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Longitudinal and transverse velocity increments are measured both temporally and spatially using two
X-wire probes in the intermediate region of a cylinder wake over Taylor microscale Reynolds numbers in the
range of 100–300. The scaling exponents of both the spatial and temporal longitudinal velocity increments
agree favorably with the predictions of Kolmogorov and She and Leveque. The scaling exponents of the
transverse velocity increments are considerably smaller than those of the longitudinal ones, with the values for
spatial transverse velocity increments being slightly larger than the temporal ones. The difference between the
scaling exponents of the longitudinal and transverse velocity increments is examined against the refined
similarity hypotheses for transverse velocity incrementssRSHTd proposed by Chenet al. It is found that the
RSHT can account for the difference between the scaling exponents of the longitudinal and spatial transverse
velocity increments at all Reynolds numbers considered.
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I. INTRODUCTION

The similarity hypotheses proposed by Kolmogorovf1g
shereafter K41d and the later revisionsKolmogorov f2g or
K62d are crucially important in the study of small-scale tur-
bulence. The main assumptions used in these hypotheses are
the local isotropy and very large Reynolds numbers both in
the dissipative rangesDRd sr !L, where L is the integral
length scale of turbulenced and in the inertial rangesIRd sh
! r !L, where h;n3/4/ k«l1/4 is the Kolmogorov length
scale,k«l and n are the mean energy dissipation rate and
kinematic viscosity, respectively, and the angular brackets
denote time averagingd. According to K41,

ksdadnl , srk«ldn/3, s1d

when r is in the inertial range, whereda;asx+rd−asxd is
the velocity increment. In the definition ofda, a represents
any componentsu, v, or wd of the velocity fluctuations in the
longitudinal sstreamwised, transverse, and spanwise direc-
tions, respectively, andr is the separation between the two
points. If the velocity component is in the same direction as
the separation of the two points, it is defined as a longitudi-
nal one. In contrast, if the velocity component is perpendicu-
lar to the separationr, da is referred to as the transverse
velocity increment.

Over the past years, extensive experimental and numerical
investigations have highlighted that the scaling exponents of
ksdadnl deviate fromn/3, known as the anomalous scaling.
This anomalous scaling is normally attributed to the so-
called small-scale intermittency. To account for the spatial
and temporal intermittency effect of the energy dissipative
rate, Kolmogorovf2g introduced the refined similarity hy-
pothesissRSHd. One consequence in K62 is that the mo-
ments of the velocity incrementsksdadnl scale as

ksdadnl , rzasnd s2d

in the IR, wherezasnd are the scaling exponents ofksdadnl
and may not be equal ton/3.

The K62, or indeed K41 hypotheses, did not distinguish
betweennth-order moments of the longitudinal velocity in-
crementdSL and the transverse velocity incrementdST. The
most common method to measuredSL is temporally sam-
pling the velocity fluctuationsu along the main flow direc-
tion. Taylor’s hypothesis is used to convert the temporal de-
lay t to a spatial incrementr in the streamwise direction: i.e.,

dSL,1 = dusrd = usx + rd − usxd, s3d

with r ;tU, where U is the local mean velocity in the
streamwise direction. Note that the subscript number “1”
next to L has been used here to distinguishdSL,1 from that
introduced later.

Several methods can be used to determinedST. One way
is to sample the transverse velocity componentv or w using
an X-wire probe at a fixed location of the flow.dST can then
be obtained using

dST,1 = wsx + rd − wsrd for vsx + rd − vsrdg. s4d

Taylor’s hypothesis is again used to convert the temporal
delay to a spatial separationr. The subscript number next to
T distinguishes between different definitions fordST used
here. Another definition ofdST is the spatial transverse ve-
locity increment, defined as

dST,2 ; usz+ Dzd − uszd, s5d

wherez is in the spanwise direction. An important advantage
of this definition is that the influence of the large-scale ve-
locity anisotropy is removed from the scaling ofksdST,2dnl.
With only a few exceptionsf3–5g, recent experimentsf6–10g
and direct numerical simulationsDNSd f11,12g have shown
that the scaling exponentszTsnd, associated with the mo-
ments of dST—viz., ksdSTdnl, rzTsnd—are slightly smaller
than those ofdSL, whereksdSLdnl, rzLsnd. Other experiments*Electronic address: mtmzhou@ntu.edu.sg
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f13–16g have shown thatzTsnd are significantly smaller than
zLsnd. Extensive studies have been conducted to explain the
differences betweenzTsnd and zLsnd. Possible explanations
include s1d the anisotropy of the flowse.g., f9,16–23gd, s2d
the effect of Reynolds numberse.g.,f15,16,24–27gd, s3d the
effect of the initial and boundary conditionsf23,28g, ands4d
the intermittencies affecting the longitudinal and transverse
velocity structure functionsf11,14g. It needs to be noted that
the above explanations may not necessarily unrelated. Bo-
ratav and Pelzf14g suggested that the difference between
zTsnd and zLsnd is the result of the different contributions
from the strain-dominated structures and the enstrophy-
dominated structures to the longitudinal and transverse ve-
locity increments. Chenet al. f11g proposed and verified nu-
merically a modified model to the RSH, which they called
the refined similarity hypothesis for transverse velocity in-
crementssRSHTd. The RSHT has been tested by Antoniaet
al. f13g and Zhou and Antoniaf15g in decaying grid turbu-
lence. These authors found that the RSHT can only partially
account for the difference of the scaling exponents between
the longitudinal and transverse velocity increments. They
suggested that the anisotropy of turbulence structures in the
scaling range, which reflects the small values ofRl in their
study, is more likely to account for most of the difference,
whereRl is the Taylor microscale Reynolds number defined
as Rl=ku8ll /n fl;u8 / s]u/]xd8 is the longitudinal Taylor
microscale, a superscript prime represents the root-mean-
squaresrmsd valuesg. It needs to be noted that in the study of
Antonia et al. f13g and Zhou and Antoniaf15g, dST was
obtained from the measurements ofv using an X-wire probe
fi.e., Eq. s4dg. The RSHT was verified satisfactorily by Bi
and Weif10g, wheredST was obtained using both an X-wire
probe and a rake of single hot wires. The significant differ-
ence between the scaling exponents of the longitudinal and
transverse velocity increments was also explainedf7,8,16g
by the different definitions used to obtaindST and the method
for estimatingzTsnd, especially for shear flows with small
and moderate values ofRl.

Recently, significant attention has been given to the ex-
traction of anisotropic contributions from velocity structure
functions using both experimentsse.g., f17,18,20gd and nu-
merical simulationsf19,21,22g. The approach is based on the
so-called decomposition of the velocity correlations or struc-
ture functions in terms of the irreducible representation of
the SOs3d group of spatial rotation in three dimensions
f19,29g. The isotropic sector of this decomposition is the
zeroth-order term which can be disentangled from the aniso-
tropic part f18g. The intension of this decomposition is to
assess the persistence of anisotropic effects on inertial as
well as the dissipative scales.

More recently, Romano and Antoniaf23g proposed a
model to account for the effect of the large-scale anisotropy
in the far field of the round jets. The effect of the large-scale
anisotropy is assessed by considering the different initial
conditions at the jet nozzle and hence different ratios of the
longitudinal and transverse rms velocities. This model ex-
plains reasonably well the difference in the scaling exponents
between longitudinal and transverse velocity structure func-
tions in plane wakes generated by various bluff bodiesf9g.

In the present study, we aim to investigate the scaling
exponents of the longitudinal and transverse velocity incre-
ments measured both temporally and spatially and their de-
pendence on the Reynolds number on the centerline of tur-
bulent wakes using data obtained from two X-wire probes.
The longitudinal velocity incrementdSL is obtained using
both Eq.s3d and the following relation:

dSL,2 = dwsrd = wsz+ Dzd − wszd. s6d

The transverse velocity incrementdST is obtained using Eqs.
s4d ands5d. The transverse vorticity component is also mea-
sured, allowing a direct check of the RSHT at different Rey-
nolds numbers.

II. EXPERIMENTAL DETAILS

The experiments were conducted in a closed-loop wind
tunnel with dimensions of 1.2 mswidthd30.8 m sheightd
and 2.2 m long. Velocity fluctuationsu and w at the down-
stream location of 75d were measured using two X-wire
probes aligned on the centerline of the wake generated by a
circular cylinder with a diameterd of 25.4 mm. The cylinder
was located vertically 20 cm downstream of the entrance of
the test section. The two X-wire probes were aligned in the
x-z plane so thatu and w can be measured simultaneously.
The coordinate system, the cylinder, and the arrangement of
the two X-wire probes are shown in Fig. 1. The upper X-wire
probe is attached to a traversing mechanism and is able to
move along the spanwise direction so as to achieve the de-
sired separationsDzd while the lower X-wire probe was kept
stable 20 cm above the bottom wall of the tunnel. The flow
conditions of the free stream have been checked to be uni-
form in the wind tunnel with turbulent intensity less than
0.5%. The measurements were conducted under four free-
stream velocities: i.e., 5 m/s, 10 m/s, 15 m/s, and 20 m/s,
corresponding toRl of 100, 200, 250, and 300, respectively.
The transverse vorticity componentvy can be approximated
by

vy =
]u

]z
−

]w

]x
<

Du

Dz
−

Dw

Dx
, s7d

whereDu is the difference betweenu from the two X-wires;
Dw is the difference between values ofw at the same point in
space, but separated in time by two sampling time intervals
swhere central difference is usedd. Because the turbulence
intensity is relatively smallsu8 /Uø10%d, the use of Tay-
lor’s hypothesis—i.e.,D /Dx=−U−1D /Dt—in Eq. s7d should
be satisfactory.

The hot wires were operated with in-house constant-
temperature circuits at an over heat ratio of 1.5. Each of the
two wires had a diameter of 2.5mm. The wire separation
was about 1 mm. The output signals were low-pass filtered
through the buck and gain circuits at the cutoff frequencies
fc=1.6 kHz, 5.2 kHz, 9.2 kHz, and 9.2 kHz, respectively, for
the four free-stream velocities, which are close to the Kol-
mogorov frequencyfK=U1/2ph except at the highestRl.
The filtered signals were sampled at a frequencyfs=2fc into
a PC using a 16-bit analog-to-digitalsA/Dd convertersNa-
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tional Instrumentd. The sampling period was 120 s for all
velocities. Further analysis of the data was done using the
MATLAB programs.

III. RELATIONSHIP BETWEEN THE SECOND-ORDER
LONGITUDINAL AND TRANSVERSE VELOCITY

INCREMENTS

For isotropic turbulence, the second-order longitudinal
and transverse velocity increments are relatedf30g via

ksdSTd2liso = S1 +
r

2

d

dr
DksdSLd2l. s8d

The subscript “iso” means that the values ofksdSTd2l are
calculated from Eq.s8d using the measured values of
ksdSLd2l. The calculated values ofksdST

* d2liso are compared
with ksdST,1

* d2l andksdST,2
* d2l in Fig. 2.sNote that only results

for Rl=250 are shown here. The same level of agreement
can be found for other values of Reynolds numbers.d Here-
after, an asterisk represents quantities normalized by the Kol-
mogorov length scaleh and/or velocity scaleuK s;n /hd.
The distribution ofksdSL,1

* d2l agrees favorably with that of
ksdSL,2

* d2l over the range of 20ø r* ø500. For scalesr*

,20, the departure ofksdSL,2
* d2l from ksdSL,1

* d2l may be
caused by the noise effect of the probes. The errors in mea-
suring the initial separation between the two X-wire probes
may not be completely dismissed. For large scales, the de-
parture may be caused by the global anisotropy, which is
reflected by the ratiow8 /u8<0.85 snote that for global isot-
ropy, the ratio is equal to 1d. There exists good agreement
betweenksdST

* d2liso and ksdST,2
* d2l for r* ,300, verifying lo-

cal isotropy in this region. The agreement betweenksdST
* d2liso

and ksdST,1
* d2l is poor except over a very narrow region

sr* ,50d. The results shown in Fig. 2 seem to suggest that
local isotropyfEq. s8dg is better satisfied by the spatial trans-
verse velocity increments than the temporal ones in low- to
moderate-Reynolds-number flows. For the longitudinal ve-
locity increments, there is always satisfactory agreement be-
tween spatial and temporal methods.

IV. SCALING EXPONENTS OF THE LONGITUDINAL
AND TRANSVERSE VELOCITY INCREMENTS

In the present study, due to the limited values ofRl, an
apparent inertial range, over whichksdSL

*3dl depends linearly
on r* , cannot be defined unambiguously even atRl=300. To
estimate the scaling exponents of the velocity increments, the
extended self-similaritysESSd method f31g is used with a
slight modification—the region wherekudSLu3l is approxi-
mately linear tor is used to define the scaling rangesSRd.
This method has been widely used for estimating the scaling
exponentsse.g., f7,9,20,32gd. The corresponding scaling ex-
ponents are known as the values relative to the third-order
velocity increments. Distributions ofkudSL

* u3lr*−1 for different
values ofRl are shown in Fig. 3. There exist apparent scaling

FIG. 1. Coordinate system and probe arrange-
ment. sad Coordinate system andsbd probe ar-
rangementsfront viewd.

FIG. 2. Comparison of measured second-order transverse struc-
ture functions with isotropic calculationfEq. s8dg: dot-dashed line,
ksdSL,1

* d2l; h, ksdSL,2
* d2l; long-dashed line,ksdST,1

* d2l; s, ksdST,2
* d2l;

short-dashed line,ksdST
* d2liso.
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ranges for all the four values ofRl. The peak value and
width of the scaling range increase withRl. All the scaling
exponents are estimated over the scaling range marked in
Fig. 3 by using the ESS method. By plotting thenth-order
velocity increments against the third-order moment of
udSLu—i.e., kudSLunl,kudSLu3lzLsnd—the longitudinal scaling
exponents can be estimated. Several methods have been used
for estimating zTsnd using variants of the ESS method.
Dhruva et al. f24g and Antonia and Pearsonf33g defined
zTsnd relative to the third-order moment ofudSLu: i.e.,
kudST,1unl,kudSLu3lzT,1snd. There is evidencese.g.,f13,16,24gd
to show that the magnitude ofzT,1snd increases withRl and
asymptotically approaches that ofzLsnd at largeRl. Also,
zTsnd can be defined relative to the third-order moment of
udSTu: i.e., kudST,2unl,kudST,2u3lzT,2snd.

The longitudinal scaling exponentszLsnd are obtained
based on the following relation:

kudSL,1
* unl , kudSL,1

* u3lzL,1snd. s9d

From the plot of logkudSL,1
* unl, logkudSL,1

* u3l at Rl=250 sFig.
4d sdistributions of logkudSL,1

* unl vs logkudSL,1
* u3l for other val-

ues ofRl are not shown hered, scaling exponentszL,1snd were
estimated from the least-squares linear regressions over the
scaling range obtained from Fig. 3. It can be seen that the
experimental data show excellent linearity over a range
which is much wider than that shown in Fig. 3 forRl=250.

The scaling exponents of thenth-order moments of the
longitudinal increments for different values ofRl are shown
in Fig. 5sad. It can be seen that the scaling exponentszL,1snd
do not depend onRl. The very small difference ofzL,1snd
between differentRl may be due to the limited sampling
points in the present experiments. The values ofzL,1snd de-
part significantly from the prediction of K41si.e., n/3d for
n.4. This may indicate the increased effect of the intermit-
tency for higher orders of the longitudinal velocity incre-
ments. The predictions ofzLsnd using the lognormal model

sK62d and the She-LevequesSLd modelf34g are also shown
for comparison in Fig. 5sad. For K62,

zLsnd =
n

3
−

m

18
nsn − 3d, s10d

wherem is the intermittency parameter with a magnitude of
0.2–0.3. The value ofm can be obtained using the sixth-
order velocity structure function sinceksdSLd6l, r2−m fi.e.,
m=2−zL,1s6dg in the inertial range. For the She-Levequef34g
model,

zusnd =
n

9
+ 2F1 −S2

3
Dn/3G . s11d

The measured values ofzL,1snd show satisfactory agreement
with that predicted by K62 and the SL model.

Another way to estimate the scaling exponents of the lon-
gitudinal velocity increments can be represented by Eq.s12d,
wherew is the velocity component in the spanwiseszd direc-
tion. The scaling exponents can then be obtained from the
plot of

logkudSL,2
* unl , logkudSL,2

* u3lzL,2snd. s12d

The scaling range over which logkudSL,2
* unl depends linearly

on logkudSL,2
* u3l is well definedsfigure is not shown hered.

The scaling exponents defined by Eq.s12d are shown in Fig.
5sbd. They agree satisfactorily with the predictions of K62
and the SL model. The present resultssFig. 5d seem to sug-
gest that the scaling exponents of both spatial and temporal
longitudinal velocity increments agree well with the predic-
tions of K62 and SL.

The scaling exponents of the transverse velocity incre-
ments are also estimated using the ESS method over the
same scaling range as for the longitudinal onessFig. 3d. As
there are a few methods to define the transverse velocity
increments, the scaling exponents can be obtained as fol-
lows:

FIG. 3. Kolmogorov normalized third-order longitudinal struc-
ture functions multiplied byr*−1: s, Rl=100; h, 200; ,, 250; 1,
300. The arrowed solid lines indicate the extent of the scaling range
sSRd.

FIG. 4. Moments of ordern s1–8d of kudSL,1
* unl as a function of

kudSL,1
* u3l sRl=250d. The arrowed solid line indicates the extent of

the scaling rangesSRd.
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kudST,1unl , kudSL,1u3lzT,1snd, s13d

kudST,2unl , kudSL,2u3lzT,2snd. s14d

The transverse scaling exponentszT,1snd obtained from Eq.
s13d for the four different Reynolds numbers in the present
study are shown in Fig. 6. The longitudinal scaling expo-
nentszL,1snd and the predictions using K62 withm=0.2 and
the K41 and SL models are also shown for comparison. Ob-
viously, zT,1snd are much smaller thanzL,1snd for all orders,
independent ofRl. It seems that with the increase ofRl,
zT,1snd also increases, especially for high orders, indicating a
weak dependence ofzT,1snd on Rl. This result is in consis-
tence with that reported by Antoniaet al. f13g and Zhou and
Antonia f15g. It is conjectured that the difference between
zT,1snd and zL,1snd may diminish whenRl goes to infinity
because the separation between the integral length scale and
the inertial range scales increases withRl, thus reducing the
influence from the large-scale anisotropyf16g. Another rea-

son for the difference betweenzT,1snd andzL,1snd may be due
to the global anisotropy of the flow field, as revealed by the
ratio w8 /u8 s>0.85 in the present wake flowsd. The effect of
large-scale anisotropy on the scaling exponents can be exam-
ined by using the following definitionf16g:

cuwsn,r*d = d logksdST,1
* dnl/d logkssdSL

* dndl. s15d

If the two structure functionsksdST,1
* dnl andksdSL

* dnl scale in
similar manner over the same region ofr* , then cuwsn,r*d
=1. Figure 7 shows the local relative scaling between
ksdST,1

* dnl and ksdSL
* dnl for the case ofn=2 at different Rey-

nolds numbers.cuws2,r*d is close to 1 only forr* ø8 si.e., in
the dissipative regiond. The maximum deviations10%–20%d
from 1 of cuws2,r*d occurs over the region ofr* =8–40,

FIG. 5. Scaling exponentszLsnd as a function ofn at different
Rl: s, Rl=100; h, 200; ,, 250; 1, 300; n, zL,1snd sRl=250d;
solid line, K41f1g; dot-dashed line, K62f2g; dashed line, SLf34g.
sad zL,1snd and sbd zL,2snd.

FIG. 6. Scaling exponentszT,1snd as a function ofn at different
Rl: s, Rl=100; h, 200; ,, 250; 1, 300; n, zL,1snd sRl=250d;
solid line, K41f1g; dot-dashed line, K62f2g; dashed line, SLf34g.

FIG. 7. Dependence of the relative local scaling exponents
cuws2,r*d on r* at variousRl: dot-dashed line,Rl=100; short-
dashed line, 200; solid line, 250; long-dashed line, 300.l1

* andl2
*

are the Taylor microscales normalized byh for Rl=100 and 300,
respectively. The arrow indicates the direction of increasingRl.
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which corresponds to the Taylor microscalel* . The behavior
of cuws2,r*d in the region ofr* =8–40 indicates that the
large-scale anisotropy can “penetrate” into the inertial range
scales, resulting in a departure in the scaling exponents of
ksdST,1

* dnl from that of ksdSL
* dnl. It is expected that with the

further increase ofRl, the deviation ofcuws2,r*d from 1 in
the scaling range will be reduced. This trend is in accordance
with the results reported by Pearson and Antoniaf16g for the
jets and atmospheric surface layer data at much higherRl

s=500–4250d. The significant departure ofcuws2,r*d from 1
for r* .100 represents the influence of the large-scale aniso-
tropy.

The scaling exponentszT,2snd obtained using Eq.s14d are
shown in Fig. 8. They agree favorably withzL,1snd and the
K62 and SL models fornø4. Whennù5, the departure of
zT,2snd from the above two model predictions is apparent.
The magnitude ofzT,2snd also reveals a weak dependence on
Rl; with the increase inRl, zT,2snd increases slowly. The
difference betweenzL,1snd andzT,2snd as shown in Fig. 8 is
smaller than that betweenzL,1snd and zT,1snd sFig. 6d. The
difference betweenzL,1snd for zL,2sndg andzT,1snd for zT,2sndg
may reflect the different intermittency of the velocity incre-
ments. This can be illustrated by the probability density func-
tion sPDFd of the velocity increments as shown in Fig. 9,
where the PDF of the longitudinal and transverse velocity
increments for separationr* =38 in the scaling range are
plotted and compared. Clearly, the distributions of the PDF’s
of dST,1 and dST,2 are more stretched for large fluctuations
than that ofdSL,1 anddSL,2, indicating the stronger intermit-
tency of the former than the latter.

V. REFINED SIMILARITY HYPOTHESIS FOR
TRANSVERSE VELOCITY INCREMENTS

Boratav and Pelzf14g suggested that the inequality
mainly reflects the greater contribution to intermittency from
the enstrophy-dominated structures than from the strain-

dominated structures. Chenet al. f11g proposed a modifica-
tion to the RSHsK62d for the transverse velocity increments,
which they called the RSHT. For the RSHT, it is assumed
that the transverse velocity increments are associated with
the locally averaged enstrophy whereas the longitudinal ve-
locity increments are associated with the locally averaged
energy dissipation rate:

ksdSLdnl , DL
nk«r

n/3lrn/3 sRSHd, s16d

ksdSTdnl , DT
nkVr

n/3lrn/3 sRSHTd, s17d

where DL
n and DT

n are constants, andVr fV;nsvx
2+vy

2

+vz
2dg and«r are the locally averaged enstrophy and energy

dissipation rate, respectively, which are obtained using

«r =
1

r
E

x0−r/2

x0+r/2

«srddx, s18d

Vr =
1

r
E

x0−r/2

x0+r/2

Vsrddx, s19d

where the spatial integration onx is converted from the tem-
poral one by applying Taylor’s hypothesis. It is assumed that
k«r

nl and kVr
nl scale asrtdsnd and rtosnd, respectively. There-

fore, in the RSH and RSHT, the scaling of the longitudinal
and transverse velocity increments can be expressed as

zLsnd =
n

3
+ tdsn/3d, s20d

zTsnd =
n

3
+ tosn/3d. s21d

If the RSH and RSHT work satisfactorily,tdsn/3d and
tosn/3d should be both negative and the magnitudes of
zLsnd−tdsn/3d andzTsnd−tosn/3d should be equal ton/3.

In the present study, the longitudinal and spanwise veloc-
ity componentsu and w are measured using two X-wire

FIG. 8. Scaling exponentszT,2snd as a function ofn at different
Rl: s, Rl=100; h, 200; ,, 250; 1, 300; n, zL,1snd sRl=250d;
solid line, K41f1g; dot-dashed-line, K62f2g; dashed line, SLf34g.

FIG. 9. PDF’s of the velocity increments for inertial range sepa-
ration r* =38 atRl=250: dot-dashed line,dSL,1; short-dashed line,
dSL,2; solid line, dST,1; long-dashed line,dST,2.
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probessFig. 1d. Three velocity gradients—i.e.,]u/]x, ]u/]z,
and]w/]x—are measured simultaneously. The energy dissi-
pation rate« can then be approximated using the relation
f35g

«ap= nf6s]u/]xd2 + 3s]u/]zd2 + 2s]w/]xd2 + 2s]u/]zd

3s]w/]xdg. s22d

This relation has been verified in grid turbulence to be more
reliable than the isotropic relation—i.e.,«iso=15ns]u/]xd2.
Even though only the transverse vorticity component is mea-
sured using the two X-wire probesfEq. s7dg, by assuming
local isotropy, the enstrophy can be approximated by

V = 3nvy
2. s23d

The scaling exponentstdsn/3d andtosn/3d are inferred from
the distributions of logk«r

n/3l and logkVr
n/3l over the same

scaling range ofr* as that used to estimatezL,1snd and
zT,1snd. The least-squares linear fits to the measured data are
reliable with correlation coefficient being always larger than
0.98 over the scaling range. The values oftdsn/3d and
tosn/3d are listed in Table I for the four Reynolds numbers
covered in the present study. The numbers inside the brackets
represent the corresponding standard deviations of the fits. It
can be seen that the values ofutosn/3du are always larger than
that of utdsn/3du, indicating thatksnVrdn/3l is more intermit-
tent thank«r

n/3l. This result is consistent with that reported by
Chenet al. f36g using DNS. The magnitudes oftdsn/3d keep
approximately constant with the increase ofRl, resulting in
constant values ofzLsnd at differentRl. This result is consis-
tent with that shown in Fig. 5. In contrast, the magnitudes of
utosn/3du decrease with the increase inRl, indicating a re-
duced intermittency effect in the scaling range with the in-
crease inRl. It is conjectured that the scaling exponents of

k«r
n/3l and ksnVrdn/3l may be equivalent in the case whenRl

is extremely large. This trend is consistent with that reported
by Nelkin f25,26g. However, this result does not necessary
mean that at sufficiently high Reynolds numbers the flow
will become globally isotropy. Anisotropy at large scales
may still persist. For sufficiently high Reynolds numbers, as
the separation between the integral length scales and the in-
ertial range scales is large, the influence of the anisotropy
effects will not dominate in the inertial range. The values of
zLsnd−tdsn/3d and zTsnd−tosn/3d, with zLsnd representing
zL,1snd andzL,2snd andzTsnd representingzT,1snd andzT,2snd,
respectively, are compared withn/3 in Figs. 10 and 11.
There should be satisfactory agreements betweenzLsnd
−tdsn/3d andzTsnd−tosn/3d with n/3 if the RSH and RSHT
work well. This is indeed the case forzLsnd−tdsn/3d fFig.
10g with a deviation less than 3% both for the spatial and
temporal longitudinal velocity increments. However, the
agreement betweenzTsnd−tosn/3d and n/3 depends on the
definition of the transverse velocity incrementssFig. 11d.
Since there is satisfactory agreementswith deviation less
than 3%d betweenzT,2snd−tosn/3d andn/3, independent of
Rl, this result indicates that the RSHT works well for the
spatial transverse velocity increments to explain the depar-
ture of zT,2snd from zLsnd, supporting the experimental re-
sults of Bi and Weif10g. It needs to be noted that the veri-
fication of the RSHT usingzT,2snd fFig. 11sbdg is based on
the assumption thatV=3nvy

2. However, the intermittency
characteristics of the enstrophyV s;nvivid may not be ac-
curately represented by 3nvy

2. In this case, satisfactory agree-
ment betweenzT,2snd−tosn/3d andn/3 may not be obtained.
The discrepancy of the present resultsfFig. 11sbdg from that
reported by Antoniaet al. f13g and Zhou and Antoniaf15g is
due to the different definitions of the transverse velocity in-
crements, where onlyzT,1snd estimated from the temporal
transverse velocity increments are reported. The departure of

TABLE I. Scaling exponents of locally averaged energy dissipation rate and enstrophy at variousRl.

Rl 100 200 250 300

n tosn/3d tdsn/3d tosn/3d tdsn/3d tosn/3d tdsn/3d tosn/3d tdsn/3d
1 0.0488

s±0.0016d
0.0193

s±0.0013d
0.052

s±0.0018d
0.0226

s±0.0015d
0.101

s±0.0068d
0.014

s±0.0006d
0.064

s±0.0038d
0.04

s±0.0043d
2 0.0388

s±0.0016d
0.1412

s±0.0017d
0.037

s±0.0017d
0.0135

s±0.0018d
0.05

s±0.0066d
0.01

s±0.0008d
0.037

s±0.0038d
0.018

s±0.0051d
3 −0.0125

s±0.0012d
−0.0134
s±0.002d

−0.0156
s±0.0014d

−0.0161
s±0.0022d

−0.0174
s±0.0064d

−0.016
s±0.0001d

−0.0138
s±0.0038d

−0.016
s±0.006d

4 −0.102
s±0.0013d

−0.063
s±0.0024d

−0.103
s±0.0015d

−0.0665
s±0.0025d

−0.107
s±0.0061d

−0.063
s±0.001d

−0.09
s±0.004d

−0.063
s±0.0064d

5 −0.226
s±0.0016d

−0.134
s±0.0026d

−0.223
s±0.0016d

−0.137
s±0.0027d

−0.22
s±0.0056d

−0.13
s±0.001d

−0.192
s±0.0042d

−0.127
s±0.0068d

6 −0.383
s±0.0018d

−0.227
s±0.0028d

−0.371
s±0.0017d

−0.228
s±0.0029d

−0.356
s±0.0053d

−0.216
s±0.0011d

−0.318
s±0.0044d

−0.213
s±0.007d

7 −0.569
s±0.0022d

−0.34
s±0.003d

−0.545
s±0.0019d

−0.337
s±0.0031d

−0.517
s±0.0055d

−0.321
s±0.0012d

−0.47
s±0.0046d

−0.342
s±0.007d

8 −0.781
s±0.0025d

−0.457
s±0.0032d

−0.74
s±0.002d

−0.464
s±0.0032d

−0.7
s±0.0058d

−0.445
s±0.0014d

−0.645
s±0.0047d

−0.555
s±0.0065d
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zT,1snd−tosn/3d from n/3 is still significant and cannot be
attributed to the experimental uncertainty, even though there
is a trend thatzT,1snd−tosn/3d approachesn/3 slowly when
Rl increases. It seems that the RSHT can only partially ac-
count for the inequality betweenzT,1snd and zL,1snd or
zL,2snd, at least for the present low to moderate Reynolds
numbers. Even though the present results are obtained at low
and moderate Reynolds numbers, the dependence of the
transverse scaling exponents on Reynolds number is consis-
tent with that obtained over a much larger range ofRl f16g.
Therefore, we believe that at very highRl, the scaling of the
longitudinal and transverse velocity increments should be the
same. At low to moderateRl, the present results suggest that
the scaling of the transverse velocity increments depends not
only on Rl, but also on the large-scale anisotropy.

VI. CONCLUSIONS

Longitudinal and transverse velocity increments are mea-
sured both temporally and spatially using two X-wire probes

separated in the spanwise direction in the intermediate region
of a cylinder wake over Taylor microscale Reynolds number
of the range of 100–300. The two X-wire probes also allow
measurements of the transverse vorticity component when
the separation is small enough. The scaling exponents of the
longitudinal velocity increments for both temporal and spa-
tial measurements agree favorably with the predictions of
K62 and the SL model. The scaling exponents of the trans-
verse velocity increments are considerably smaller than those
of the longitudinal ones, with the values for spatial trans-
verse increments being slightly larger than the temporal
ones. Both of them increase slowly withRl. The association
of the scaling of the longitudinal and transverse velocity in-
crements with the locally averaged energy dissipation rate
sRSHd and enstrophysRSHTd are also examined. While the
scaling exponents of the locally averaged dissipation rate
does not depend onRl, the scaling exponents of the locally
averaged enstrophy decrease withRl, a trend that is consis-
tent with that reported by Nelkinf25,26g. The present results

FIG. 10. Verification of RSH for the longitudinal scaling expo-
nents at differentRl: s, Rl=100; h, 200; ,, 250; 1, 300. sad
zL,1snd−tdsn/3d and sbd zL,2snd−tdsn/3d.

FIG. 11. Verification of the RSHT for the transverse scaling
exponents at differentRl: s, Rl=100;h, 200;,, 250;1, 300.sad
zT,1snd−tdsn/3d and sbd zT,2snd−tdsn/3d.
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show that the RSH works satisfactorily for longitudinal ve-
locity increments. The RSHT can account for the difference
between the scaling exponents of the longitudinal and spatial
transverse velocity increments, but can account for only par-

tially the different scalings between the longitudinal and tem-
poral transverse velocity increments. A more likely source
for the latter difference is the large-scale anisotropy of the
velocity field at low and moderateRl.
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