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Natural cutoff in Lévy flights caused by dissipative nonlinearity
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Lévy flight models are often used to describe stochastic processes in complex systems. However, due to the
occurrence of diverging position and/or velocity fluctuations Lévy flights are physically problematic if describ-
ing the dynamics of a particle of finite mass. Here we show that the velocity distribution of a random walker
subject to Lévy noise can be regularized by nonlinear friction, leading to a natural cutoff in the velocity

distribution and finite velocity variance.
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Lévy flights (LFs) are Markovian random processes
whose probability density function (PDF) P(X,¢) has a char-
acteristic function P(k,t)=exp(-D|k|*t) (0<a<2) of
stretched Gaussian form, causing the asymptotic decay
P(X,t)~Dt/|X|'** for |X|>(Dt)"* such that the variance
diverges, (X?(t))=o [1-4]. LFs serve as good approxima-
tions to various random processes in complex systems, such
as motion patterns of biological species [5-9], fluctuations in
plasmas [10], optical lattices [11], or stock market dynamics
[12]; see Ref. [13] for a recent review.

Although there are systems, e.g., diffusion on a polymer
in chemical space mediated by jumps at places where the
polymer loops back on itself [14], for which diverging fluc-
tuations do not violate physical principles, for a particle with
finite mass in position and/or velocity space the existence of
a diverging variance in a strict sense must be considered a
pathology. There are certain ways out of this hitch: (i) by a
time cost through coupling between x and ¢, producing Lévy
walks [15,16]; (ii) or by a cutoff in the Lévy noise to prevent
the divergencies [17,18]. While (i) appears a natural choice,
it gives rise to a non-Markovian process. Conversely (ii) cor-
responds to an ad hoc measure.

Here, we pursue an alternative route to processes gov-
erned by Lévy noise, based on a nonlinear friction term.
Such dissipative nonlinearity occurs naturally for particles in
a frictional environment at higher velocities [19]. A classical
example is the Riccati equation Mdv(t)/dt=Mg—Kuv(t)* for
the fall of a particle of mass M in a gravitational field with
acceleration g[20], or autonomous oscillatory systems with a
friction that is nonlinear in the velocity [19,21]. The occur-
rence of a nonconstant friction coefficient y(V) leading to a
nonlinear dissipative force —y(V)V was highlighted in Klim-
ontovich’s theory of nonlinear Brownian motion [22]. In
what follows, we show that dissipative nonlinear structures
regularize a stochastic process subject to Lévy noise, leading
to finite variance of velocity fluctuations and thus a well-
defined kinetic energy. The velocity PDF P(V,1) associated
with this process turns out to preserve the properties of the
Lévy process for smaller velocities, but it decays faster than
a Lévy stable density (LSD) and thus possesses a physical
cutoff. In what follows, we start with the asymptotic behav-
ior for large V, and then address the remaining, central part
of P(V,T), that preserves the LSD property.
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Dynamical equation with Lévy noise and dissipative non-
linearity. The Langevin equation for a random process in the

velocity coordinate V is MV=-V/u+F(1), where u denotes
the mobility and F(r) the white Gaussian noise. For an LF

with rescaled y,=1/(Mu) and F(1)=ML(t), the Langevin
equation is usually written in the form [23]

dV(t) + y(V)V(t)dt = dL(z), (1)

with the constant friction y,=y(0). L(z) is the a-stable Lévy
noise defined in terms of a characteristic function p*(w,?)
=FHp(L.t)}=["p(L,0)exp(iwL)dL of the form p“(w,1)
=exp(-D|w|*) [1,24], where D of dimension cm®/sec is the
generalized diffusion constant. The characteristic function of
the velocity PDF P(V,t), P*(q.t)=F{P(V,t)} is then gov-
erned by the dynamical equation [23]

dP"(q,1) P .
—22 — 5 g— - Dl|qg|*P". 2
P e, || (2)

At stationarity, this characteristic function assumes the form
P (q,t)=exp[-D|q|*/(yoa)] such that the PDF P(V,?) con-
verges towards an LSD of index «. This stationary solution
possesses, however, a diverging variance [27].

To overcome the divergence of the variance (V2(1)), we
introduce into Eq. (1) the velocity dependent dissipative non-
linear form (V) for the friction coefficient [19,22]. We re-
quire y(V) to be symmetric in V [22], assuming the virial
expansion up to order 2N

YV = v+ nV2+ VP, >0 (3)
The coefficients 7,, are assumed to decrease rapidly with
growing n (neN). To infer the asymptotic behavior, it is
sufficient to take along the highest power 2N. More gener-
ally, we will consider a power v,|V|” with v R* and 7,
>0. We will show that, despite the input driving Lévy noise,
by inclusion of the dissipative nonlinearity (3) the resulting
process possesses a finite variance.

To this end, we pass to the kinetic equation for P(V,t), the
fractional Fokker-Planck equation [13,25,26,28-30]
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d a“P

IP(V,1)
= E/(VV(V)P) + D<9|V|“'

ot

(4)

We note that, apart from the Langevin approach, Eq. (4) can
be derived from a continuous time random walk with inho-
mogeneous jump length distribution or the generalized
Chapman-Kolmogorov equation [31]. The nonlinear friction
coefficient y(V) thereby takes on the role of a confining po-
tential: while for y,=7(0) the drift term V', is just the re-
storing force exerted by the harmonic Ornstein-Uhlenbeck
potential, the next higher-order contribution ,V? corre-
sponds to a quartic potential, and so forth. The fractional
operator ¢*/4|V|* in Eq. (4) is defined through its Fourier
transform, F{d*/d|V|*f(V)}=—|q|*f (). For 1<a<2, it is
represented explicitly by [13,30]
& (7 SV

d“f(v
i )=—K_2 ————dV’, (5)
dvie = a) Vv

with K '=2 cos(ma/2)[(2-a).

Asymptotic behavior. To derive the asymptotic behavior
of P(V,t) in the presence of a particular form of y(V), it is
sufficient to consider the highest power, say, Y(V)~ y,|V|".
In particular, to infer the behavior of the stationary PDF
Py (V) for V—oo, it is reasonable to assume that we can cut
off the integral [~ dV' in the fractional operator (5) at the
pole V' =V, since the region of integration for the remaining
left-side operator is much larger than the cut-off right-side
region. Moreover, the remaining integral over (—o,V) also
contains the major portion of the PDF. For V— +o0, we find
in the stationary state after integration by V,

d [V PV

V*P(V) = Dk—
Yv sl( ) KdV . (V— V/)a—l

dv'. (6)

We then use the ansatz Pgy(V)~ C/|V|*, u>0. With the ap-

proximation [Y P (V')/(V-V")elav' ~Vvi=efY p (V")dV’

~V'=ef* P (V')dV'=V'~* we obtain the asymptotic form
C.D

Py(V) = —2—,
St( ) ’)/V|V’u

m=a+v+l1, (7)

valid for V— = due to symmetry. We conclude that for all
v>v,=2—a the variance (V?) is finite, and thus a dissipa-
tive nonlinearity whose highest power v exceeds the critical
value v, counterbalances the energy supplied by the Lévy
noise L(7).

Numerical solution of quadratic and quartic nonlinearity.
Let us consider the case of dissipative nonlinearity up to
quartic order contribution, ¥(V)=y,+ v,V>+ v,V*. According
to the previous result (7), the stationary PDF for the qua-
dratic case with y,>0 and 7,=0 falls off like Py(V)
~|V|[7*=3, and thus Va e (0,2] the variance (V?) is finite.
Higher-order moments, such as the fourth-order moment
(V*) are, however, still infinite. In contrast, if y,>0, also this
fourth-order moment is finite. We investigate these claims
numerically by solving the Langevin equation (1); compare
Ref. [30] for details.
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FIG. 1. Variance (V2(¢)) as function of time ¢, with the quartic
term set to zero, y,=0 and y,=1.0 for all cases. The variance is
finite for the cases a=2.0, %,=0.0; a=1.2, »=0.1; a=1.5,
=0.1; and @=1.8, y,=0.1. These correspond to the left ordinate. For
the case a=1.2, y,=0.0, the variance diverges and strong fluctua-
tions are visible; note the large values of this curve corresponding to
the right ordinate.

In Fig. 1, we show the time evolution of the variance
(V2(t)) for various combinations of Lévy index a and mag-
nitude v, of the quadratic nonlinearity (y,=1.0 and y,=0.0).
For all cases with finite y, (y,=0.1), we find convergence of
the variance to a stationary value. For the two smaller « (1.2
and 1.5), we observe some fluctuations, however these are
comparatively small in respect to the stationary value they
oscillate around. For a=1.8, the fluctuations are hardly vis-
ible, and in fact the stationary value is practically the same as
in the Gaussian case a=2.0. In contrast, the case with van-
ishing y, (and @=1.2) clearly shows large fluctuations re-
quiring the right ordinate, whose span is roughly two orders
of magnitude larger than that of the left ordinate.

Similarly, in Fig. 2, we show the fourth-order moment
(VA(t)) as function of time. It is obvious that only for a finite
vs (74=0.01 and @=1.8) the moment converges to a finite
value that is quite close to the value for the Gaussian case
(@=2.0) for which all moments converge. Opposite to this
behavior, both examples with vanishing 7y, exhibit large fluc-
tuations. These are naturally much more pronounced for the
case with smaller Lévy index (a=1.2, corresponding to the
right ordinate).

Finally, we investigate the asymptotic behavior of the sta-
tionary PDF Py (V) in Fig. 3. Clearly, in all three cases the
predicted power-law decay is reached, with exponents that,
within the estimated error bars [33], agree well with the pre-
dicted relation for w according to Eq. (7).

Central part of P(V,t). The nonlinear damping (3) mainly
affects larger velocities, while smaller velocities (V<<1) are
mainly subject to the lowest-order friction y(0). We therefore
expect that in the central region close to V=0, the PDF
P(V,T) preserves its LSD character. This is demonstrated in
Fig. 4, where the initial power-law decay of the LSD even-
tually gives way to the steeper decay caused by the nonlinear
friction term. In general, the PDF shows transitions between
multiple power laws in the case when several higher-order
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tions, i.e., diverging (V*(r)). Note
that the case @=1.2 and y,=0 cor-
responds to the right ordinate.

friction terms are carried along. The turnover point from the
unaffected LSD to steeper decay caused by nonlinear friction
depends on the ratio 7yy:y,,, where 2n is the next higher-
order nonvanishing friction coefficient.

Discussion and conclusions. Strictly speaking, all natu-
rally occurring power laws in fractal or dynamic patterns are
finite. Scale-free models nevertheless provide an efficient de-
scription of a broad variety of processes in complex systems
[4,13,26,32]. This phenomenological fact is corroborated by
the observation that the power-law properties of Lévy pro-
cesses persist strongly even in the presence of cutoffs [17],
and, more mathematically, by the existence of the general-
ized central limit theorem due to which Lévy stable laws
become fundamental [2]. A categorical question is whether in
the presence of Lévy noise, there exists a physical cause to
remove the consequential divergencies. A possible, physi-
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FIG. 3. Power-law asymptotics of the stationary PDF, In-In
scale. We observe the expected scaling with exponent w from Eq.
(7). In the graph, we also indicate the number N, of trajectories of
individual length N simulated to produce the average PDF.

cally natural answer is given by a nonconstant friction coef-
ficient ¥(V), that is known from various classical systems.
Here, we present a concise derivation of the regularization of
a stochastic process in velocity space that is driven by Lévy
stable noise, in the presence of dissipative nonlinearities.
These dissipative nonlinearities remove the divergence of
the kinetic energy from the measurable subsystem of the ran-
dom walker. In the ideal mathematical language, the sur-
rounding bath provides an infinite amount of energy through
the Lévy noise, and the coupling via the nonlinear friction
dissipates an infinite amount of energy into the bath, and
thereby introduces a natural cutoff in the kinetic-energy dis-
tribution of the random walker subsystem. Physically, such
divergencies are not expected, but correspond to the limiting
procedure of large numbers in probability theory. In this
work, we showed that both statements can be reconciled, and
that Lévy processes are indeed physical. We believe that this
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FIG. 4. Stationary PDF Pg(V) for y,=1.0 and (i) y,=0.000 1
and y,=0; (ii) y%,=0 and y,=0.000001; with a=1.0. The lines
indicate the slopes —1, =3, and 5.
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is an important progress towards the understanding of Lévy
processes.

By analytical investigation of the fractional Fokker-
Planck equation and its underlying Langevin equation gov-
erning the relaxation of the velocity V and its PDF P(V,1),
and supported by numerical simulation, we could show that
the variance (V*(f)) of the resulting stochastic process be-
comes finite in the presence of even the lowest-order dissi-
pative nonlinear correction, i.e., the term y,V2. With higher-
order contributions (y,V*, etc.), also higher-order moments
become finite. At the same time, the resulting PDF P(V,¢)
was shown to leave the basin of attraction of an LSD. In-
stead, steeper power-law asymptotics are observed whose ex-
ponent could be identified as w=a+v+1, where v is the
highest power occurring in the expansion of (V).

We note that the resulting PDF P(V,t) exhibits a multi-
modal shape, i.e., it possesses global maxima away from the
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origin V=0 [28-30]. Especially, the stationary state is bimo-
dal. For instance, for the case a=1 and ¥(V)=V?2, the
PDF is P (V)=m'/(1=-V2+V*) with V,=+V1/2.
That means that the most likely velocity in the
presence of the dissipative nonlinear (V) does not vanish—
in contrast to the usual Maxwell distribution Py(V)
=+ Bm/(2m)exp(-BmV?/2) with B=1/(kgT).

In conclusion, these results allow us to understand some
of the fundamental physical questions concerning Lévy noise
originally raised in Ref. [23]. Namely, by introducing dissi-
pative nonlinearity elements, the diverging velocity fluctua-
tions can be compensated, regularizing the stochastic process
by producing a finite variance of the velocity through a natu-
ral cutoff of the LSD behavior.

We thank Igor M. Sokolov and Iddo Eliazar for helpful
discussions.

[11P. Lévy, Théorie de [’Addition des Variables Aléatoires
(Gauthier-Villars, Paris, 1954).

[2] W. Feller, An Introduction to Probability Theory and Its Ap-
plications (Wiley, New York, 1968).

[3] B. D. Hughes, Random Walks and Random Environments, Vol-
ume 1: Random Walks (Oxford University Press, Oxford, UK,
1995).

[4] J.-P. Bouchaud and A. Georges, Phys. Rep. 339, 127 (1990).

[5] G. M. Viswanathan, V. Afanasyev, S. V. Buldyrev, E. J. Mur-
phy, P. A. Prince, and H. E. Stanley, Nature (London) 401,
413 (1996).

[6] R. P. D. Atkinson, C. J. Rhodes, D. W. Macdonald, and R. M.
Anderson, Oikos 98, 134 (2002).

[7] M. Levandowsky, B. S. White, and F. L. Schuster, Acta Pro-
tozool. 36, 237 (1997).

[8] A. W. Visser and U. H. Thygesen, J. Plankton Res. 25, 1157
(2003).

[9] G. Ramos-Fernandez, J. L. Mateos, O. Miramontes, G. Cocho,
H. Larralde, and B. Ayala-Orozco, Behav. Ecol. Sociobiol. 55,
223 (2003).

[10] A. V. Chechkin, V. Y. Gonchar, and M. Szydlowsky, Phys.
Plasmas 9, 78 (2002).

[11] H. Katori, S. Schlipf, and H. Walther, Phys. Rev. Lett. 79,
2221 (1997).

[12] K. Matia, L. A. Nunes Amaral, S. P. Goodwin, and H. E.
Stanley, Phys. Rev. E 66, 045103(R) (2002).

[13] R. Metzler and J. Klafter, J. Phys. A 37, R1 (2004).

[14] I. M. Sokolov, J. Mai, and A. Blumen, Phys. Rev. Lett. 79,
857 (1997).

[15] M. F. Shlesinger, J. Klafter, and Y. M. Wong, J. Stat. Phys. 27,
499 (1982).

[16] J. Klafter, A. Blumen, and M. F. Shlesinger, Phys. Rev. A 35,
3081 (1987); J. Klafter, M. F. Shlesinger, and G. Zumofen,
Phys. Today 49, 33 (1996).

[17] R. N. Mantegna and H. E. Stanley, Phys. Rev. Lett. 73, 2946

(1994).

[18] I. M. Sokolov, A. V. Chechkin, and J. Klafter, Physica A 336,
245 (2004).

[19] N. N. Bogoliubov and Y. A. Mitropolsky, Asymprotic Methods
in the Theory of Nonlinear Oscillations (Hindustan, Delhi/
Gordon & Breach, New York, 1961).

[20] H. Davis, Introduction to Nonlinear Differential and Integral
Equations (Dover, New York, 1962).

[21] A. A. Andronow, C. E. Chaikin, and S. Lefschetz, Theory of
Oscillations (Princeton University Press, Princeton, NJ, 1949).

[22] Yu. L. Klimontovich, Turbulent Motion and the Structure of
Chaos: A New Approach to the Statistical Theory of Open
Systems (Kluwer, Dordrecht, 1992).

[23] B. J. West and V. Seshadri, Physica A 113, 203 (1982).

[24] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian
Random Processes: Stochastic Models with Infinite Variance
(Chapman and Hall, New York, 1994).

[25] H. C. Fogedby, Phys. Rev. Lett. 73, 2517 (1994).

[26] R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).

[27] S. Jesperson, R. Metzler, and H. C. Fogedby, J. Stat. Phys. 59,
2736 (1999).

[28] A. Chechkin, V. Gonchar, J. Klafter, R. Metzler, and L. Tana-
tarov, Chem. Phys. 284, 67 (2002).

[29] A. V. Chechkin, J. Klafter, V. Y. Gonchar, R. Metzler, and L.
V. Tanatarov, Phys. Rev. E 67, 010102(R) (2003).

[30] A. V. Chechkin, V. Y. Gonchar, J. Klafter, R. Metzler, and L.
V. Tanatarov, J. Stat. Phys. 115, 1505 (2004).

[31] R. Metzler, E. Barkai, and J. Klafter, Europhys. Lett. 46, 431
(1999); R. Metzler, Eur. Phys. J. B 19, 249 (2001); Phys. Rev.
E 62, 6233 (2000).

[32] J. M. Halley, S. Hartley, A. S. Kallimanis, W. E. Kunin, J. J.
Lennon, and S. P. Sgardelis, Ecol. Lett. 7, 254 (2004).

[33] From the scattering of the numerical data after repeated runs,
see Fig. 3.

010101-4



