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0 2 4 6 8 10

FIG. 8. (Color online) The plot shows the same data for C,(7) as
in Fig. 7, but focuses on short times. Note that the interval around
Aot =1 also equilibrates very slowly.

over the whole time interval Nyt <1000. If the equilibration
time is too short, the observed LTT falls off faster than 1/47.

For general interaction ranges (r,=Na), where N repre-
sents the number of interacting lattice sites on periodic lat-
tices, the mode couplings arguments of Refs. [5,15] produce
the LTT in Eq. (8) which yields in one dimension an alge-
braic LTT ~1/+t. In the one-dimensional lattice case it is
straightforward to calculate the coefficient of heat diffusivity
Dy(p) analytically, as shown in the Appendix, and the results
of the LTT’s in the stochastic simulations are show in Figs.
9-11, which can be extended directly to higher dimensional
lattices. The simulation results are in very good agreement
with the predictions of the mode coupling theory.

We also note that the random DPD model in one dimen-
sion is in the thermodynamic limit nonconducting because at
any given density p there will always be a non-vanishing
probability to find a single pair (ij) of nearest neighbors with
Tij >r,.

V. CONCLUSIONS AND OPEN PROBLEMS

The general conclusion from the previous sections is that
the predictions of mode coupling theory for classical fluids
[4] regarding the existence of LTT ~¢%? in time correlations
are in excellent agreement with the results of computer simu-

10° geme

s 107 |

Co(t)/Cqf

102 |

10-3 -2. . .I-1I .lll(;. II'II1. 2 3
102 10" 10® 10" 10® 10

FIG. 9. (Color online) The EACF C,(¢) in the one-dimensional
lattice model at different p for a system of N=10* particles com-
pared with the theoretical predictions: the dashed line is the short
time exponential decay, and the straight lines are the algebraic LTT
~1/7t (compare with Fig. 1).
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FIG. 10. (Color online) Collapse plot of the LTT in the one-
dimensional lattice model (compare with Fig. 2).

lations, when applied to the energy autocorrelation function
C,(1)=(5€(t) 5¢,(0))y in the random DPD solid and in the
lattice DPD models (with a uniform density distribution)
both in one and two dimensions. Here the energy autocorre-
lation function C,(¢) at large time is essentially a return prob-
ability in the same sense as the velocity autocorrelation func-
tion is in a classical fluid.

Nevertheless, a number of interesting questions about
consistency of the theory remains for the LTT predictions
C,(1)x(Dst)™"? for d=1,2,.... For classical fluids in two
dimensions the Navier Stokes transport coefficients do not
exist. For example, let C(t)=(v()v,(0)), with a LTT ~¢%2,
be the velocity autocorrelation function. Then the long time
limit of D(#)= [{d7C(7) yields the coefficient of self diffu-
sion D, if the integral exists. However, this relation would
lead to the result D(t)~{v‘;,1n t} for d={1,2}, respectively,
in the long time limit, leading to the nonexistence of the
Navier-Stokes transport coefficients in one-dimensional and
two-dimensional fluids. Then, self-consistent mode coupling
theory, ring kinetic theory, and other renormalization proce-
dures [19] lead to a “renormalized super-long time tail” of
the form [19,20]

D) ~ {3 \In 1},

C(1) ~ dD(0)/dt = {2 1/[t\In ]} (12)

for d={1,2}, respectively. In fact, van der Hoef and Frenkel
[20] have confirmed for the VACF in two-dimensional fluids

2-0'-'|"'|"'|"'|"'

t*"pC4(t*)/Cq(0)

3
t* = Dy(p) t /2

FIG. 11. A more sensitive comparison of the collapse plot of
Fig. 10 for short times (compare with Fig. 3) with the theoretical
predictions.
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the existence of a “faster-than-t~! tail” of C(r) by computer
simulations using lattice gas cellular automata. However, our
computer simulations of C,(¢) in Figs. 1-3 and 9-11 do not
show any deviations from the predictions of the simple mode
coupling theory in Eq. (8), and seem to confirm the LTT
~1 2 a5 well as the finiteness of Dy.

This simple behavior is further confirmed by the observa-
tions (i) that C,(¢) in the two-dimensional random solid in
Figs. 1-3 and in the one-dimensional lattice versions in Figs.
9-11 behave essentially the same, and (ii) that the lattice
models contain as a special case the model with nearest
neighbor interactions (with r.=a), which is exactly soluble
for all values of d [5], and show the same LTT oc(Dyt)~%?
with a finite Dy, as the random DPD solid and the remaining
lattice models with r.=Ma, where M=1,2,.... In fact, the
behavior of the DPD solid resembles that of Lorentz gases,
where the diffusivity D is also finite for all values of d. In
fact the random DPD solid and the Lorentz gas are in several
resple(iitg each others duals [7], where the VACF has the LTT
~f

Furthermore, there is no contradiction between the long
time behavior of fluids in Eq. (12) and that of the DPD solid
in Eq. (8), because D in the latter case is not related to the
time integral of C,(f), but is given by the Green-Kubo for-
mula, involving the time correlation function Cy(#) of the
microscopic heat current, whose time integral converges [5].
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APPENDIX

In this appendix we calculate the coefficient of the heat
diffusion for the lattice version of the DPD model in one
dimension with an interaction range r.=Ma with
M=1,2,... for the evolution equation (1) with the Langevin
force set equal zero, and using the range function
w(r):%&(rc—r) with [w]=r,. for the one-dimensional case.
The evolution equation (1) for r,,,= Ma becomes

PHYSICAL REVIEW E 72, 011101 (2005)

FIG. 12. A comparison of the simulations with the theoretical
predictions for the heat diffusivity in the one-dimensional lattice
model for R,(p)=Dy(p)/Do(p)={1+1/p)1+1/2p) with a few
simulation data. Note that p is an integer. There is excellent
agreement.

20wl 15 S etr+ma - et

(A1)
at 2 =m

where M ==+1 for nearest neighbors. For large spatial scales,
this discrete version of the diffusion equation is expanded to
O(V?) terms included, with the result
Jde(r,t)
at

= D, V2e(r,1) (A2)
with a heat diffusivity
1 e 1
Dy= 5)\0&2 m? = ExanM(M +1)2M +1). (A3)
m=1

It is convenient to eliminate @ and M from this expression in
favor of the interaction range r.=Ma and of the reduced
density p. Here pw, (w,;=2) is according to Eq. (2) the num-
ber of particles interacting with a given particle, which is
here 2M. So, p=M, and the heat diffusivity becomes

1 5 1 1
DT(p)=gp)\0rC 1+’—) 1+2_p .

In the limit of large density the heat diffusivity approaches
the value Doc(p)=ép)\0rf. In Fig. 12 the analytic result for
R(p)=D(p)/D.(p)=(1+1/p)(1+1/2p) is compared with
computer simulations of the DPD solid in a one-dimensional
lattice and shows excellent agreement. We note that for the
case of nearest neighbor interactions (p=1) the heat diffusion
becomes Dy(p=1)=3\a>.
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