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The optical conductivityssvd for dense Coulomb systems is investigated using molecular dynamics simu-
lations on the basis of pseudopotentials to mimic quantum effects. Starting from linear response theory, the
response in the long-wavelength limitk=0 can be expressed by different types of autocorrelation functions
sACF’sd such as the current ACF, the force ACF, or the charge density ACF. Consistent simulation data for
transverse as well as longitudinal ACF’s are shown which are based on calculations with high numerical
accuracy. Results are compared with perturbation expansions which are restricted to small values of the plasma
parameter. The relevance with respect to a quantum Coulomb plasma is discussed. Finally, results are presented
showing a consistent description of these model plasmas in comparison to quantum statistical approaches and
to experimental data.
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I. INTRODUCTION

In the present paper, we report molecular dynamicssMDd
simulations to evaluate the transport properties of dense plas-
mas. We compare with quantum-statistical calculations and
experimental results. To start with, some notations relevant
for the introduction of the optical conductivity and the dy-
namical collision frequency are given.

The different optical and transport properties of Coulomb
systems are related to the dielectric tensorêskW ,vd. The dy-
namical and static structure factor, optical spectra, brems-
strahlung, stopping power, reflectivity, dc conductivity, and
other properties have been investigated recentlyf1–4g. For
an isotropic and homogeneous system, the dielectric tensor
can be decomposed into a longitudinal and a transverse part

ei jskW,vd = eLskW,vd
kikj

k2 + eTskW,vdSdi j −
kikj

k2 D = 1eT 0 0

0 eT 0

0 0 eL 2 ,

s1d

where the matrix representation is valid assumingkW =keWz.
The longitudinal part is related to the dynamical structure
factor

SskW,vd =
e0k

2

ne2

"

e−b"v − 1
Im

1

eLskW,vd
, s2d

which will be used as the starting point in the upcoming
discussion.n denotes the charge density.

A related quantity is the nonlocal dynamical conductivity
ŝskW ,vd which is defined according to êskW ,vd=1
+ iŝskW ,vd / se0vd and can also be decomposed into a longitu-
dinal sLskW ,vd and transversesTskW ,vd part. In the long-

wavelength limit sk→0d, both longitudinal and transverse
quantities coincide and lead to the same response of the sys-
tem,

ssvd = lim
k→0

sTskW,vd = lim
k→0

sLskW,vd, s3d

wheressvd is denoted as the opticalsor dynamicald conduc-
tivity. For applications with respect to the optical properties
of plasmas, this limit can be taken if the wavelength of the
electromagnetic radiation is large compared to the distances
of the charge separation. In particular,ss0d=sdc describes
the static dc conductivity. The dynamical conductivity is re-
lated to the dynamical collision frequencynsvd via a gener-
alized Drude formulaf5,6g

ssvd =
e0vpl

2

− iv + nsvd
, s4d

wherevpl=socncec
2/e0mcd1/2 is the plasma frequency withnc

being the particle density,ec the charge, andmc the mass of
the component speciesc snote that spin is included as welld.
Thus, alternatively, the collision frequency can be considered
as the quantity which contains all the information on micro-
scopic processes in the system. The present paper is con-
cerned with the investigation ofssvd or nsvd, respectively,
and, in particular, the dc limit.

Starting from the microscopic description, we will con-
sider a nonrelativistic two-component fully ionized neutral
plasma, such as a H plasma consisting of electrons and ions
sprotonsd, at temperatureT and densityn=ne=ni of each
component. Within the Coulomb system, the coupling to a
transverse vector potential is neglected, thus not accounting
for radiative corrections. This is possible for temperatures

PHYSICAL REVIEW E 71, 066408s2005d

1539-3755/2005/71s6d/066408s12d/$23.00 ©2005 The American Physical Society066408-1



not too high as considered here. The interactions are de-
scribed by the longitudinal part, the Coulomb potential, and
the Hamiltonian is

H = o
c,a

pc,a
2

2mc
+

1

2 o
hc,ajÞhd,bj

eced

4pe0urWc,a − rWd,bu
, s5d

with a, b denoting the index of the particle of componentsc,
d, respectively. Thus, only longitudinalsplasmonsd, but no
transversesphotonsd, excitations are described by the Cou-
lomb Hamiltonian. In thermal equilibrium, the plasma is
characterized by the coupling parameterG
=e2s4pn/3d1/3s4pe0kBTd−1 and the degeneracy parameter
Q=2mekBT"−2s3p2nd−2/3. Details of the plasma properties
density, temperature, and degeneracy atG=1 relevant for our
calculations are given in Table I. Besides the values given in
the table, we consider parameters of densityn=3.8
31021 cm−3 and temperature ofT=33 000 K which is moti-
vated by recent experiments in dense xenon plasmasf4g.
They correspond to a nondegeneratesQ=3.2d and strongly
coupled plasmasG=1.28d. Note that the conditions given in
Table I actually correspond to partially ionized plasmas since
the Debye screening lengthrD=socncec

2/e0kBTd−1/2 is on the
order of the Bohr radius. We consider only free charge car-
riers in the context of a partially ionized plasma; the bound
electronssatomsd are neglected. A comprehensive treatment
of these systems should account for bound states as well; see
Ref. f7g and Sec. VI.

We are interested in the reaction of the system to an ex-
ternal perturbation. In the case of weak external fields con-
sidered here, linear response theory can be applied. Strong
external fields produced, e.g., in high-intense ultrashort laser
pulses, lead to large quiver velocities of the electrons exceed-
ing the range of linear response. Collisional absorption in
strong electrical fields has been investigated by different au-
thors; see, e.g., Refs.f8–11g. A comparison of our linear
response treatment with the strong field case will be given at
the end of Sec. IV.

Within linear response theory, transport coefficients, in
particular the dynamical conductivity, and further quantities
such as the dynamical collision frequency are related to equi-
librium correlation functions. Analytical expressions have
been derived in earlier papersf5,6,12g and have been evalu-
ated within approximation schemes as outlined below. These
quantum statistical approaches are limited to small coupling
parameters—e.g.,G!1. Simulations are necessary to check

the range of validity of these approximations and to extend
the range of parameter values. Classical MD simulations
f1,13–17g calculate the trajectories of a finite number of par-
ticles, neglecting the quantum character of the dynamical
evolution of the many-particle system. A quantum-statistical
treatment can be given using wave packet molecular dynam-
ics f18g or applying path integral techniquesf19g.

The use of classical MD simulations for the evaluation of
static equilibrium properties, such as the equation of state,
has been shown to be equivalent to a quantum treatment. For
this, the original Coulomb interaction is replaced by an ap-
propriate pseudopotential, where the short-range part of the
interaction is modified, reflecting the quantum character of
the interactionf20g. In particular, the singularity of the Cou-
lomb potential atr =0 has to be smeared out to avoid insta-
bilities. Potentials which are motivated in this way can also
be used in other classical calculations—e.g., equilibrium cor-
relation functions—as they are of interest with respect to
transport and optical properties. For MD simulations of non-
ideal plasmas, the Deutsch interaction potentialf21g was
used in the pioneering worksf13g and later simulations
f22,23g. It has the form

Vcd
D srd =

eced

4pe0r
F1 − expS−

r

lcd
D DG , s6d

where the parameter

lcd
D =

1
Îp

lcd =
"

Î2pmcdkBT
,

1

mcd
=

1

mc
+

1

md
, s7d

is related to the thermal wavelength

Lcd = Î2p"2/smc + mddkBT

.
A more systematic derivation of a pseudopotential which

reproduces the equilibrium properties of the quantum Cou-
lomb system via classical statistics has been given by Kelbg-
seef20,24g-on the basis of Slater sums. In particular, we use
the so-called “corrected Kelbg” potentialf25g

Vcd
K srd =

eced

4pe0r
FFS r

lcd
D − r

kBT

eced
ÃcdsjcddexpS−

r2

lcd
2 DG ,

s8d

with

TABLE I. Parameters and results of MD simulations for the corrected Kelbg potential, Eq.s8d, at G=1. The index number refers to
different temperatures. The corresponding values for the electron densityne and the degeneracy parameterQ, and the interaction potentials
at zero distanceVeis0d /kBT and Vees0d /kBT are given; see also Fig. 1. For the collision frequency at zero frequencyns0d and thear/i

characterizing the high-frequency behavior of its real and imaginary part, see Sec. IV.

No. T s103 Kd ne s1021 cm−3d Q Veis0d /kBT Vees0d /kBT ns0d /vpl ar ai

1 16 0.2096 10.71 −8.52 7.49 0.224 3.4±0.3 1.05±0.06

2 33 1.839 5.20 −6.83 5.61 0.221 3.8±0.2 1.05±0.02

3 100 51.17 1.71 −4.49 3.64 0.150 3.5±0.4 1.04±0.02

4 350 2194 0.49 −2.49 2.31 0.032 3.4±0.7 1.02±0.04
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jcd = −
eced

kBTlcd
, Fsxd = 1 − exps− x2d + Îpxf1 − erfsxdg,

Ãeesjeed = Îpujeeu + lnF2ÎpujeeuE
0

` y exps− y2ddy

expspujeeu/yd − 1G ,

Ãeisjeid = − Îpjei + lnFÎpjei
3Szs3d +

1

4
zs5djei

2D
+ 4ÎpjeiE

0

` y exps− y2ddy

1 − exps− pjei/ydG ,

wherezsnd is the Riemann-Zeta function. Note that the defi-
nition of the parameterlcd, Eq. s7d, is slightly different from
lcd

D for the Deutsch potential. The interaction potentials8d
corresponds to the Coulomb potential at large distances and
provides an exact value of the Slater sum and its first deriva-
tive at r =0. Figure 1 shows the pseudopotential for the pa-
rameters given in Table I which will be used in the calcula-
tions and simulations later on. The temperature determines
the depth of the short-range part in the corrected Kelbg po-
tential. Further columns refer to the dynamical collision fre-
quency and will be explained below; see Sec. IV.

Our aim is to compare different approaches to the dy-
namical conductivity of dense plasmas. Classical MD simu-
lations based on an appropriate pseudopotential are com-
pared with the analytical quantum treatment of the Coulomb
system. This allows us to discuss the justification of the ap-
plication of pseudopotentials in numerical simulations; see
Sec. IV. Both approaches are discussed in the context of
experimental data, in particular the static conductivity of
fully ionized dense plasmas.

II. DYNAMICAL STRUCTURE FACTOR AT FINITE
WAVE NUMBER

Within linear response theory, the response to external
perturbations is given in terms of equilibrium correlation
functions according to the fluctuation-dissipation theorem
f14,20,26–28g; see alsof29g. In the following, we consider
the dynamical structure factors2d which is a typical quantity
in classical MD simulations. It is given byf14g

SskW,vd =
1

2pN
E dtE d3r E d3r8krsrW,tdrsrW8,0dleikW·srW−rW8d−ivt

s9d

=
1

2pN
E dt krkstdrk

*s0dle−ivt, s10d

where rkstd is the Fourier transform of the charge density
rsrW ,td=oc,aecdsrW−rWc,astdd. The angular brackets denote an
average over the thermodynamic equilibrium distribution
and define the correlation function

KABstd = kAstdBl = lim
T→`

1

T
E

t0

t0+T

dt8Ast + t8dBst8d. s11d

Corresponding to the principle of ergodicity, it is assumed
that the long-time behavior of a trajectory gives the ensemble
average with respect to equilibrium. After some initial time
to establish the equilibrium distribution in the system and to
form the correlations using a special procedure described in
f16g, different pieces of a trajectory starting att0 can be taken
to mimic the average over the thermal equilibrium. As shown
in f17g, these pieces are statistically independent if they are
taken at timest0 separated by at least the dynamical memory
time.

The trajectoriesrWc,astd are simulated by MD methods us-
ing periodic boundary conditions and the minimum image
conventionssee, e.g.,f30gd. The basic MD box has the edge
sizeL=sN/nd1/3 which is determined by the number of par-
ticles,N, in the basic cell at a given mean plasma densityn.
The images of this basic cell are generated by shifting the
basic cell by integer multiples ofL in all directions. The
number of particles in our simulations ranges fromN=200 to
1000. The choice ofN is dictated by the criterion that the
screening length should be considerable smaller than the MD
box size. Thus, for smallerG a larger simulation box is
needed.

The forcesFW c,a=FW c,a
short+FW c,a

long on the particle labeled bya
of speciesc due to the surrounding particles are separated

FIG. 1. Interaction potentials as function of distance,rL

=e2/ s4p«0kBTd: sleftd electron-ionVeisrd, srightd electron-electron
Veesrd; 1–4: Kelbg potentials8d at temperatures given by the corre-
sponding index numbers in Table; I. 5: Coulomb potential.
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into two contributions. The short-range contributionFW c,a
short

=od,b8 FW cdsrWd,b
NN−rWc,ad is due to the nearest imagessnearest

neighborsd hd,bjÞ hc,aj of all the particles following the

conventional MD techniques. The contributionFW c,a
long origi-

nates from interactions with particles and images outside a
basic cell centered around the positionrWc,a of the particle
hc,aj. Part of the influence of these far images can be ap-
proximately taken into account considering Ewald sums
f13,14g. As will be shown below, if the dimensionL of the
basic cell is large in comparison to the screening length, the
contribution of the Ewald sums turns out to be small.

Another feature of long-range interactions is determined
by the mean electrical field which is produced from the
charge separation at scales larger thanL according to the
Maxwell equations. In particular, we are interested in plas-
mon excitations. Considering macroscopic charge density
wavesr̄kstd=ed3rkrsrW ,tdlexpsikW ·rWd with wave vectorkW =keWz

fwe have already assumed in Eq.s1d that they are propagat-

ing in z directiong, we obtain a long-range mean fieldĒk
zstd

=ed3rEzsrW ,tdexpsikW ·rWd according to the Gauss law as

ikĒk
zstd =

1

e0
r̄kstd. s12d

This mean field produces a force on the charges so that they
are accelerated. This results in a change of the average mac-
roscopic current,

Jk
zstd = k jk

zstdl =E d3r k jzsrW,tdl expsikW · rWd, s13d

with the longitudinal component of the current density:

jWsrW,td = o
c,a

ec vWc,astdd„rW − rWc,astd…. s14d

The current density is related to the time variation of the
charge density according to the balance equationdr̄kstd /dt
=−ikJk

zstd, and plasma oscillations are obtained. We will
demonstrate this in detail for the special casek=0 in the
following section.

Since this mean field is long ranged and not restricted to
the screening length, it has to be taken into account ad-
equately and should not be influenced by the sizeL of the
periodic boxes. Therefore, the dynamical structure factor can
only be calculated forkù2p /L. Only in this case, the den-
sity fluctuations which lead to plasmon oscillations correctly
treated considering all particles within the basic MD box.
Plasma waves with wavelengths exceeding the lengthL of
the basic box are not correctly implemented by using peri-
odic boundary conditions. Consequently, it is not possible in
this way to describe collective excitations in the limit
k→0.

Calculations of the dynamical structure factor at
kù2p /L have been performed for the system considered
here; seef1g. It has been shown that forGø2 the MD simu-
lations for the dynamical structure factor at finite values ofk
are in good agreement with the analytical results obtained
within perturbation theoryf1,31g. In particular, the plasmon
peak is well reproduced. However, no results for the re-

sponse to a homogeneous external field,k=0, can be ob-
tained within this approach.

III. CURRENT AUTOCORRELATION FUNCTION AT
ZERO WAVE NUMBER

As discussed above, it is impossible to carry out the long-
wavelength limitk→0 in calculating the dynamical structure
factor from the charge autocorrelation functionsACFd, be-
cause of the finite extension of the MD basic simulation box.
However, it is possible to consider this limit for the current
ACF, as will be argued now. In the current ACF, plasmon
oscillations will appear in the limitk→0 as well. Charge
separation at long distances produces a surface charge den-
sity. If the surface is far away, it produces a homogeneous
sk=0d mean electrical field within the simulation box which
is necessary to include in the long-wavelength limit. As a
consequence, plasma oscillations are obtained.

On the macroscopic level, the Maxwell equations relate
this mean field to thez component of the average current
density. Following Eq.s12d and the discussion in the previ-
ous section, we find in the Fourier space

d

dt
Ēk=0

z std = −
1

e0
Jzstd, s15d

with the macroscopic current

JWk=0std = JWstd = k jWstdl = Ko
c,a

ecvWc,astdL s16d

as an average over the basic simulation cell. Taking the ini-

tial conditionEW s0d=0, the integration of Eq.s15d leads to

Ezstd =
1

L3Ēk=0
z std =

1

e0L
3Ko

c,a
ecrc,a

z stdL . s17d

Neglecting the contribution from the Ewald sums, the long-
range interaction forces are given by the mean field accord-

ing to FW c,a
longstd=ecE

zstdeWz which contribute to the longitudinal
component. In particular, the equation of motion for an elec-
tron reads

me
dvWe,a

dt
= FW e,a

short− eEzstdeWz. s18d

The short-range forcesFW e,a
short are fluctuating around a zero

mean value. But the amplitude of these fluctuations is much
larger than the fluctuations of the mean-field force −eEzstdeWz.
It has been shown that the energy is conserved if the associ-
ated energy of the mean field is includedf12g.

The occurrence of plasma oscillations can be demon-
strated in the following way. If the mass ratio between elec-
trons and ionsme/mi is small, the ion current can be ne-
glected. The derivative of the averaged total current density
is obtained as

d

dt
JWstd = − eKo

a=1

N
d

dt
vWe,aL =

eN

me
feEzstdeWz − kjWlg, s19d
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jW =
1

N
o
a=1

N

FW e,a
short=

1

N
o
a=1

N

o
i,b

8FW eisrWi,b
NN − rWe,ad. s20d

The forcejW includes only electron-ion interaction forces. All
electron-electron interaction forces are compensated since
they do not change the total momentum of the electrons.

Although the forceFW e,a
short on each electron is typically much

greater than the forceeEzstdeWz from the polarization field, the
average over all electrons is of the same order of magnitude
aseEzstd. If we now differentiate Eq.s15d and substitute the
derivative of the current using Eq.s19d, we obtain the equa-
tion for the mean field:

d2

dt2
Ezstd + vpl

2 Ezstd =
vpl

2

e
kjzl. s21d

In the average,kjWl vanishes, so that plasma oscillations are
described. The corresponding oscillations in the current ACF
as obtained from MD simulations are shown below.

Due to the mean field, MD simulations for thez direction
flongitudinal componentjLstdg and thex,y directionsftrans-
verse componentsjTstdg behave in different ways. In particu-
lar, two different current ACF’s can be derived: the longitu-
dinal one Kjj

L and the transverse oneKjj
T. Both were

calculated separately in an earlier paperf12g, using different
MD simulation procedures, but can be derived from the same
MD simulation if different components are taken. Within
MD simulationsf14,15g, the normalized current ACF

Kjj
L/Tstd =

k jL/Tstd jL/Ts0dl
k j2l

=
b

e0vpl
2 L3k jz/xstd jz/xs0dl s22d

is calculated. Here, the long-wavelength limitsk→0d of the
Fourier transforms16d of the current density, Eq.s14d, is
considered, and the normalizing factor is equal tok j2l
=e2Nkv2l /3=e0vpl

2 L3/b.
Using the balance equationdrkstd /dt=−ikjk

zstd we can ex-
press the dynamical structure factor in terms of the longitu-
dinal current ACF instead in terms of the density autocorre-
lation function s10d. This ACF has been evaluated within
MD simulations, solving the equation of motion and consid-
ering thez component of the current density. After imple-
menting the mean field explicitly, the zero-wavelength limit
can be considered. A detailed description of the MD simula-
tion procedures is given inf31g. In particular, no dependence
on the mass ratio forme/mi ø0.01 was found.

As an illustration, we show results of MD simulations for
the longitudinal and transverse current ACF in Fig. 2; see
also f12g. It can be seen that after inclusion of a mean field
acting on thez component, the plasma oscillations inKJJ

L std
become well pronounced in contrast to a monotonously de-
creasing behavior for the correlation functionKJJ

T of the
transverse current as was also obtained in previous MD
simulationsf13,15,17g. It should be stressed that the ampli-
tude of the oscillations in the longitudinal case does not de-
pend on the number of particles,N, in the simulation. The
oscillation frequency tends tovpl for an ideal plasmafcolli-
sion frequencynsvd=0g.

As a technical note, we mention that the contribution from
the Ewald sums can be neglected for the parameter values
considered here. This is expected for a nonideal plasma
where the effective interaction potential decreases exponen-
tially with distance due to screening. We illustrate this fact
by comparing MD simulations with and without Ewald sum-
mations. The current ACF for a plasma atG=1 and tempera-
ture of 316 000 K using the Deutsch potential is shown in
Fig. 3. As can be seen, the neglect of Ewald sums is of no
significance for the evaluation of these quantities. This is
also found for the dynamical collision frequency discussed
below, which is shown for these particular MD simulations
without and including Ewald sums in Fig. 4.

IV. DYNAMICAL COLLISION FREQUENCY

We will now discuss the results of the current ACF in the
context of the dynamical conductivity and the dynamical col-
lision frequency. Within linear response theory, the current

FIG. 2. Current autocorrelation functions22d for the Kelbg po-
tential s8d, G=1.28, me/mi =0.01; total number of averages 5
3105; MD trajectory length of 2.53104te, te=2p /vpl, period of
electron plasma oscillations; circles, MD simulationsKJJ

T std of com-
ponents not influenced by the mean field, triangles, MD simulations
KJJ

L std for the longitudinal component including the mean-field term
in the equation of motion.

FIG. 3. Results of MD simulations with the Deutsch potential
s6d for the transverse current ACFs22d using nearest image method
without Ewald sumsscirclesd and simulations including Ewald
sumsssolid lined for G=1, T=316 000 K.
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ACF can be related to the longitudinal and transverse con-
ductivity, respectively. According tof12g, we find for the
longitudinal case

sLsk,vd =
sb/L3dk jk

L ; jk
Llv+ih

1 − sib/e0vL3dk jk
L ; jk

Llv+ih

s23d

and the transverse case

sTsk,vd =
b

L3k jk
T; jk

Tlv+ih , s24d

where the correlation function kA;Blv+ih

=e0
`eisv+ihdtkAstdBs0dldt is the Laplace transform of the re-

spective ACF. The limith→0 has to be taken after the ther-
modynamic limit.

The longitudinal and transverse currentsjk
L/Tstd and their

long-wavelength limit are given by thez component andx,y
component, respectively, of the Fourier transform of the cur-
rent density, Eqs.s14d and s16d. Within a Green function
approach to these correlation functions, a diagram represen-
tation is possiblef5g. Since the coupling to the transverse
vector potential is not considered, there are no reducible dia-
grams with respect to the transverse interaction and no term
in the denominator as in the longitudinal case appears. Thus,
the Kubo-Greenwood formulas24d f13–15,26–28g relates the
dynamical conductivity directly to the transverse current
ACF.

In the long-wavelength limit, the structure of the general-
ized Drude formulas4d is obtained. From this, the dynamical
collision frequenciesnL/Tsvd could be deduced, from either
the longitudinal case or the transverse case, respectively,

lim
k→0

sL/TskW,vd =
e0vpl

2

− iv + nL/Tsvd
. s25d

Since the expressions between the conductivities and
current-current correlation functions are different for the lon-
gitudinal and transverse cases, the deduced collision frequen-
cies nLsvd and nTsvd are with Eqs.s23d and s24d, respec-
tively,

nLsvd
vpl

=
e0vplL

3

bk jL ; jLlv+ih
+ iS v

vpl
−

vpl

v
D , s26d

nTsvd
vpl

=
e0vplL

3

bk jT; jTlv+ih
+ i

v

vpl
. s27d

The collision frequencies should be identical fork→0 since
the dynamical conductivity is given according to Eqs.s3d
and s4d. However, the correlation functions are calculated
with different schemes as explained before. The current cor-
relation functions in the long-wavelength limit are given as

k j ; jlv+ih = k j2lE
0

`

eisv+ihdtKjjstddt. s28d

The dynamical collision frequenciesnL/Tsvd have been
calculated from the simulation data for the current ACF’s at
zero wave numberssee Fig. 2d and are shown in Fig. 5. Both
coincide quite clearly as expected. Note the considerable im-
provement of accuracy in comparison to earlier results in
Ref. f12g. Additional verification of self-consistency is per-
formed by calculating Imnsvd from Rensvd in accordance
with the Kramers-Kronig rule. Therefore, our analysis
showed that the transverse conductivity is identical with the
longitudinal conductivity in the long-wavelength limit if the
mean field is taken into account in the longitudinal case. This
agreement and the validity of the Kramers-Kronig rule prove
the high accurracy of our present MD simulations.

Instead of the current ACF, other correlation functions can
be taken as well, in particular the force ACF or the current-
force correlation function. The following relations could be
used for this purpose:

k jW; jWlv =
i

v
Sk jW2l −K jW;

d

dt
jWL

v
D =

i

v
Sk jW2l −

i

v
K d

dt
jW;

d

dt
jWL

v
D ,

s29d

d

dt
jWstd = o

c,a
ec

d

dt
vWc,astd = − eS 1

me
+

1

mi
DFW e, s30d

whereFW e=oa
NFW e,a stands for the resultant force of all ions on

electrons as all internal forces between electrons as well as
between ions cancel after summation.

Practically, the current ACF provides more accurate re-
sults for the low frequenciesv,vpl while the force ACF
works better for high frequencies. Due to the finite numerical

FIG. 4. Comparison of dynamical collision frequency, deter-
mined from MD simulations via the minimum image method with-
out Ewald sumsscirclesd and simulations including Ewald sums
ssolid lined for G=1, T=316 000 K, using the Deutsch potentials6d.
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accuracy of the current ACF obtained from MD simulations,
the linear term proportional toiv in Eqs.s26d ands27d may
lead to a divergent behavior of Imnsvd,v at high frequen-
cies. On the other hand, the corresponding relation for the
force ACF has no such defect:

nLsvd =

ivK d

dt
jL;

d

dt
jLL

v

ie0vvpl
2 L3/b +K d

dt
jL;

d

dt
jLL

v

. s31d

The real and imaginary parts of the dynamic collision
frequency are presented in Fig. 6 for different temperatures
at a coupling strength ofG=1. Table I shows the parameters
for the simulations in more details. It is seen that with de-
creasing temperature, the absolute values of the real and
imaginary parts of the collision frequency increase over the
whole frequency range. This is expected from Fig. 1, where
the strength of the attractive potential increases also with
decreasing temperature. Note that the peak in the real part is
more pronounced and shifted to higher frequencies with de-
creasing temperature. Since the collision frequency is shown
as a ratio with respect to the plasma frequency which de-
creases with decreasing temperature for a fixedG, this ten-
dency is slightly suppressed in the presentation.

An important question is to which extent the MD simula-
tions shown here are relevant for real Coulomb systems. The
Kelbg potential was constructed to reproduce the static equi-
librium properties of dense plasmas, and we expect that it
should be appropriate at least to describe low-frequency,
quasistatic properties. This assumption-whether classical
simulations based on a pseudopotential can be used to mimic
time-dependent properties of dense plasmas-can be checked
by comparison with quantum statistical calculations

We will only briefly refer to the quantum statistical treat-
ment of Coulomb systems. Details of different perturbative
approximations for the dynamical collision frequency can be
found in f5g. In particular, expressions for the collision fre-
quency in the form of

nsvd = rsvdnsP0dsvd s32d

have been given wherensP0dsvd contains the contribution of
the force-force correlation function in screened binary colli-
sion approximation and the renormalization factorrsvd ac-
counts for higher moments of the distribution function in
calculating the response to external perturbations; see also
f6g. As well known from the Chapman-Enskog approach in
kinetic theory, higher moments of the distribution function
have to be accounted for to include the effect of e-e colli-
sions and to obtain the correct prefactor of the Spitzer result
for the conductivity. The comparison of MD simulations
with an analytical treatment is shown in Fig. 7. For this,
strong collisions and dynamical screening are accounted for
in a consistent manner by a Gould-DeWitt scheme for

FIG. 5. Real and imaginary parts of the dynamic collision fre-
quency from MD simulations for the Kelbg potentials8d in the
long-wavelength limit of the transverse casescirclesd and the lon-
gitudinal casestrianglesd, parameters as in Fig. 2; solid line-
imaginary part obtained from the real partstransverse cased accord-
ing to Kramers-Kronig rule.T=33 000 K,G=1.28.

FIG. 6. Real and imaginary parts of the effective collision fre-
quency for the Kelbg potentials8d at G=1 in dependence on tem-
perature: 1:T=16 000 K, 2:T=33 000 K, 3:T=80 000 K.
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nsP0dsvd. Furthermore, two moments are taken into account
by a frequency-dependent renormalization factorrsvd f5g
which are evaluated in statically screened Born approxima-
tion. Good agreement for both the real and imaginary parts is
observed forv,vpl; seef12g. In this region, the quantum-
mechanical treatment of the Coulomb potential and the clas-
sical simulations based on the corrected Kelbg potential are
consistent. Note that an evaluation of the force-force corre-
lation function alone is not sufficient, and the renormaliza-
tion factor has to be taken into account to obtain correct
results, in particular in the low-density low-frequency limit.

In the high-frequency limit, the asymptotic behavior of
the collision frequency for a Coulomb potential and a Kelbg
potential differs. As a consequence, the agreement is poor for
vùvpl. In order to investigate the high-frequency behavior
of the simulation data in more detail, a logarithmic scaling is
used in Fig. 8. The real part can be fitted by a power law
Rensvd,v−ar. The corresponding values ofar deduced
from the simulation data are shown in Table I. The result is
in good agreement with the analytical behavior of,v−3.5

f32g for the Kelbg potential. However, it is in disagreement
with the results for a Coulomb potential which gives,v−1.5

in the high-frequency limit. Therefore, we conclude that the
Kelbg pseudopotential is not able to correctly describe the
high-frequency behavior of a Coulomb system. However, the
imaginary part of the collision frequency follows the power
law Im nsvd,v−ai with the exponentai deduced from the
simulation data close to unityssee Table Id, which is in
agreement with the analytical result,v−1, valid for both the
Coulomb and Kelbg potentials.

In an earlier paperf33g, a comparison of our perturbative
approach to results obtained from a MD code by Pfalzner
and Gibbonf34g has been reported forG=0.1. The collision
frequency is derived from a heating rate using the high-
frequency asymptote of the Drude formula. In this case, good
agreement between MD simulations and analytical calcula-
tions for a classical model plasma is found for higher fre-
quencies.

Figure 9 shows the comparison of MD simulations and
perturbative results with Schlangeset al. f35g for a fixed
density ofn=1022 cm−3 and frequency ofv=3vpl as a func-
tion of the coupling parameterG. Schlangeset al.considered
strong fields, which are parametrized via a finite quiver ve-
locity. With decreasing quiver velocity, the limit of linear
response is approachedf11,36g. Here, we consider a quiver
velocity of v=0.2vth which is given in terms of the thermal
velocity vth and is low enough to be already in the linear
response regime. We find identical results if we evaluate the
collision frequencys32d in the dynamically screened Born
approximation sLenard-Balescu collision termd; see f5,6g.
Dynamical screening within the Born approximation was
also taken into account in Ref.f35g. On the other hand, MD

FIG. 7. Comparison between MD data for the Kelbg potential
s8d sopen circlesd and the quantum-statistical treatment for the Cou-
lomb potential. The Gould-DeWitt scheme is used, accounting for
dynamical screening and strong binary collisions. Solid line: includ-
ing the renormalization factorrsvd, Eq. s32d. Dotted line: without
the renormalization factor. The dot-dashed line gives the analytical
result for the high-frequency behavior of Rensvd for the Kelbg
potentials8d. G=1, T=33 000 K.

FIG. 8. Real and imaginary parts of the effective collision fre-
quency at high frequencies with power fits for the Kelbg potential
s8d. Parameters correspond to the index numbers given in Table I.
Dashed lines are the power-law fits Ren,v−3.5. G=1.
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simulations give results which are significantly higher than
the results shown in Ref.f35g. The MD results for the dy-
namical collision frequency are, however, in qualitative
agreement with the Gould-DeWitt result. Strong collisions
are of relevance in this region. To support this, we show the
result for the collision frequency calculated with the
T-matrix collision term. We find significant differences be-
tween results for the collision frequency when taking into
account beyond the static Born approximation either the ef-
fects of strong collisions or dynamical screening. In agree-
ment with the treatment of the dynamical structure factorf1g,
the perturbative approach becomes invalid ifG exceeds the
value of about 2. As already seen from Fig. 7, an exact co-
incidence between MD simulations for the collision fre-
quency based on the Kelbg pseudopotentialsor other forms
of the pseudopotentiald with quantum calculations for the
Coulomb system is not expected for frequencies above the
plasma frequency. In particular, the high-frequency asymp-
tote is not correctly reproduced.

V. STATIC COLLISION FREQUENCY

Another important aspect is the validity range of pertur-
bative results obtained by the quantum-statistical approach.
As discussed abovessee alsof1gd, perturbative analytical re-
sults are applicable in the regionGø2. For strongly coupled
plasmas, interpolation formulas can be constructed based on
correct analytical behavior in limiting cases and simulation
data for intermediate regions. In the following, we will dis-
cuss the results from MD simulations, analytical approaches,
and experimental data for the electrical conductivity in the
static limit.

From MD simulations for the current ACF, we have cal-
culated the collision frequencynsvd. According to relation
s4d, we obtain the dc conductivitysdc=e0vpl

2 /ns0d. Results
for ns0d as a function of temperature at fixed nonideality
parameterG=1 are shown in Fig. 10. Apart from the param-
eter sets given in Table I, further simulations have been done.
Simulations have also been performed for a fixed tempera-
ture of T=33 000 K and varying coupling parameterG. Re-

sults for the collision frequency and the static conductivity
including error bars are shown in Figs. 11 and 12.

The perturbative approach to the dynamic conductivity
f5g, mentioned above, has been extended for the static limit
v=0 to a larger region of plasma parameter values. In par-
ticular, an interpolation formula for the dc conductivity of a
fully ionized Coulomb plasma was derived recentlyf37g. Us-
ing analytical results of the quantum-statistical approach for
different limiting cases as an input, the following expression
for the dc conductivity has been given as function ofG and
Q:

sdc
ERR= a0T

3/2S1 +
b1

Q3/2DFD lns1 + A + Bd − C −
b2

b2 + GQ
G−1

,

s33d

whereT in K, s in sV md−1, and with the functions

A = G−3 1 + a4/G
2Q

1 + a2/G
2Q + a3/G

4Q2fa1 + c1 lnsc2G3/2 + 1dg2,

B = b3s1 + c3Qd/GQ/s1 + c3Q4/5d,

FIG. 9. Real part of the collision frequency for charge density
ne=1022 cm−3 at frequencyv=3vpl. D: MD results for the Kelbg
potentials8d. Solid curve: Ref.f35g for quiver velocityv0=0.2vth as
well as linear response on the level of dynamically screened Born
approximationsLenard-Balescu collision termd. Dashed curve: lin-
ear response including strong collisionssT matrixd.

FIG. 10. Dependence of the static collision frequency on tem-
perature atG=1. D: MD results for the Kelbg potentials8d. Solid
line: interpolation formulas33d.

FIG. 11. Static conductivity depending on the nonideality pa-
rameter G. n: MD results for the Kelbg potentials8d for T
=33 000 K. Solid line: interpolation formulas33d for T=33 000 K.
Experimental data:P f39g, 3 f40g, j f41g, m f42g, andb f43g.
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C = c4/flns1 + G−1d + c5G2Qg,

D = fG3 + a5s1 + a6G3/2dg/sG3 + a5d.

The set of parameters is given bya0=0.030 64, a1
=1.1590, a2=0.698, a3=0.4876, a4=0.1748, a5=0.1, a6
=0.258, b1=1.95, b2=2.88, b3=3.6, c1=1.5, c2=6.2, c3
=0.3, c4=0.35, andc5=0.1. They are fixed by the low-
density expansion of the dc conductivitysSpitzer formulad
ssee belowd, the strong degenerate limit, and numerical data
for the dc conductivity in the intermediate parameter region.
This expression is an improvement of well-known approxi-
mations for the static conductivity such as the Born result

sdc
Born = 0.299

s4pe0d2skBTd3/2

e2m1/2 F1

2
ln

Q

G
G−1

s34d

for a statically screened Coulomb potentialf38g or the
Spitzer formula for the low-density limit:

sdc
Spitzer= 0.591

s4pe0d2skBTd3/2

e2m1/2 F−
3

2
ln GG−1

. s35d

Considering the MD simulations forG=1, Fig. 10, the
systematic behavior agrees very well with analytical results
obtained from the interpolation formulas33d.

With respect to the simulations of the dc conductivity for
a fixed temperatureT=33 000 K and varying coupling pa-
rameterG shown in Fig. 11, comparison with the interpola-
tion formulas33d and with experimental data is made. While
the agreement between the simulation results and the inter-
polation formula is excellent for values up toG=1, discrep-
ancies arise for higher values ofG. However, the principal
behavior of the MD simulations can be reproduced with the
interpolation formula. In contrast, larger discrepancies are
found when comparing results for finite frequencies; see Fig.
9. The theoretical description, based on analytical expres-
sions and MD simulations, leads to a good understanding of
experimental results which are shown in the figure as well.

A compilation of various results for the static and the
dynamic collision frequencies is shown in Fig. 12. Besides
the values for the real part of the collision frequency atv
=vpl as obtained from the current ACF, data for the colli-
sional dampingdc of the Langmuir waves atk=0 are shown.
These were obtained in Ref.f31g through extrapolation of
MD data for the total dampingdskd to the limiting value at
k→0. The data fordskd were found measuring the width of
the peak ofSsk,vd which corresponds to the Langmuir
waves. The interpolation procedure was based on the suppo-
sition that the Landau damping in a nonideal plasma does not
differ significantly from that in the ideal plasma. This as-
sumption was supported by MD results inf31g. Comments
on the static results were already made in the context of Fig.
11 above. Regarding the dynamic results, a reasonable agree-
ment is obtained between the different approaches. The
larger values for the collision frequency atv=vpl compared
with the static valuesns0d have also been shown in Fig. 7
above.

VI. CONCLUSION

We discuss the optical conductivity of dense plasmas,
considering experiment, theory, and numerical simulations as
three different aspects. As a special case, the optical conduc-
tivity ssvd includes the dc conductivitysdc=ss0d.

Our focus is on MD simulations for the current ACF’s.
They are used to extract the dynamical conductivityssvd as
well as the dynamical collision frequencynsvd. Refined MD
simulation procedures led to qualitative improvements in
comparison to previous results inf12g. For the first time, we
showed that after introducing a mean-field contribution, lon-
gitudinal and transverse conductivities coincide in the long-
wavelength limitk→0 within the numerical accuracy. Vari-
ous known properties such as the high-frequency behavior
and analytic constraints like the Kramers-Kronig relations
were used to assess the MD results and to show the consis-
tency of our approach. For all conditions considered here,
these restrictions were fulfilled within the numerical preci-
sion. Treating the mean field separately, the remaining con-
tributions to the long-range part of the forces are accounted
for by Ewald sums which give only a marginal effect if the
simulation box is sufficiently large.

However, the classical MD simulations are based on a
pseudopotential instead of the original Coulomb interaction.
As an appropriate potential to mimic quantum effects, the
Kelbg potential is taken which is obtained from a systematic
treatment of quantum effects so that static equilibrium prop-
erties are correctly reproduced. It is an open question to
which extent this potential is able to reproduce dynamic
properties of a quantum Coulomb system. Further investiga-
tions will compare MD simulations with wave packet or path
integral simulations which allow for a more consistent treat-
ment of quantum effects. In particular, the formation of
bound states will be an essential aspect in the future devel-
opment of numerical simulations.

Theoretical investigations are based on quantum statistics,
taking adequately into account the Coulomb interaction and
quantum effects. In this approach, the formation of bound

FIG. 12. Static and dynamic collision frequencies. MD results
for the Kelbg potentials8d. n: nsv=0d obtained from current ACF.
h: nsvpld obtained from current ACF.P: collisional damping of the
Langmuir wavesn=2dc f31g. Interpolation formulas33d: Solid
curve: T=33 000 K. Dashed curve:T=16 000 K.3 correspond to
Qsne,Td=1.
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states is correctly included. Present perturbative treatments
lead to analytical results. However, they are restricted to
small nonideality parameter valuesGø1 or small plasma
densitiesn. In our approach, the weak-coupling limit has
been improved, taking into account dynamical screening and
strong binary collisions. Considering a renormalization fac-
tor rsvd, the correct low-density limit of transport coeffi-
cients is achieved. The comparison with MD simulations
shows that the low-frequency behavior of the optical conduc-
tivity is given in good approximation as long asGø1. For
higher values ofG, the quantum-statistical approach has to
be evaluated using methods beyond perturbation theory or by
deriving interpolation formulas. On the other hand, MD
simulations based on the Kelbg pseudopotential cannot re-
produce the correct high-frequencysv.vpld behavior of the
optical conductivity for quantum Coulomb systems.

Within the quantum-statistical treatment, the formation of
bound states is described in the low-density limit applying
the model of a partially ionized plasma. At high densities,
this model breaks down, and one has to apply adequate con-
cepts such as the spectral function in order to describe the
density modification due to medium effects, in particular the
dissolution of bound states. This consideration of bound
states becomes more involved if, instead of a simple hydro-
gen plasma, ions with higher charges are considered allow-
ing for different stages of ionization.

MD simulations as well as quantum-statistical calcula-
tions of the dynamical conductivity have to be confronted
with experimental data. In this paper we focused on the dc
conductivity. For small nonideality up toG<1, we found
satisfactory coincidence between theory, MD simulations,
and experiments. In forthcoming work, applications to
bremsstrahlungf2g as well as Thomson scatteringf44g

should be analyzed in order to investigate the dynamical col-
lision frequency at higher frequencies. As already discussed
above, classical MD simulations based on pseudopotentials
such as the Kelbg one fail to reproduce the correct high-
frequency asymptote for the collision frequency so that
larger discrepancies compared with experiments are ex-
pected. Instead of classical MD simulations, consistent quan-
tum simulations such as wave-packet molecular dynamics or
path integral techniques have to be used to compare with
experimental data for high frequencies.

Experimental results suffer, e.g., from the transient nature
of the produced plasma. Ionization, density, and temperature
profiles have to be considered to infer local plasma condi-
tions in order to compare with simulations or calculations.
Experiments are performed not only with hydrogen plasmas,
but also with other materials, in which case the electron in-
teractions are not pure Coulomb anymore. The formation of
bound states is an important feature in present experiments,
since the contribution of the ionized component is extracted
by applying the model of the partially ionized plasma. Nev-
ertheless, for the plasma conditions considered here, the con-
sistency between MD simulations, perturbative calculations,
and experimental results is inferred from the present work.
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