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Scaling of longitudinal and transverse velocity increments in a cylinder wake
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Longitudinal and transverse velocity increments are measured both temporally and spatially using two
X-wire probes in the intermediate region of a cylinder wake over Taylor microscale Reynolds numbers in the
range of 100-300. The scaling exponents of both the spatial and temporal longitudinal velocity increments
agree favorably with the predictions of Kolmogorov and She and Leveque. The scaling exponents of the
transverse velocity increments are considerably smaller than those of the longitudinal ones, with the values for
spatial transverse velocity increments being slightly larger than the temporal ones. The difference between the
scaling exponents of the longitudinal and transverse velocity increments is examined against the refined
similarity hypotheses for transverse velocity increme®SHT) proposed by Cheat al. It is found that the
RSHT can account for the difference between the scaling exponents of the longitudinal and spatial transverse
velocity increments at all Reynolds numbers considered.

DOI: 10.1103/PhysRevE.71.066307 PACS nunierd7.27.Ak

. INTRODUCTION ((8c)" ~ réat ?)

The similarity hypotheses proposed by Kolmogofdy in the IR, wherel,(n) are the scaling exponents féa)™
(hereafter K41 and the later revisiorfKolmogorov [2] or and may not be equal to/3.
K62) are crucially important in the study of small-scale tur- The K62, or indeed K41 hypotheses, did not distinguish
bulence. The main assumptions used in these hypotheses dyetweennth-order moments of the longitudinal velocity in-
the local isotropy and very large Reynolds numbers both ircrementsS and the transverse velocity incremefg;. The
the dissipative rang¢DR) (r<L, wherelL is the integral most common method to measuf§,_ is temporally sam-
length scale of turbulengend in the inertial rangélR) (7  pling the velocity fluctuationsi along the main flow direc-
<r<L, where n=13%(g)¥* is the Kolmogorov length tion. Taylor's hypothesis is used to convert the temporal de-
scale,(e) and v are the mean energy dissipation rate anday 7to a spatial incrementin the streamwise direction: i.e.,
kinematic viscosity, respectively, and the angular brackets

denote time averagingAccording to K41, 98 1= 8u(r) = u(x+1) - u(x), 3
with r=17U, where U is the local mean velocity in the
((8a)") ~ (r{e))"3, (1) streamwise direction. Note that the subscript humber “1”

next toL has been used here to distingui8 ; from that
introduced later.

Several methods can be used to deterndi8e One way
is to sample the transverse velocity componeiot w using
an X-wire probe at a fixed location of the flo@S; can then
be obtained using

whenr is in the inertial range, wheréa= a(x+r)—a(x) is

the velocity increment. In the definition &, « represents

any componentu, v, or w) of the velocity fluctuations in the

longitudinal (streamwisg transverse, and spanwise direc-

tions, respectively, and is the separation between the two

points. If thg velocity component _is'in the. same directiqn as SSri=w(x+r)=w(r) [orv(x+r)—ov(r)]. (4)

the separation of the two points, it is defined as a longitudi- '

nal one. In contrast, if the velocity component is perpendicu-Taylor’s hypothesis is again used to convert the temporal

lar to the separatiom, S« is referred to as the transverse delay to a spatial separationThe subscript number next to

velocity increment. T distinguishes between different definitions f68; used
Over the past years, extensive experimental and numericllere. Another definition obS; is the spatial transverse ve-

investigations have highlighted that the scaling exponents dbcity increment, defined as

((6a)") deviate fromn/3, known as the anomalous scaling. _

This anomalous scaling is normally attributed to the so- 85y, = u(z+A2) - u(@), 5)

called small-scale intermittency. To account for the spatialyherez is in the spanwise direction. An important advantage
and temporal intermittency effect of the energy dissipativepf this definition is that the influence of the large-scale ve-
rate, K_olmogorov[Z] introduced the_ refined_ similarity hy- |ocity anisotropy is removed from the Sca"ng @ﬁST,Z)n>-
pothesis(RSH). On.e consequence in K62 is that the mo-yyjith only a few exceptionf3-5], recent experimen{$—10
ments of the velocity increment$da)”) scale as and direct numerical simulatiofDNS) [11,12 have shown
that the scaling exponent&(n), associated with the mo-
ments of 6S—viz., ((8SP™ ~ri™W—are slightly smaller
* Electronic address: mtmzhou@ntu.edu.sg than those oBS, where((65)™ ~ r&t™. Other experiments
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[13-16 have shown that+(n) are significantly smaller than In the present study, we aim to investigate the scaling
{.(n). Extensive studies have been conducted to explain thexponents of the longitudinal and transverse velocity incre-
differences betweeid(n) and ¢, (n). Possible explanations ments measured both temporally and spatially and their de-
include (1) the anisotropy of the flowe.qg.,[9,16-23), (2)  pendence on the Reynolds number on the centerline of tur-
the effect of Reynolds numbée.g.,[15,16,24-27, (3) the  bulent wakes using data obtained from two X-wire probes.
effect of the initial and boundary conditiof23,28, and(4) The longitudinal velocity incremendS is obtained using
the intermittencies affecting the longitudinal and transvers&oth Eq.(3) and the following relation:

velocity structure functiongl1,14). It needs to be noted that _ _

the above explanations may not necessarily unrelated. Bo- 99 2= () =w(z+A2) ~w(2). (6)
ratav and Pelf14] suggested that the difference betweenThe transverse velocity incremef; is obtained using Egs.
{r(n) and ¢.(n) is the result of the different contributions (4) and(5). The transverse vorticity component is also mea-
from the strain-dominated structures and the enstrophysured, allowing a direct check of the RSHT at different Rey-
dominated structures to the longitudinal and transverse veiolds numbers.

locity increments. Chent al.[11] proposed and verified nu-

merically a modified model to the RSH, which they called

the refined similarity hypothesis for transverse velocity in- Il. EXPERIMENTAL DETAILS

crementyRSHT). The RSHT has been tested by Antoria

al. [13] and Zhou and Antoni§l5] in decaying grid turbu- . : . : _
lence. These authors found that the RSHT can only partialltunnel with d|menS|or'15 of 1.2 . idth) > 0.8 m (heighy
nd 2.2 m long. Velocity fluctuations andw at the down-

account for the difference of the scaling exponents betweestream location of 75d were measured using two X-wire
the longitudinal and transverse velocity increments. They g

- . robes aligned on the centerline of the wake generated by a
suggested that the anisotropy of turbulence structures in tHe ! . ) i
scaling range, which reflects the small valuesRofin their circular cylinder with a diametet of 25.4 mm. The cylinder

study, is more likely to account for most of the dif'ference,\';/]aS located yerﬂgﬁlly 20 g(m QOwnstkr)eam of thel'entrgujcehof
whereR, is the Taylor microscale Reynolds number deﬁnedt e test section. The two X-wire probes were aligned in the
x-z plane so thati andw can be measured simultaneously.
The coordinate system, the cylinder, and the arrangement of
e two X-wire probes are shown in Fig. 1. The upper X-wire
probe is attached to a traversing mechanism and is able to
move along the spanwise direction so as to achieve the de-
sired separatiofAz) while the lower X-wire probe was kept
stable 20 cm above the bottom wall of the tunnel. The flow
conditions of the free stream have been checked to be uni-
form in the wind tunnel with turbulent intensity less than
.5%. The measurements were conducted under four free-
stream velocities: i.e., 5 m/s, 10 m/s, 15 m/s, and 20 m/s,
corresponding tdr, of 100, 200, 250, and 300, respectively.
The transverse vorticity componeid}, can be approximated

The experiments were conducted in a closed-loop wind

squarerms) valued. It needs to be noted that in the study of
Antonia et al. [13] and Zhou and Antonid15], 8S; was
obtained from the measurementsvofising an X-wire probe
[i.e., EQ.(4)]. The RSHT was verified satisfactorily by Bi
and Wei[10], where §S; was obtained using both an X-wire
probe and a rake of single hot wires. The significant differ-
ence between the scaling exponents of the longitudinal an
transverse velocity increments was also explaifg8,16

by the different definitions used to obtad®; and the method
for estimatingZ7(n), especially for shear flows with small
and moderate values &;.

Recently, significant attention has been given to the expy
traction of anisotropic contributions from velocity structure _ou ow  Au Aw
functions using both experiments.g.,{17,18,20) and nu- N X = Az Ax’ ()

merical simulation$19,21,23. The approach is based on the
so-called decomposition of the velocity correlations or strucwhereAu is the difference betweemfrom the two X-wires;
ture functions in terms of the irreducible representation ofAw is the difference between valueswfat the same point in
the SQ@3) group of spatial rotation in three dimensions space, but separated in time by two sampling time intervals
[19,29. The isotropic sector of this decomposition is the (Where central difference is usedBecause the turbulence
zeroth-order term which can be disentangled from the anisdghtensity is relatively smallu’/U<10%), the use of Tay-
tropic part[18]. The intension of this decomposition is to lor's hypothesis—i.e.A/Ax=-U"1A/At—in Eq. (7) should
assess the persistence of anisotropic effects on inertial d® satisfactory.
well as the dissipative scales. The hot wires were operated with in-house constant-
More recently, Romano and Antoni®3] proposed a temperature circuits at an over heat ratio of 1.5. Each of the
model to account for the effect of the large-scale anisotropywo wires had a diameter of 2m. The wire separation
in the far field of the round jets. The effect of the large-scalewas about 1 mm. The output signals were low-pass filtered
anisotropy is assessed by considering the different initiathrough the buck and gain circuits at the cutoff frequencies
conditions at the jet nozzle and hence different ratios of thd.=1.6 kHz, 5.2 kHz, 9.2 kHz, and 9.2 kHz, respectively, for
longitudinal and transverse rms velocities. This model exthe four free-stream velocities, which are close to the Kol-
plains reasonably well the difference in the scaling exponentsiogorov frequencyfy=U,/2m7n except at the highedg,.
between longitudinal and transverse velocity structure funcThe filtered signals were sampled at a frequeh&y2f, into
tions in plane wakes generated by various bluff bo@ds a PC using a 16-bit analog-to-digitéd/D) converter(Na-
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FIG. 1. Coordinate system and probe arrange-

rangementfront view).

Az ment. () Coordinate system an¢b) probe ar-

for R,=250 are shown here. The same level of agreement

velocities. Further analysis of the data was done using thean be found for other values of Reynolds numberere-

MATLAB programs.

Ill. RELATIONSHIP BETWEEN THE SECOND-ORDER
LONGITUDINAL AND TRANSVERSE VELOCITY
INCREMENTS

after, an asterisk represents quantities normalized by the Kol-
mogorov length scale; and/or velocity scalal, (=v/ 7).

The distribution of((éS*Lvl)2> agrees favorably with that of
<(5S*L'2)2> over the range of 28r"<500. For scales”
<20, the departure of(8S ,)? from ((6S ;)» may be
caused by the noise effect of the probes. The errors in mea-

For isotropic turbulence, the second-order longitudinaiSuring the initial separation between the two X-wire probes

and transverse velocity increments are reldd] via

rd >

—— . 8

; dr)«a&) ) ®)
The subscript “iso” means that the values (66S;)?) are
calculated from Eq.(8) using the measured values of
((63)?. The calculated values df8S;)?);s, are compared
with ((8S; )?) and((8S; ,)?) in Fig. 2.(Note that only results
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may not be completely dismissed. For large scales, the de-
parture may be caused by the global anisotropy, which is
reflected by the ratiov’/u’ = 0.85 (note that for global isot-
ropy, the ratio is equal to)1 There exists good agreement
between((8S;)2)iso and((8S; ,)?) for r" <300, verifying lo-

cal isotropy in this region. The agreement betwée$,)?)is,

and <(5S*r,1)2> iS poor except over a very narrow region
(r" <50). The results shown in Fig. 2 seem to suggest that
local isotropy Eq. (8)] is better satisfied by the spatial trans-
verse velocity increments than the temporal ones in low- to
moderate-Reynolds-number flows. For the longitudinal ve-
locity increments, there is always satisfactory agreement be-
tween spatial and temporal methods.

IV. SCALING EXPONENTS OF THE LONGITUDINAL
AND TRANSVERSE VELOCITY INCREMENTS

In the present study, due to the limited valuesRyf an
apparent inertial range, over whi¢twS?)) depends linearly
onr”, cannot be defined unambiguously eveRat 300. To
estimate the scaling exponents of the velocity increments, the
extended self-similaritfESS method[31] is used with a
slight modification—the region wherdsS [%) is approxi-
mately linear tor is used to define the scaling ran¢geR).

This method has been widely used for estimating the scaling

FIG. 2. Comparison of measured second-order transverse struéXponentse.g.,[7,9,20,32). The corresponding scaling ex-

ture functions with isotropic calculatidrEq. (8)]: dot-dashed line,

(68 )?; O, ((53*_,2)22; long-dashed ling((8S; )2); O, ((85;,)?);
short-dashed ling(8S;)?);so-

ponents are known as the values relative to the third-order
velocity increments. Distributions @fsS |*)r"* for different
values ofR, are shown in Fig. 3. There exist apparent scaling
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FIG. 3. KOlmOgOrOV normalized third-order |Ongitudinal struc- FIG. 4. Moments of orden (1_8) of <|5s*_ 1|n> as a function of

ture functions multiplied by™™*: O, R\=100;[J, 200; V, 250; +, (|55 .3 (R,=250. The arrowed solid line indicates the extent of
300. The arrowed solid lines indicate the extent of the scaling rangéhe scaling rangéSR).

(SR.

(K62) and the She-Levequé&lL) model[34] are also shown
ranges for all the four values d®,. The peak value and for comparison in Fig. &). For K62,
width of the scaling range increase wigy. All the scaling
exponents are estimated over the scaling range marked in nou
Fig. 3 by using the ESS method. By plotting théh-order {u(n) = 3 1_8n(n_ 3), (10
velocity increments against the third-order moment of
|65 |—i.e., {|6S|" ~(|6S [} M—the longitudinal scaling Wherep is the intermittency parameter with a magnitu_de of
exponents can be estimated. Several methods have been u§eg-0-3. The value ojx can be obtained using, the sixth-
for estimating {-(n) using variants of the ESS method. Order velocity structure function sinagss )®) ~r? [ie.,
Dhruva et al. [24] and Antonia and Pearsdig3] defined ~#=2-{1(6)]in the inertial range. For the She-Levedad]

{+(n) relative to the third-order moment ofsS|: i.e., model,
(|8Sy 4™ ~ (|6 [3y¢éT2™. There is evidencée.g.,[13,16,24) N w3
to show that the magnitude gf ;(n) increases wittR, and Zyu(n)=—+ 2[1 - (—) } . (11
asymptotically approaches that ¢f(n) at largeR,. Also, 9 s
{r(n) can be defined relative to the third-order moment ofThe measured values ¢f ;(n) show satisfactory agreement
|8Sy]: i.e., (| 8Sy ™) ~ (| 85y o Ber2. with that predicted by K62 and the SL model.
The longitudinal scaling exponent§ (n) are obtained Another way to estimate the scaling exponents of the lon-
based on the following relation: gitudinal velocity increments can be represented by(E®),
« . wherew is the velocity component in the spanwig direc-
(168 4| ~ (|85 o35, ) tion. The scaling exponents can then be obtained from the
From the plot of log|S, || ~log(|éS 4% atR,=250(Fig. ~ Plot of

4) (distributions of log|6S_,|" vs log(|8S /%) for other val- L :
ues ofR, are not shown hejescaling exponents_,(n) were 109092 ~log(|o9 2
estimated from the least-squares linear regressions over tAde scaling range over which 16gS ,|") depends linearly
scaling range obtained from Fig. 3. It can be seen that then Iog(|53:12 %) is well defined(figure is not shown heje
experimental data show excellent linearity over a rangerhe scaling exponents defined by Efj2) are shown in Fig.
which is much wider than that shown in Fig. 3 fegf=250.  5(h). They agree satisfactorily with the predictions of K62
The scaling exponents of theth-order moments of the and the SL model. The present resufsg. 5 seem to sug-
longitudinal increments for different values Bf are shown gest that the scaling exponents of both spatial and temporal
in Fig. 5(a). It can be seen that the scaling exponefitgn)  |ongitudinal velocity increments agree well with the predic-
do not depend orr,. The very small difference of 1(n)  tions of K62 and SL.
between differeniR, may be due to the limited sampling The scaling exponents of the transverse velocity incre-
points in the present experiments. The valueg|ofin) de- ments are also estimated using the ESS method over the
part significantly from the prediction of K4(i.e., n/3) for ~ same scaling range as for the longitudinal offéig. 3). As
n>4. This may indicate the increased effect of the intermit-there are a few methods to define the transverse velocity
tency for higher orders of the longitudinal velocity incre- increments, the scaling exponents can be obtained as fol-
ments. The predictions afi (n) using the lognormal model lows:

i, (12
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- (b) Ry: O, R,=100; [J, 200; V, 250; +, 300; A, £ 1(n) (R,=250);
B 7 solid line, K41[1]; dot-dashed line, K622]; dashed line, SI[34].
i K624 .
5L Ka1 e son for the difference betweeh ;(n) and{; 1(n) may be due
N /@,4;43’7_’ i to the global anisotropy of the flow field, as revealed by the
= L @/%" i ratiow’/u’ (=0.85 in the present wake floysThe effect of
] el i large-scale anisotropy on the scaling exponents can be exam-
L ] ined by using the following definitioh16]:
1= 1 * * *
i 1 Yun.r) =dlog((8S; )"d log(((5S)™).  (15)
- & -
N e i If the two structure function§(8S; ;)") and((8S)") scale in
L i similar manner over the same region rof then i,,/(n,r")
0 \ \ \ \ \ \ \ \ =1. Figure 7 shows the local relative scaling between
0 1 2 3 4 5 6 7 8 ((8Sr. )™ and((8S)™ for the case oh=2 at different Rey-

nolds numbersy,,(2,r") is close to 1 only for" <8 (i.e., in

FIG. 5. Scaling exponent (n) as a function of at different  the dissipative regign The maximum deviatio10%—20%
Ry O, R,=100; [J, 200; V, 250; +, 300; A, ¢ 1(n) (R\=250;  from 1 of ¢,(2,r") occurs over the region of =8-40,
solid line, K41[1]; dot-dashed line, K622]; dashed line, SI34].

(a) gL,l(n) and(b) gL,Z(n)' 1.2 T T T TTTTT] T T T 11T T T T TTTrT T T T TII00
(|8Sr 4™ ~ (|89 4|3éTa™, (13 1.0
(|8Sr 5| ~ (|8 JBm ™. (14 08

The transverse scaling exponeis;(n) obtained from Eq. & 0.6
(13) for the four different Reynolds numbers in the present 2 ’
study are shown in Fig. 6. The longitudinal scaling expo-
nents{, ;(n) and the predictions using K62 with=0.2 and

the K41 and SL models are also shown for comparison. Ob-
viously, {1 4(n) are much smaller thafy ;(n) for all orders, 0.2 \
. , i . A A ‘
independent ofR,. It seems that with the increase Bf, 1l lZ 7
{11(n) also increases, especially for high orders, indicatinga o TR Y S W R ol 1 s
weak dependence df ,(n) on R,. This result is in consis- 0.1 1 10 100 1000
tence with that reported by Anton&t al.[13] and Zhou and r

Antonia [15]. It is conjectured that the difference between g, 7. Dependence of the relative local scaling exponents
{ra(n) and ¢ 1(n) may diminish whenR, goes to infinity (2 r*) on " at variousR,: dot-dashed lineR,=100; short-
because the separation between the integral length scale afigshed line, 200; solid line, 250; long-dashed line, 3d0and\,

the inertial range scales increases Wi thus reducing the are the Taylor microscales normalized byfor R, =100 and 300,
influence from the large-scale anisotrod@6]. Another rea- respectively. The arrow indicates the direction of increagng

0.4

R I e O B I I
S TR A AT R REN B A
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FIG. 9. PDF’s of the velocity increments for inertial range sepa-
rationr" =38 atR, =250: dot-dashed lineyS_;; short-dashed line,
83, ,; solid line, 6Sr ;; long-dashed linedSr ,.

FIG. 8. Scaling exponents; 5(n) as a function oh at different
Ry O, R\=100; O, 200; V, 250; +, 300; A, ¢, 1(n) (R,=250);
solid line, K41[1]; dot-dashed-line, K622]; dashed line, SIL34].

which corresponds to the Taylor microscale The behavior dpminated structures. Ches al. [11] proposeq a modifica-
of Yu(2.1") in the region ofr’=8—40 indicates that the tion to the RSHK®62) for the transverse velocity increments,

large-scale anisotropy can “penetrate” into the inertial rang h'tc?hth? r(]:a\lllerd th\? Fsi't_'T'inFcr)rr;hentRSTT’ It is ?Sflijmv?/ﬁh
scales, resulting in a departure in the scaling exponents Ea € lransverse velocity Increments are associate

£ n \n . ; e locally averaged enstrophy whereas the longitudinal ve-
:l(,lfirélr) izéizr:s;hg;ffEﬁ]isa)ezllialéi; i);{p;e;(tze(:*t)h;gmt? it:e locity increments are associated with the locally averaged
l u H

. ) ) J energy dissipation rate:
the scaling range will be reduced. This trend is in accordance 9y P

with the results reported by Pearson and Antgfi# for the ((8S)™ ~ DXeM™r™3  (RSH), (16)
jets and atmospheric surface layer data at much higher

(=500—4250. The significant departure af,,(2,r") from 1 ((8Sp™ ~ DNQM3 WS (RSHT), (17)
for r* > 100 represents the influence of the large-scale aniso- 2

where D' and D} are constants, and), [sz(w§+wy
+w§)] ande, are the locally averaged enstrophy and energy
dissipation rate, respectively, which are obtained using

tropy.
The scaling exponents; »(n) obtained using Eq(14) are

shown in Fig. 8. They agree favorably with ;(n) and the

K62 and SL models fon=4. Whenn=5, the departure of 1 (Yot
{1(n) from the above two model predictions is apparent. SrZFJ e(r)dx, (18
The magnitude oft ,(n) also reveals a weak dependence on Xorl2
Ry; with the increase irR,, {7,(n) increases slowly. The 1 [*ot2
difference betwee ;(n) and {1 ,(n) as shown in Fig. 8 is QO = —J Q(r)dx, (19
smaller than that betweefj ;(n) and {1 4(n) (Fig. 6). The M xgriz

difference betweed, 1(n) [or &, o(n)] andZra(n) [or &ra(M]  \yhere the spatial integration oris converted from the tem-

may reflect the different intermittency of the velocity incre- poral one by applying Taylor’s hypothesis. It is assumed that
ments. This can be illustrated by the probability density func-<8n> and (0" scale ag ™™ ang r°m respectively. There-

. Lo I ' : , .

tion (PDF) of the velocity increments as shown in Fig. 9, ore, in the RSH and RSHT, the scaling of the longitudinal

where the PDF of the longitudinal and transverse velocit nd transverse velocity increments can be expressed as
increments for separation =38 in the scaling range are y P

plotted and compared. Clearly, the distributions of the PDF’s n

of 8Sr; and &S, are more stretched for large fluctuations Gu(n) = 3t #(n/3), (20)
than that oféS_; and 8S _,, indicating the stronger intermit-
tency of the former than the latter. n
&r(n) = 3’ (n/3). (21)

V. REFINED SIMILARITY HYPOTHESIS FOR

TRANSVERSE VELOCITY INCREMENTS If the RSH and RSHT work satisfactorily;%(n/3) and

7°(n/3) should be both negative and the magnitudes of
Boratav and Pelz[14] suggested that the inequality ¢ (n)-74(n/3) and{7(n)—7°(n/3) should be equal ta/3.
mainly reflects the greater contribution to intermittency from In the present study, the longitudinal and spanwise veloc-
the enstrophy-dominated structures than from the strainity componentsu and w are measured using two X-wire
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TABLE |. Scaling exponents of locally averaged energy dissipation rate and enstrophy at \Ryrious

Ry 100 200 250 300
n 2(n/3) #(n/3) (n/3) #(n/3) 2(n/3) #(n/3) (n/3) #(n/3)
1 0.0488 0.0193 0.052 0.0226 0.101 0.014 0.064 0.04
(+0.0016 (+0.0013 (x0.0018 (+0.0015 (+0.0068 (+0.0009 (+0.0038 (+£0.0043
2 0.0388 0.1412 0.037 0.0135 0.05 0.01 0.037 0.018
(+0.0019 (+0.0017 (+0.0017% (+0.0019 (+0.00669 (+0.0008 (+0.0039 (+0.005)
3 -0.0125 -0.0134 -0.0156 -0.0161 -0.0174 -0.016 -0.0138 -0.016
(+0.0012 (+0.002 (+0.0014 (+0.0022 (+0.0064 (£0.0002 (+0.0039 (+0.000
4 -0.102 -0.063 -0.103 -0.0665 -0.107 -0.063 -0.09 -0.063
(+0.0013 (+0.0029 (+0.0015 (+0.0025 (+0.0062 (£0.001 (+0.009 (+0.0064
5 -0.226 -0.134 -0.223 -0.137 -0.22 -0.13 -0.192 -0.127
(+0.0019 (+0.0029 (+0.0016 (+0.0027% (+0.0059 (+x0.00) (+x0.0042 (+0.0068
6 -0.383 -0.227 -0.371 -0.228 -0.356 -0.216 -0.318 -0.213
(+0.0018 (+0.00289 (+0.0017% (+0.0029 (+0.0053 (+0.0012 (+0.0044 (+0.007
7 -0.569 -0.34 -0.545 -0.337 -0.517 -0.321 -0.47 -0.342
(+0.0022 (+0.003 (+0.0019 (+0.0031 (+0.0055 (+0.0012 (+0.0046 (£0.007
8 -0.781 -0.457 -0.74 -0.464 -0.7 -0.445 -0.645 -0.555
(+0.0025 (+0.0032 (+0.002 (+0.0032 (+0.00589 (+0.0019 (+0.0047% (+0.0065

probes(Fig. 1). Three velocity gradients—i.eau/dx, auldz, ("3 and((»Q,)"3) may be equivalent in the case whep
and ow/ gx—are measured simultaneously. The energy dissiis extremely large. This trend is consistent with that reported
pation ratee can then be approximated using the relationby Nelkin [25,26. However, this result does not necessary
[35] mean that at sufficiently high Reynolds numbers the flow
will become globally isotropy. Anisotropy at large scales
eap= V[6(3UlX)? + 3(aul32)* + 2(owl IX) + 2(dul 52) may still persist. For sufficiently high Reynolds numbers, as
X (Wl ax)]. (22) thg separation betw_een the integ_ral length scales anld the in-
ertial range scales is large, the influence of the anisotropy
This relation has been verified in grid turbulence to be moreffects will not dominate in the inertial range. The values of
reliable than the isotropic relation—i.esi,=150(au/dx)2 &M —7%(n/3) and {x(n)-7°(n/3), with £ (n) representing
Even though only the transverse vorticity component is meadL1(n) and{; »(n) and{7(n) representingy 1(n) and{r »(n),
sured using the two X-wire probd€q. (7)], by assuming respectively, are compared with/3 in Figs. 10 and 11.

local isotropy, the enstrophy can be approximated by There should be satisfactory agreements betwégn)
-74(n/3) and {(n) - 7°(n/3) with n/3 if the RSH and RSHT
Q:3vw§. (23)  work well. This is indeed the case fd(n)—7%(n/3) [Fig.

. . 10] with a deviation less than 3% both for the spatial and
The scaling exponent#!(n/3) and+°(n/3) are inferred from temporal longitudinal velocity increments. However, the

the distributions gf loge™3) and lodQ"3) over the same agreement betweefi(n)-2(n/3) andn/3 depends on the
scaling range ofr” as that used to estimat 1(n) and  gefinition of the transverse velocity incremen(@ig. 11).
{ra(n). The least-squares linear fits to the measured data akince there is satisfactory agreemenith deviation less
reliable with correla’gion coefficient being always larger thangnan 3% betweeni 5(n)—7°(n/3) andn/3, independent of
0.98 over tr_‘e sc_allng range. The values #fn/3) and R,, this result indicates that the RSHT works well for the
7(n/3) are listed in Table | for the four Reynolds numbers gspatial transverse velocity increments to explain the depar-
covered in the present study. The numbers inside the brackefgre of Lro(n) from ¢ (n), supporting the experimental re-
represent the corresponding standard deviations of the fits. §its of Bi and Wef 10]. It needs to be noted that the veri-
can be seen that the values gf(n/3)| are always larger than fication of the RSHT usind »(n) [Fig. 11(b)] is based on
that of |7%(n/3)|, indicating that((»(2,)"®) is more intermit-  the assumption thaf=3vw? However, the intermittency
tent than(s;"3>. This result is consistent with that reported by characteristics of the enstroplfy (=vw,w;) may not be ac-
Chenet al.[36] using DNS. The magnitudes of(n/3) keep  curately represented bywa2. In this case, satisfactory agree-
approximately constant with the increaseRyf resulting in  ment betweery ,(n) - 7°(n/3) andn/3 may not be obtained.
constant values aof, (n) at differentR,. This result is consis- The discrepancy of the present resiifg. 11(b)] from that
tent with that shown in Fig. 5. In contrast, the magnitudes ofreported by Antoniat al.[13] and Zhou and Antonifl5] is
|7°(n/3)| decrease with the increase Ry, indicating a re- due to the different definitions of the transverse velocity in-
duced intermittency effect in the scaling range with the in-crements, where only,(n) estimated from the temporal
crease inR,. It is conjectured that the scaling exponents oftransverse velocity increments are reported. The departure of
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FIG. 10. Verification of RSH for the longitudinal scaling expo-  FIG. 11. Verification of the RSHT for the transverse scaling
nents at differenR,: O, R,=100; 1, 200; V, 250; +, 300.(@  exponents at differer,: O, R, =100;J, 200;V, 250; +, 300.(a)
Lua(m=74(n/3) and (b) ¢ o(n)-7(n/3). Zr4(m=7(n/3) and (b) ¢1 ()~ (n/3).

{r1(n)—7°(n/3) from n/3 is still significant and cannot be

attributed to the experimental uncertainty, even though thergeparated in the spanwise direction in the intermediate region
is a trend thaty(n)—7(n/3) approaches/3 slowly when ¢ 5 cvlinder wake over Taylor microscale Reynolds number
R, increases. It seems that the RSHT can only partially acyt e range of 100-300. The two X-wire probes also allow
count for the inequality betweedr(n) and {.1(n) OF  \neasyrements of the transverse vorticity component when
{L2(n), at least for the present low to moderate Reynoldsyg separation is small enough. The scaling exponents of the
numbers. Even though the present results are obtained at 19y i dinal velocity increments for both temporal and spa-
and moderate Reynolds numbers, the dependence of t!f%l measurements agree favorably with the predictions of

transverse scaling. exponents on Reynolds number is CONSIRB2 and the SL model. The scaling exponents of the trans-
tent with that obtained over a much larger rangeRpf 16]. - ' .
verse velocity increments are considerably smaller than those

Therefore, we believe that at very hil, the scaling of the f the longitudinal ones, with the values for spatial trans-

longitudinal and transverse velocity increments should be th@ 1ong N P

same. At low to moderatR,, the present results suggest that VE'S€ Increments pemg slightly Iarger than  the t_emporal

the scaling of the transverse velocity increments depends nGf1€S- Both of them increase slowly wily. The association
of the scaling of the longitudinal and transverse velocity in-

only onR,, but also on the large-scale anisotropy. : e VEIL!
crements with the locally averaged energy dissipation rate
(RSH) and enstrophyRSHT) are also examined. While the
VI. CONCLUSIONS scaling exponents of the locally averaged dissipation rate
does not depend oR,, the scaling exponents of the locally
Longitudinal and transverse velocity increments are meaaveraged enstrophy decrease Wi a trend that is consis-
sured both temporally and spatially using two X-wire probestent with that reported by Nelkif25,2€6. The present results
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show that the RSH works satisfactorily for longitudinal ve- tially the different scalings between the longitudinal and tem-
locity increments. The RSHT can account for the differenceporal transverse velocity increments. A more likely source
between the scaling exponents of the longitudinal and spatidbr the latter difference is the large-scale anisotropy of the

transverse velocity increments, but can account for only parvelocity field at low and moderate, .
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