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Electric breakdown and ionization fronts are considered theoretically in a sandwichlike dc discharge system
consisting of two plane-parallel electrodes and a gaseous gap in between. The key system feature is a high-
ohmic cathode opposite to an ordinary metal anode. Such systems have received much attention from experi-
mental studies because they naturally support current patterns. Using adiabatic description of electrons and
two-scale expansion we demonstrate that in the low-current Townsend mode the discharge is governed by a
two-component reaction-diffusion system. The latter provides quantitative system description on the macro-
scopic time scalesi.e., much larger than the ion travel timed. The breakdown appears as an instability of the
uniform overvoltage state. A seed current fluctuation triggers a shocklike ionization front that propagates along
the discharge plane with constant speedstypically ,104 cm/sd. Depending on the cathode resistivity the front
exhibits either monotonic or oscillatory behavior in space. Other breakdown features, such as damping tran-
sient oscillations of the global current, can also be found as solutions of the reaction-diffusion equations.
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I. INTRODUCTION

Self-organized lighting current patterns like striations in
long discharge tubes or current spots in laterally extended
systems are complicated in nature though relatively easy to
generatef1g. Despite the good knowledge of the underlaying
microscopic processes, the observed macroscopic patterns
se.g., anode spotsd are not understood to large extent. One
reason is that typically the current patterns are three-
dimensionals3Dd objects that evolve on a time scale of a
millisecond or longer. In contrast, the smallest time scale that
should be taken into account, e.g., in the popular drift-
diffusion approximation, is the electron travel time that is of
order of 10 nanoseconds for the systems in question. A direct
numerical solution of the plasma transport equations is there-
fore very time consuming or even impossible. The alterna-
tive is to develop an appropriate reduced discharge model. In
what follows we solve this problem for the Townsend dis-
charge.

A concrete experimental system that we have in mind is
the planar dc discharge system in which one metal electrode
is separated from the gas by a high-ohmic barrier, as first
suggested in Refs.f2–4g. In this case the electric potential is
not necessarily constant along the interface of the high ohmic
barrier and the gas layer. The position dependence of poten-
tial of the gas-electrode interface supports a nonuniform dis-
charge distribution, e.g., current spots or current filaments.

The discharge in systems with high ohmic barrier is simi-
lar to a dielectric barrier discharge, as it is greatly affected by
surface chargesf5g and often supports numerous current fila-
ments instead of a single cathode spot. At the same time it is
a dc discharge where the current flows exclusively in one
direction. Such systems with high-ohmic cathode have been
intensely investigated in the last decadef6–15g and a number
of exciting structures were observed and interpreted within a
qualitative approach using current tools from the field of
nonlinear dynamics and pattern formationf16g. However, so
far no quantitative approach has been put forward and there
was no basis for comparison to experiment. The present pa-
per is dedicated to this problem.

The geometry of the discharge cell in question is shown in
Fig. 1. The gas layer is located parallel to thexy plane and
extends fromz=0 to z=d in z direction. The current is es-
sentially parallel toz axis. The cathode consists of a high-
ohmic barrier located atd,z,d+dc. Two planar metal con-
tacts are located atz=0 sanoded andz=d+dc. Both d anddc
are considerably smaller than the radius of the discharge cell.
Consequently, thex andy dependence of the electric poten-
tial and particle densities is assumed to be weak compared
with the z dependence. Nevertheless, the radial dependence
cannot be ignored completely, as it is responsible for laterally
extended pattern we are interested in. Two-scale approach
will then be used in what followsf17,18g.

We now consider the development of electric breakdown
in Townsend mode, and look for peculiarities resulting from
the high-ohmic barrier. Let us assume that by proper choice

FIG. 1. A cross section of a typical planar discharge cell con-
sisting of a metal anode, a gas layer, a high-ohmic cathode, and
another metal contact.wAstd , wCsx,y,td, andwBstd are potentials at
z=0, z=d, andz=d+dc. E andEc denote the axial electric fields,j
and j c are the current densities. Drift velocities of particles are
schematically shown at the top. We take nitrogen atp=1.33
3104 Pa andd=dc=0.1 cm as an example. A typical semiconduc-
tor cathode has specific resistivityr.107 V cm and dielectric con-
stante.10.
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of the supply voltage the system is prepared to operate near
to the breakdown point, that is, the voltage applied to the gas
almost equals the Townsend breakdown voltageUb. In this
mode of operation the current is negligible and is often lo-
calized in several narrow channels caused by inhomogene-
ities of the system. The channels serve as seed current fluc-
tuations for the breakdown. The supply voltage is then
suddenly increased to a larger valueUs such that

Us − Ub ! Ub. s1d

In this situation parameters of the system, like diffusion and
mobility coefficients for electrons and ions, are not changed
whereby the ionization coefficient varies considerably due to
the strong dependence on the electric field. Note, that in
many experiments with the high-ohmic barrier the difference
Us−Ub is several tens of volts, whereasUb is several hun-
dreds of voltsf15,19g. Another example is a direct experi-
mental measurement ofUb, whereUs−Ub can approach one
volt f20g.

Breakdown in a system like Fig. 1 transfers it to a state
that is assumed to be in the Townsend mode. In the case that
the current density is uniform, it is determined by

j = j0 =
Us − Ub

rdc
, s2d

wherer is the specific resistivity of the high ohmic barrier.
The value ofj0 is assumed to be small enough in order to
neglect space-charge effects. Typicallyj0,10−4 A/cm2 if
the system is on the right-hand branch of the Paschen curve
f1g, and j0,10−2 A/cm2 for the left-hand branchf21g. In
this way the discharge is operated in the Townsend mode.
The breakdown can be considered as a transition between the
states withj =0 and j = j0. Our goal is to investigate such a
transition.

Inequality s1d ensures that the voltage dropUgas=wA
−wC at the gas gap is not very different from the breakdown
value. Consequently it is natural to present the gap voltage as

Ugas= Ub + dUsx,y,td, dU ! Ub,

where dU is referred to asthe overvoltage. The essential
difference from the familiar case of metal electrodes is that
in the case of Fig. 1 bothwC anddU can depend on position.
The maximal possible overvoltage is achieved if the whole
supply voltage is applied to the gas gap, i.e.,

dUsx,y,td ø Us − Ub, s3d

where the right-hand side is a predetermined quantity,
whereas the left-hand side is a dynamical variable to be
found.

The major part of the gas electric fieldE is directed par-
allel to the z axis. This axial field component can be pre-
sented as

Ez = Eb + dE, E
0

d

dEsx,y,z,tddz= dU, s4d

whereEb=Ub/d is the breakdown field. The radial electric
field E' can be exactly calculated at the gas-electrode inter-
faces

uE'uz=0 = 0, uE'uz=d = ='dU,

where='=s]x,]yd. The firstsanoded equation holds for any
metal electrode and the secondscathoded follows from the
definition of the overvoltage. Due to the small width of the
discharge cell, the intrinsic radial field can be approximated
as

E' =
z

d
='dU, s5d

the approximation can be also justified by a systematic cal-
culation of the electric field. As ensured bys1d ands3d, both
axial and radial distortion ofEb are small. As a result the
absolute value of the electric field is always approximated as
Eb+dE.

In what follows we derive an equation for the current
density in the gas gap. The calculation results in a nonlinear
diffusion equation, however, this equation containsdU. For
the interplay between the current and the overvoltage we
then derive an additional equation considering Laplace equa-
tion for the potential and boundary conditions for the electric
field. By doing this a closed system of equations for the
current density and the overvoltage is obtained. We demon-
strate that breakdown occurs in the form of shocklike ioniza-
tion fronts that we investigate in detail. The results are finally
summarized and discussed.

II. THE GAS GAP

In this section we discuss the gas gap where electrons and
positively charged particles move in opposite direction as
prescribed by the applied electric field. Only one positive
charge carrier speciesionsd is considered. The drift velocity
of electrons and ions is determined by mobilitiesbe,i,

ve = − beE andvi = biE.

There is also a stochastic particle flux described by the dif-
fusion coefficientsDe,i. Both mobility and diffusion coeffi-
cients depend on the local electric field. However, in the
Townsend mode they can be assumed to be constant deter-
mined byEb. The particle densities of electronsne and ions
ni are governed by two continuity equations,

]tne,i + = sne,ive,i − De,i = ne,id = Se,i ,

whereSe,i is the ionization source term. The equations can be
rewritten in a simpler form

]tne,i + ve,i = ne,i − De,i=
2ne,i = Se,i ,

as the space-charge effect is negligible in the Townsend
mode.

Let us undertake the following simplifications. We use a
local field approximation and write

Se = Si = asEdneve,

where Townsend parameterasEd describes ionization rate
andE=Eb+dE. Even if very small,dE should be taken into
account here becausea is a sharp function of the electric
field. Note, that the local field approximation is not a good
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model in the case that the electric field is subject to drastic
changes, e.g., in the cathode fall. In the Townsend mode,
however, the field is practically constant and therefore the
simple local ionization term is justified. Farther, the ion dif-
fusion is completely neglected. We also neglect the electron
diffusion in the axial directionssee, e.g., Ref.f22gd. In con-
trast to this, the radial diffusion of electrons is taken into
account. We also keep the radial drift terms for electrons and
ions considering them as a small perturbation with respect to
the axial drift flux. Finally, we are interested in processes that
are slower than the typical ion travel time

ti =
d

biEb
,

and consequently]tni is taken into account as a small pertur-
bation. The dependence ofne on time is eliminated adiabati-
cally by setting]tne to zero.

Altogether, the continuity equations for electrons and ions
are rewritten as

fbe]zne + beasEdnegEz = − beE'='ne − De='
2 ne, s6d

fbi]zni − beasEdnegEz = − biE'='ni − ]tni , s7d

where ='
2 is the radial part of the Laplace operator. The

left-hand sides of Eqs.s6d ands7d provides us with the clas-
sical sTownsendd discharge solution; the right-hand side de-
scribes its perturbation due to radial drift, radial electron dif-
fusion, and ion inertia.

Of course, appropriate boundary conditions must be im-
posed on the electrodes. In this context we remember that the
diffusion in the axial direction is completely ignored, i.e., the
boundary conditions can be taken in the Townsend formf1g

uniuz=0 = 0 andUne

ni
U

z=d
= g

bi

be
, s8d

where the secondary emission coefficientg is the ratio of the
secondary electron flux from the cathode and the primary ion
flux to the cathode.

A. Townsend solution

Our first concern is to reproduce the classical solution for
the Townsend dischargef1g. To this end we ignore the right-
hand sides of Eqs.s6d and s7d and replaceE by the electric
breakdown fieldEb. The expressions for the electron and ion
densities are

ne = e−abzn0, s9d

ni =
be

bi
s1 − e−abzdn0, s10d

whereab=asEbd. The well-known additional restriction

gseabd − 1d = 1 s11d

results from the cathode boundary condition and implicitly
determinesEb. The parametern0 is a constant of integration
and can be interpreted as the electron density at the anode;n0

depends on all space-time variables butz, this dependence is
assumed to be slow on the time scaleti and space scaled.
The electric current density is approximated as

j = qbeEbn0, s12d

is parallel to thez axis, and depends on all variables butz. In
s12d q is the elementary charge.

It is appropriate to assume thatn0 is the true anode elec-
tron density, so that a possible distortion ofs9d disappears at
z=0. A possible distortion ofs10d disappears at the anode as
well, because of the anode boundary conditions8d. In what
follows a dynamical equation forn0sx,y,td will be found as
a compatibility condition of the next step of the perturbation
expansion. It will then be transformed to a more physical
equation for the axial current, as given bys12d.

B. The perturbation of the Townsend solution

If one takes the right-hand sides of Eqs.s6d and s7d into
account, Eqs.s9d ands10d are not exact solutions. Therefore
we perform the next step of the perturbation theory and write
the particle densities as follows:

ne = e−abzn0 + dne,

ni =
be

bi
s1 − e−abzdn0 + dni ,

where the perturbationsdne,i originate from the radial drift,
electron diffusion, and ion inertia. These densities must be
substituted into Eqs.s6d ands7d. As explained above, we can
assumedne,i =0 atz=0, but not atz=d. A compatibility con-
dition for the resulting equations set is a desired dynamical
equation forn0.

It is profitable to rewritene,i in the equivalent form that is
suggested by the structure of the Townsend solution. Without
loss of generality we introduceñe,i instead ofdne,i so that

ne = e−abzsn0 + ñed, s13d

ni =
be

bi
s1 − e−abzdsn0 + ñed + ñi , s14d

whereñe,i =0 atz=0. The variableñe describes the distortion
of n0 whereasñi is a “non-Townsend” part of the perturba-
tion. Equations13d and the electric fields4d ands5d are now
inserted intos6d. Omitting high-order terms we arrive at the
equation for the perturbed electron density

]zñe = − z='n0='

dU

Ub
− le='

2 n0 − ab8n0dE, s15d

whereab8=a8sEbd comes from the Taylor expansion of the
ionization coefficient. The parameter

le =
De

beEb

is recognized as the electron diffusion length. We now inte-
grates15d from z=0 to z=d and arrive at the equation
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uñeuz=d = −
d2

2
='n0='

dU

Ub
− led='

2 n0 − ab8n0dU, s16d

which together withs13d determinesdne at the cathode.
In a similar manner we substitutes14d into s7d to get the

following equation forñi:

bi

be
]zñi = s1 − e−abzdSle='

2 n0 −
ti

d
]tn0D + ab8n0dE.

Integration over 0,z,d gives the result

U bi

be
ñiU

z=d
= S1 −

1 − e−abd

abd
Dsled='

2 n0 − ti]tn0d + ab8n0dU

s17d

together with Eqs.s14d ands16d determiningdni at the cath-
ode. Note, that bothdne anddni contain='dU; the term is
specific for our problem and disappears for the metal elec-
trodes.

C. Governing equation

The axial electric field, as given bys4d, contains the un-
known perturbationdE. That is the reason for deriving equa-
tions only for theñe,i at z=d. This information is however
sufficient to determinen0. We substitutes13d ands14d in the
cathode boundary conditions8d to get ñiuz=d=0, i.e., the
“non-Townsend” partñi must disappear at the cathode. Equa-
tion s17d reduces to the compatibility condition

ti]tn0 = led='
2 n0 + Cgab8n0dU, s18d

which is the desired equation forn0. The familiar inequality
g!1 was not used in the derivation, nevertheless the nu-
merical factor

Cg =
1 + g

1 − ln−1s1 + 1/gd + g

is of order unity for all reasonableg. Equations18d is not
closed, as it containsdU. It is of interest to note that the
terms containing='dU cancel so that Eq.s18d is formally
similar to that for the metal electrodesf23–25g, where the
overvoltage is compensated by diffusion and the radial drift
flux is not important. The difference is that in our workdU is
a dynamical variable in apartial differential equation to be
derived from the consideration of the high-ohmic barrier. Be-
fore doing so let us discusss18d in more details. It is a
nonlinear diffusion equation, the corresponding diffusion pa-
rameter

Da =
led

ti
= De

bi

be

is recognized as the ambipolar diffusion coefficient. This fact
is not unexpectedf26,27g because the spatial spreading of
particles is due to electron diffusion, whereas the typical mi-
croscopic time scale for the current is determined by the ion
travel time. Equations18d has two uniform stationary solu-
tions either withn0=0 szero currentd or with dU=0 andn0
=const, the latter results from the equilibration ofj fEq. s12dg
and j0 fEq. s2dg.

To account for the nonlinearity term let us introduce a
multiplication coefficient

m = gFexpSE
0

d

asEddzD − 1G
so thatjst+tid<m jstd in accordance with the physical sense
of asEd ssee, e.g., Ref.f28gd. In the case of slow evolution
the Taylor expansion yields

ti]t jstd < sm − 1d jstd, s19d

where the self-sustain conditionm=1 is achieved forE=Eb
and is equivalent tos11d. For small overvoltage the multipli-
cation coefficient is

msEb + dEd < gseabd+ab8dU − 1d < 1 + ab8dU

and the nonlinear term ins18d is restored froms19d up to
factor Cg.

We stress thats18d is applicable to slowsi.e., ti]t!1d
processes, correspondingly

ab8dU ! 1 s20d

that imposes a restriction onUs−Ub. We use the standard
approximation for the Townsend coefficientf1g

asEd = Ape−Bp/E,

where A and B are gas-dependent parameters,p being the
pressure. The valuea8 takes its maximal value at the inflec-
tion point swhereE= 1

2Bpd and quickly decreases with either
increase or decrease of the electric field, the maximal value
of dU is Us−Ub. Inequalitys20d is ensured if

Us − Ub !
e2B

4A
, s21d

where the right-hand side varies from 20 to 60 volts for
different gases. Conditions21d refines our original assump-
tion s1d.

Finally we rewrites18d for the axial electric current den-
sity j ,

]t j = Da='
2 j + Cg

ab8dU

ti
j s22d

as determined bys12d, and turn to the consideration of the
high-ohmic barrier.

III. THE HIGH-OHMIC BARRIER

In this section we derive the missing equation for the
overvoltagedUsx,y,td, which will turn out to be a linear
partial differential equation. To begin with we note that the
combination e0e]tEz+ jz must be continuous at the gas-
cathode interface so that

se0]tEz + jdz=d−0 = se0e]tEz + jcdz=d+0, s23d

where the Townsend approximation for the axial electric cur-
rent density j in the gas is given bys12d, jc is the axial
current density in the cathode, ande is the cathode dielectric
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constant. We consider the cathode as a simple linear conduc-
tor with the specific resistivityr, so thatjc=Ez/r. Now, the
problem is reduced to the calculation of the axial electric
field Ez. For the special case of spatially uniformdUstd the
field equalssUb+dUd /d in the gas andsUs−Ub−dUd /dc in
the cathode. Inserting both fields ins23d we arrive at the
standard approximationf25g

c]tdU =
Us − Ub − dU

rdc
− j , s24d

where the combination

c =
e0

d
+

e0e

dc
s25d

is the cell capacity per unit area. It is also profitable to intro-
duce characteristic cathode time

tc = rdcc,

which is recognized as theRC time of the corresponding
circuit. The last term in Eq.s25d usually dominates,tc re-
duces then toe0er, i.e., to the Maxwell time of cathode ma-
terial. The interplay oftc and the ion travel timeti plays an
important role in what follows.

Equations24d is only the first approximation to the final
equation for the overvoltage because the nonuniformity of
dU was completely ignored. To take this nonuniformity into
account we need an accurate solution of the Laplace equation
with the corresponding boundary conditions. It can be given
explicitly due to the small width of the discharge cell. Let us
start with the gas region.

Note, that the electric potential at the metal contactswA at
z=0 andwB at z=d+dc ssee Fig. 1d can depend only on time,
the differenceUs=wA−wB is fixed and equal to the supply
voltage. On the contrary, the potentialwC at the gas-cathode
interface atz=d depends on all variables, butz. To get the
electric field in gas we must solve the following problem:

=2w = 0, uwuz=0 = wA, uwuz=d = wC,

where the radial part of the Laplace operator is a small per-
turbation to the axial part. A corresponding solution is ob-
tained as a perturbation expansion in the parameterd/R,
whereR is the characteristic transversal space scale of the
radial structure in question. The electric potential in the gas
reads as

w = wA −
z

d
swA − wCd −

z3 − zd2

6d
='

2 wC,

where the terms,d4/R4 are ignored. We insertwA−wC
=Ub+dU in the last equation and come to Eq.s5d for the
radial electric field, whereas the axial field is given by

Ez =
Ub + dU

d
−

3z2 − d2

6d
='

2 dU

in accordance withs4d, i.e., we have

uEzuz=d−0 = Eb +
dU

d
−

d

3
='

2 dU

for the boundary value of the electric field.
The electric field in the cathode is a solution of a similar

problem,

=2w = 0, uwuz=d = wC, uwuz=d+dc
= wB,

wherewC−wB=Us−Ub−dU. It is easy to demonstrate that

uEzuz=d+0 =
Us − Ub − dU

dc
+

dc

3
='

2 dU.

We finally insert the electric fields in the boundary condi-
tion s23d, omit small terms, and arrive at

]tdU = Dc='
2 dU +

Us − Ub − dU

tc
−

j

c
, s26d

which is the desired extension of Eq.s24d for the overvolt-
age. Formally the combination

Dc =
dc

2

3tc

can be considered as a diffusion coefficient; the operator='
2

originates however from the radial component of the electric
field and does not describe any real diffusion.

Equationss22d ands26d provide a self-consistent descrip-
tion of the physical system depicted in Fig. 1. Their solutions
are investigated in the next section.

IV. DISCUSSION OF THE REDUCED SYSTEM

In this section we investigates22d and s26d and discuss
the physical meaning of the corresponding solutions. Let us
introduce normalized variables,

u =
j

j0
andv =

dU

Us − Ub
,

and the dimensionless overvoltage parameter,

s= Cgab8sUs − Ubd ! 1.

Parameters shall be small in accordance withs20d. We now
rewrite s22d and s26d as a two-component reaction-diffusion
system

tu]tu = du
2='

2 u + uv, s27d

tv]tv = dv
2='

2 v + 1 −u − v. s28d

The system is our main result. It is somewhat similar to
different qualitative models developed by several authors,
but is quantitative, i.e., the characteristic time scales

tu =
ti

s
andtv = tc,

and the diffusion lengths
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du =Îled

s
anddv =

dc

Î3
,

can be quantitatively calculated for any system in question.
For instance, let us consider the discharge cell parameters
from Fig. 1. The coefficientsA andB, particle mobilities, and
diffusion coefficients for nitrogen can be found in Ref.f1g.
We take g=0.02 and obtain the breakdown voltageUb
=885 V. The right-hand side of Eq.s21d is 58 V, so that we
assume Us=895 V that results in s=0.19 and j0
=10−5 A/cm2. The corresponding set of parameters for the
systems27d and s28d is given in Table I.

In general, the system dynamics is determined by two
dimensionless ratiostu/tv and du/dv, both quantities are of
order unity in our example. Of course, either large or small
ratios are also possible. In contrast to this, bothu andv are
always of order unity due to the normalization. The diffusion
lengthsdu anddv shall be smaller than the radial space scale
R, nonlinearity is hence superior to diffusion. Typically, most
of the physical space is occupied with homogeneous station-
ary solutions of Eqs.s27d and s28d. The diffusion is only
important in transition regions where spatial dependence ofu
or v is essential, e.g., in the case of ionization fronts.

Let us now systematically discuss solutions of the basic
systems27d and s28d.

A. Stationary states and ionization waves

The systems27d and s28d has two stationary homoge-
neous equilibrium solutions. The solutionsu=0,v=1d corre-
sponds to vanishing current and peak overvoltage, it is re-
ferred to as theovervoltage state. The second solutionsu
=1,v=0d describes a stationaryTownsend state. As ex-
plained in the introduction, the system is assumed to be near
the breakdown point when the supply voltage is suddenly
increased to a valueUs.Ub. A corresponding initial condi-
tion for Eqs.s27d ands28d is u=v=0. An initial stage of the
system evolution is described by the exact partial solution
with u;0 and

tv]tv = dv
2='

2 v + 1 −v,

which physically corresponds to the condenser charging. On
the time scaletv the system reaches the overvoltage state.
The latter, of course, is unstable. Assuming a small harmonic
perturbation of the overvoltage stateu=0+du,v=1+dv with
the perturbation terms,expsikx+Gtd, we reduce Eqs.s27d
and s28d to a dispersion relation forG. There are two real
roots

G1 =
1 − skdud2

tu
andG2 = −

1 + skdvd2

tv
,

where the first root indicates an instability on the time scale
tu. If tu,tv, the instability develops immediately after in-
crease of the supply voltage and the overvoltage state is not
really achieved. The instability corresponds to the break-
down and brings the system to the Townsend mode of opera-
tion. The latter is asymptotically stable. Indeed, we start from
the Townsend state, add a small perturbationu=1+du,v
=0+dv proportional to expsikx+Gtd, and arrive at the disper-
sion relation

G2 + S 1

tv
+ Dvk

2 + Duk
2DG +

1

tutv
+ S 1

tv
+ Dvk

2DDuk
2 = 0,

where the diffusion coefficients

Du =
du

2

tu
= Da andDv =

dv
2

tv
= Dc.

One can check that ReG,0 for all k. If in addition ImG
Þ0, the perturbation oscillates in space and time and can be
interpreted as a decayingionization wave. This happens if
tu,4tv. The frequencyvk=Im G of such a wave is deter-
mined by the relation

vk
2 =

1

tutv
S1 −

tu

4tv
D +

Du − Dv

2tv
k2, s29d

where we took into account that the basic systems27d and
s28d is valid only for the long-wave perturbations with
skdud2!1 andskdvd2!1. Note, that the group velocity of the
ionization waves can be either parallel or opposite to the
direction of the phase velocity depending on interplay ofDu
andDv.

We stress, that the above solutions correspond to a small
perturbation of the stationary states, i.e., to linear waves.
Essentially nonlinear solutions appear if we consider a dy-
namical transition from the overvoltage state to the
Townsend state. The details of such a transition can be sur-
prisingly different depending on the system parameters.
These solutions are investigated below.

B. Uniform solutions

An important class of solutions of Eqs.s27d and s28d is
generated if the discharge is uniform in space, i.e.,

tuu̇ = uv, s30d

tvv̇ = 1 −u − v, s31d

so that the basic system can be replaced by an equivalent
second order equation

tutvv̈ + stu − tvvdv̇ + v − v2 = 0,

where the dot denotes derivation with respect to time. The
equation describes a uniform transition from the overvoltage
state to the Townsend state. A somewhat similar phenomeno-
logical system was originally suggested in Ref.f29g.

TABLE I. Typical relaxation times and diffusion lengths for the
systems27d and s28d. We assumedg=0.02 andUs−Ub=10 V, for
the other parameters of the discharge cell see Fig. 1.

tu du tv dv

4.1310−6 s 1.7310−2 cm 9.7310−6 s 5.7310−2 cm
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For tu.4tv the current increases monotonically. As
above, if either the circuit capacity or resistivity are large
enough andtu,4tv the discharge current is subject to
damped oscillations. Iftu!tv the correspondingQ-factor
Q=Îtv /tu achieves large values and the oscillations have a
well-defined frequency defined by Eq.s29d for k=0. How-
ever, the oscillations inevitably decay on the time scaletv.
Physically they correspond to dumped transient oscillations
to the steady state and should not be mixed with the subnor-
mal discharge oscillations between Townsend and glow
modesf25,30,31g. These undamped oscillations are caused
by space-charge effect in the glow mode that is out of scope
of this paper.

Figure 2 shows the electric current behavior for different
values oftu/tv. It should be noted, that the uniform break-
down requires homogeneous initial perturbationsi.e., uni-
form distribution of seed electronsd that is highly unlikely. A
more realistic picture corresponds to a small initial current
fluctuation induced locally in space by a randomly localized
group of seed electrons or by a local inhomogeneity of elec-
trodes. It is then necessary to consider nonuniform solutions
of Eqs.s27d and s28d.

C. Fisher equation

The nonuniform breakdown, as a possible solution of Eqs.
s27d ands28d, occurs in the form ofionization fronts. Such a
front is a transition wave between unstable and stable system
states that propagates along the electrodes.

We start with a simple special case where the basic sys-
tem s27d ands28d is reduced to the classical Fisher equation
f32g. Let us assume thattv!tu so that the time derivative in
s28d can be ignored, i.e., the cathode current immediately
follows the gas current. This happens, if the Maxwell time of
the high ohmic barrier is not too large. We also assume that
dv!du, i.e., the current diffusion dominates the formal dif-
fusion of the overvoltage. The latter is then directly deter-
mined froms28d v=1−u and can be inserted intos27d. We

arrive at a closed adiabatic equation for the electric current

tu]tu = du
2='

2 u + us1 − ud, s32d

which is recognized as the Fisher equation. A lot of informa-
tion is available for this equationf32g, and we can easily
draw various conclusions with respect to the breakdown un-
der the above defined conditions. First of all, a small local
current fluctuation leads to an exponential increase of the
current. On the time scaletu the current densityj , j0 is
nearby the original fluctuation. Further on, the instability de-
velops in a nonlinear way, a monotonic ionization front
propagates away from the initial fluctuation. Far away from
the fluctuation point the front is practically one dimensional,
stable, and has a special formu=usx−ctd, whereus−`d=1
andus+`d=0. If the initial fluctuation is well localizedssee,
e.g., Ref.f33gd the front velocity equals

c =
2du

tu
=

2ÎDete

ti

ÎCgab8sUs − Ubd, s33d

wherete=d/ sbeEbd is the electron travel time. For the non-
localized initial conditions the front velocity exceedsc. The
latter is proportional to the square root of the overvoltage,
i.e., the front propagation differs from the familiar expansion
of the current spot in the glow discharge modef26g, where
the velocity is proportional to the overvoltage. During the
ignition the radius of the current spot increases,t, the total
current is,t2. Finally the uniform state withj = j0 is estab-
lished on the whole electrodes area, except for plasma edges
where boundary conditions affect final current distribution.

D. Ionization fronts

The preceding section explicitly describes front properties
se.g., form and stabilityd and provides an analytical expres-
sion for the lowest front velocity. This is possible because of
the simple character of the Fisher equation. The general case
of Eqs. s27d and s28d is more complicated, and we refer to
the numerical solutions. Fortunately, our basic system is
much more easy to solve than the original discharge Eqs.s6d
and s7d. In particular, because of the analytical expressions
s9d and s10d, we calculate insx,y,td space and obtain infor-
mation in the whole three-dimensionals3Dd physical space.
In a typical run one can easily cover a macroscopical time
interval se.g., 103 ion travel timesd. In contrast to this, a
direct numerical solution of the original 3D equationss6d and
s7d for t@ti is a much more complicated problem.

Qualitatively, the behavior of the general solution is the
same as for the Fisher case. An initial current perturbation
changes to a stable ionization front. The latter propagates
away from the initial perturbation and quickly changes to a
quasi-one-dimensional front. If the initial fluctuation is well
localized f33g, front form and velocity are uniquely deter-
mined bytu,v and du,v, otherwise the velocity is larger and
depends on fluctuation. The structure at the transition region
of the front is more complicated than in the case of the
Fisher equation. In addition to monotonic fronts, strongly
oscillating fronts can be observed. An example of this case is
shown in Fig. 3 where the system parameters from Table I
were used.

FIG. 2. Numerical results for temporal behavior ofu= j / j0 for
uniform breakdownfEqs. s30d and s31dg. Initial conditions are
us0d=0.05 andvs0d=0.0, i.e., the initial current fluctuation is 5% of
the final value.sad Applied voltage, arbitrary units;sbd tu/tv=5, no
oscillations;scd tu/tv=1, the current profile is nonmonotonic;sdd
tu/tv=0.2, damping current oscillations.
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Four typical examples of front cross sections are shown in
Fig. 4 for different parameters of the system. More compli-
cated scenarios appear if there is more than one initial fluc-
tuation. Several fronts are produced, they collide with each
other and merge in the course of the collision processes. At
the end, however, we always have only one front that trans-
forms the system in the uniform Townsend state.

It is of interest to compare our results to those for metal
electrodes. Considering the same discharge cell, except for
metal electrodes and an equivalent external resistivity, one
can derive the following system:

tu]tu = du
2='

2 u + uv, s34d

tvdtv = 1 − kul − v, s35d

where the first equation is identical to Eq.s27d, whereas the
overvoltage is uniformv=vstd and subject to the ordinary
differential equation. Here

kul =
1

S
E E usx,y,tddxdy

is the space-averaged value of the current density andS is the
area of the electrodes. One immediate observation is that
uniform solutions of Eqs.s34d ands35d are identical to those
of Eqs. s27d and s28d. Nonuniform solutions are however
different owing to the absence of the overvoltage diffusion
term and, more importantly, slow changes ofkul. A seed
current fluctuations develops in a current filament with a
considerably larger amplitude as compared to those in Fig. 4.
Neither frontssi.e., well distinguished stationary states and a
moving transition region between themd nor spatial oscilla-
tions are observed. The filament looks like a bell-shaped
curve and that expands before the Townsend discharge state
is achieved.

V. CONCLUSIONS

We investigated electric breakdown and transition to the
Townsend discharge mode for a gaseous plane-parallel dis-
charge cell. The discharge is stabilized by adistributedex-
ternal resistor, e.g., a laterally extended high-ohmic cathode.
Such a system exhibits a large variety of self-organized pat-
terns and is a good candidate for a fundamental investigation
of general properties of pattern formation in nonlinear spa-
tially extended dissipative systems. In contrast to the good
qualitative understanding of experimentally observed pat-
terns, the system with the high-ohmic cathode was never
investigated quantitatively on the basis of gas-discharge spe-
cific transport equations. In a first step we developed such a
description on the base of classicaldrift-diffusion discharge
model in the Townsend mode of operation.

The key problem is that the experimental phenomena are
observed on a macroscopic time scalesof the order of 10−3 s
or longerd, whereas the drift-diffusion approximation is on a
microscopic time scalese.g., the electron travel time which is
.4310−9 s for the system in Fig. 1d. A direct numerical
solution of the full 3D drift-diffusion equations on macro-
scopical times is practically impossible and a reduction of
the drift-diffusion model is desirable. Such a reduction is
developed in the present paper using the fact that the axial
dimension of the discharge cell in question is small as com-
pared to the radial dimension. Two-scale approach allows
then to separate off the axial and radial effects. The reduction
is possible if the source voltage exceeds the breakdown volt-
age to only a small extentfEq. s21dg that ensures the slow
evolution of the system.

The drift-diffusion equations are simplified to a two-
componentreaction-diffusionsystem, that incorporates only
radial coordinates and slow time evolution. All numerical

FIG. 3. Numerical results for spatial behavior ofu= j / j0 for
ionization frontfEqs.s27d and s28dg. The Neumann boundary con-
ditions and the system parameters from Table I were used. We
started fromu=v=0 and added a small fluctuation ofu at the ori-
gin. The fluctuation changes to a front that spreads out with a con-
stant velocity,33104 cm/s. The velocity depends on fluctuation
but does not change with time or with refining of the numerics.

FIG. 4. Numerical resultsfEqs. s27d and s28dg for the form of
the ionization fronts for different system parameters.sad tu/tv=5
anddu/dv=4, i.e., both time and space scales are determined by the
gas;sbd tu/tv=5 anddu/dv=0.25, the cathode is adiabatic and dif-
fusion in the gas is small;scd tu/tv=0.2 anddu/dv=4, the discharge
is adiabatic and formal diffusion in the cathode is small;sdd tu/tv
=0.2 anddu/dv=0.25, both time and space scales are determined by
the cathode.
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coefficients in our system can be quantitatively calculated,
that is, our predictions can be compared with experimental
data. For instance, the solution displayed in Fig. 3 should be
observed for the discharge cell parameters from Fig. 1. The
derived set of Eqs.s27d and s28d is much better suited for
analytical and numerical investigations than the full drift-
diffusion set of equations. In particular, in Eqs.s27d ands28d
the solution in full 3D space must be implemented numeri-
cally only for two space coordinates because the axial depen-
dence is taken into account analytically.

The most important nontrivial solutions of Eqs.s27d and
s28d are those for nonlinear ionization fronts, which propa-
gate along the discharge plane away from the point of igni-
tion. In some special cases the lowest front velocity can be
calculated analyticallyfEq. s33dg, in general the velocity de-
pends on triggering fluctuation and one must find a numeri-
cal solution. The form of the ionization front can be either
monotonic or oscillatingsFig. 4d. Such an oscillating behav-

ior is specific for the distributed external resistor and does
not occur for ordinary metal electrodes.

In closing, the present approach is a first step in the quan-
titative description of pattern formation phenomena in planar
dc gas-discharge systems as cited above. In a second step the
treatment must be extended from the Townsend mode of op-
eration to the glow discharge mode where the patterns are
actually observed. Also in this case a relatively simple reac-
tion diffusion system, but with a cubic nonlinearity, can be
derived. Corresponding work is in progress.
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