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Unsteady viscous free-surface waves generated by a three-dimensional submerged body moving in an
incompressible fluid of infinite depth are investigated analytically. It is assumed that the body experiences a
Heaviside step change in velocity at the initial instant. Two categories of the velocity change,sid from zero to
a constant andsii d from a constant to zero, will be analyzed. The flow is assumed to be laminar and the
submerged body is mathematically represented by an Oseenlet. The Green functions for the unbounded un-
steady Oseen flows are derived. The solutions in closed integral form for the wave profiles are given. By
employing Lighthill’s two-stage scheme, the asymptotic representations of free-surface waves in the far wake
for large Reynolds numbers are derived. It is shown that the effects of viscosity and submergence depth on the
free-surface wave profiles are respectively expressed by the exponential decay factors. Furthermore, the un-
steady wave system due to the suddenly starting body consists of two families of steady-state waves and two
families of nonstationary waves, which are confined within a finite region. As time increases, the waves move
away from the body and the finite region extends to an infinite V-shaped region. It is found that the nonsta-
tionary waves are the transient response to the suddenly started motion of the body. The waves due to a
suddenly stopping body consist of a transient component only, which vanish as time approaches infinity.
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I. INTRODUCTION

The generation of waves due to a moving body on or
below the free surface has been investigated by many re-
searchers in view of its practical importance and theoretical
interest. The general mathematical problem posed in terms of
the well-known Navier-Stokes equations is extremely diffi-
cult to solve. Even if the effect of nonlinear convective terms
can be neglected, to solve the resultant linearized equations
is still a formidable task. Of the few analytical approaches
available for solving linear problems, one is the singularity
method, which originates from the method of Green func-
tions for linear partial differential equations, as discussed by
Chwang and Wuf1g, Clauserf2g, and Dabrosf3g. By the
superposition principle for linear systems, a body of arbitrary
shape can be simulated, at least theoretically, by a discrete or
continuous distribution of fundamental singularities while
the flow field can be represented by the corresponding dis-
tribution of fundamental solutions. The type and distribution
of fundamental singularities to be used depend both on the
geometry of the moving body and on the nature of the flow.
Therefore, the mathematical formulation for a body-induced
flow may be characterized by a fundamental singularity, and
it is essential to seek the corresponding fundamental solution
as the first step to solve the full problem. Based on the po-
tential theories, analytical solutions for steady free-surface
waves generated by moving singularities in inviscid fluids
are well developedf4,5g. The mathematical formulation for

the unsteady free-surface waves generated by a simple
source suddenly brought into existence at timet=0 and mov-
ing with a constant velocity in an inviscid fluid was given by
Wehansen and Laitonef4g and the corresponding asymptotic
expression for transient free-surface waves was provided by
Liu and Tao f6g. The asymptotic expression for transient
free-surface waves due to a simple source suddenly stopped
at time t=0 in an inviscid fluid was provided by Lu and
Chwangf7g. It can be seen from Liu and Tao’s solution and
Lu and Chwang’s solution that the transient inviscid waves
do not tend to zero as time goes to infinity, which is incom-
patible with the physical reality. In addition, the effect of the
laminar far wake on the free-surface waves for a body mov-
ing in a viscous fluid has not been considered by the poten-
tial theories.

It is well known that all fluids are naturally viscous. To
obtain a better description of free-surface waves in a real
fluid, Wu and Messickf8g considered the effect of viscosity
on ship waves for two-dimensional cases. Based on an
Oseen-type approximation, Cumberbatchf9g studied the ef-
fect of viscosity on three-dimensional steady ship waves.
Lurye f10g developed an integral formulation for the interac-
tion of steady free-surface waves with viscous wakes. Brard
f11g studied the effect of wake and vorticity on the ship
waves. Based on the Oseenlet solution, Duganf12g and Am-
micht f13g analytically studied the drag and lift exerted on a
submerged plate moving near the free-surface of a viscous
fluid without and with the surface tension respectively. Lurye
f14g and Chan and Chwangf15,16g obtained analytical solu-
tions for the three-dimensional steady viscous waves due to
various Oseenlets and Oseen doublets. Recently, Liu and Tao
f17g and Lu f18g analytically studied the free-surface waves
and far wakes generated by a floating body in a viscous fluid
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of infinite depth, in which the floating body is modeled as a
surface pressure point. Starting from Lurye’s formulation, Lu
f19g also reconsidered the steady wave-wake interaction
problem in a viscous fluid of infinite depth and provided the
full asymptotic expansions of wave profiles in the far wake
for large Reynolds numbers, from which the viscous correc-
tion for the wave profile is explicitly seen. The validity of the
asymptotic approximation has been verified by Luf20g with
a numerical analysis. The investigation on viscous phenom-
ena has gradually become an expanding branch in the field of
free surface flows, as stated by Tyvandf21g. The aforemen-
tioned works were based on the assumption that all motions
attain a steady state. However, in many situations the body
may experience an unsteady motion. Based on the unsteady
Stokes equations, Maxey and Rileyf22g obtained an analyti-
cal solution for fluid motion resulting from a sphere starting
from rest and having an impulsive velocityfdstd ,0 ,0g, where
ds d is the Dirac delta function. Pozrikidisf23g derived an
explicit expression for the three-dimensional oscillatory
Stokeslet. It is believed that the convolution-integral formu-
lation of a transient Oseenlet given by Price and Tanf24g and
a series of generalized unsteady Oseenlets derived by Chan
and Chwangf25g and Shu and Chwangf26g are useful to
study the unsteady flow fields associated with a body maneu-
vering in an unbounded viscous fluid. For the flow in a
bounded fluid, Shu and Chwangf27g considered the short-
time slamming effect on the surface waves of a viscous fluid.
Based on the formulation and methodology developed by
Shu and Chwangf28g for transient Marangoni waves due to
the impulsive motion of a submerged singularity, Lu and
Chwangf29g derived the wave front and wave profiles gen-
erated by a surface-piercing singularity in three dimensions.
On the other hand, Liu and Taof6g studied the viscous free-
surface waves due to a suddenly starting Oseenlet and found
a finite region of validity for the steady-state solution. Lu and
Chwangf30g investigated the two-dimensional free-surface
waves due to an oscillatory Oseenlet moving in an incom-
pressible viscous fluid of infinite depth. However, analytical
solutions for the transient waves in a viscous fluid have not
been obtained and the interaction of a laminar far wake with
unsteady free-surface waves has not been fully explored,
which are of interest in the present paper.

In this paper, we analytically study the unsteady free-
surface waves generated by a point force moving in an in-
compressible viscous fluid of infinite depth. The point force,
mathematically represented by an Oseenlet, is assumed to
experience a Heaviside step change in velocity at the initial
instant. The general mathematical model for this wave-wake
interaction problem is formulated in Sec. II. The analytical
solutions for far-field waves due to a suddenly starting and
stopping Oseenlet are obtained in Secs. III and IV, respec-
tively. The physical characteristics of the unsteady viscous
waves are explicitly discussed in Sec. V. Finally, conclusions
are made in Sec. VI.

II. GENERAL MATHEMATICAL FORMULATION

The disturbed flow field and the free-surface waves due to
a point force moving along a straight line in a stationary

viscous incompressible fluid with a free surface shall be con-
sidered. It is assumed that the point force experiences a
Heaviside step change in velocity. Cartesian coordinates are
taken fixed on the body, as shown in Fig. 1. Thex-axis is
along the straight path of the moving point while thez-axis
points vertically upward. Thus the fluid is moving at a uni-
form velocity Uex, where U is a constant andex the unit
vector in thex direction. The disturbed flow is assumed to be
laminar.

We chooserU2 as a reference pressure,U2/g as a char-
acteristic length, wherer is the density of the fluid andg the
gravitational acceleration. For simplicity, the velocity is non-
dimensionalized byU, the pressure byrU2, the distance by
U2/g, the external force byrU2sU2/gd2, and the time by
U /g. The governing equations are the dimensionless conti-
nuity equation

= ·u = 0 s1d

and the unsteady Oseen equations with a singular force term

]u

]t
+

]u

]x
= − = P + «¹2u+Fdsx − x0dHstd, s2d

whereu=su,v ,wd is the disturbed velocity,P the hydrody-
namic pressure, which is equal to the total pressurep minus
the hydrostatic pressure due to gravity.«=mg/rU3, wherem
is the viscosity of the fluid.F is the singular force located at
positionx0=s0,0,−h0d, whereh0 is the submergence depth.
Hs d is the Heaviside step function. The dimensionless pa-
rameter« can be regarded as the reciprocal of the Reynolds
number with respect to the characteristic length.

For small-amplitude waves, we impose the linearized
boundary conditions at the undisturbed free surfacez=0,

]h

]t
+

]h

]x
= w, s3d

«S ]u

]z
+

]w

]x
D = 0, s4d

«S ]v
]z

+
]w

]y
D = 0, s5d

p − 2«
]w

]z
= 0, s6d

wherep=P−h is the total pressure on the undisturbed free
surfacez=0, h is the dimensionless elevation of the free
surface.

FIG. 1. Definition of the coordinate system.
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When the velocity of the point force changes from zero to
a constant at the instantt=0, the initial velocity and free-
surface wave elevation are taken to be those of the quiescent
fluid case. When the velocity of the point force changes from
a constant to zero, the initial values are taken to be those of
the corresponding steady-state solutions.

III. UNSTEADY VISCOUS FREE-SURFACE WAVES DUE
TO A SUDDENLY STARTING OSEENLET

To simulate the free-surface flow past a moving sub-
merged body, we investigate the theoretical solution for a
free-surface flow due to a forceletFxex+Fzez located atx0,
where Fx is the strength of the applied drag andFz the
strength of the applied lift. Since the problem considered
here is an initial-boundary-value one with a singularity, we
may regard the disturbed flowsu ,Pd as the sum of an un-
bounded singular Oseen flowsuS,PSd, which represents the
effect of viscous wakes, and an Oseen flowsuR,PRd, which
represents the influence of the free surface and is regular in
the whole region. Thus,

u = uSsx,t;x0d + uRsx,td, s7ad

P = PSsx,t;x0d + PRsx,td. s7bd

By taking the Laplace transform over the unsteady Oseen
equations with a singular forcing termFdsx−x0ddstd, the
corresponding Green function can be obtained by means of a
straightforward manipulation. The solution of Eqs.s1d and
s2d with initial conditions for a quiescent fluid in an un-
bounded field can be constructed asf31g

uSsx,t;x0d = −
1

4p
F · sI¹2 − = = dE

0

t 1

rt
erfS rt

2Î«st − td
Ddt,

s8d

wherert=ix−x0− texi ,

PSsx,t;x0d = −
1

4p
F · = S1

r
DHstd. s9d

Furthermore, we writeuR= =F+VT, whereFsx ,td is a
scalar potential function andVTsx ,td is a solenoidal vector.
Therefore, we express the boundary conditions in terms of
F, VT, uS, PS at z=0 as

]h

]t
+

]h

]x
− S ]F

]z
+ wTD = wS, s10d

2
]2F

]x]z
+

]uT

]z
+

]wT

]x
= − S ]uS

]z
+

]wS

]x
D , s11d

2
]2F

]y]z
+

]vT

]z
+

]wT

]y
= − S ]vS

]z
+

]wS

]y
D , s12d

]F

]t
+

]F

]x
+ h + 2«S ]2F

]z2 +
]wT

]z
D = PS− 2«

]wS

]z
, s13d

wheresuT,vT,wTd andsuS,vS,wSd are the components ofVT

anduS, respectively.

It is convenient to introduce a combination of the Laplace
transform with respect tot and a Fourier transform with re-
spect tox andy, for zø0,

fh̄,F̄,V̄Tg =E
0

`

e−stE
−`

` E
−`

`

fh,Fe−Az,VTe−Bzg

3e−iax−ibydxdydt, s14ad

where

Asa,bd = Îa2 + b2, s14bd

Bss,a,bd = Îss+ iad/« + a2 + b2. s14cd

Substituting Eqs. s14ad–s14cd into boundary conditions
s10d–s13d and the continuity equation, we obtain a system of
linear equations for the five unknown variables

sh̄ ,F̄ ,ūT, v̄T,w̄Td, which can readily be solved. Upon some
mathematical manipulation, the integral expression for the
wave profile can be written as

hsx,y,t;h0d =
1

8p3i
E

c−i`

c+i` E
−`

` E
−`

` N

D

3expsiax + iby + stddadbds, s15ad

where

N = − ss+ ia + 2«A2dsiaFx − AFzdexps− Ah0d

+ 2«AsiaBFx − A2Fzdexps− Bh0d, s15bd

D = sss+ iadfA + ss+ ia + 2«A2d2 − 4«2A3Bg, s15cd

and c is the convergence abscissa for the inverse Laplace
transform.

The integral in Eq.s15ad represents the solution for the
wave elevation due to a singular force, but the physical char-
acteristics of the wave motion are not explicitly seen in this
integral. Now the task is to extract information from Eq.
s15ad. As stated by Noblesse and Chenf32g, the Fourier in-
tegral representation for wave profiles can formally be de-
composed into a near-field nonoscillatory component and a
far-field wave component. The near-field component will
rapidly vanish as the distance from the singularity increases
and will not be investigated in the present study while the
far-field behavior for small« is of principal physical interest.

It is noted that for small«, Dss,a ,bd in Eq. s15cd has four
simple poles with respect tos,

sj = s− 1d j+1iÎA − ia − 2«A2 + Os«3/2d, s j = 1,2d,

s16ad

s3 = − ia, s16bd

s4 = 0. s16cd

The inversion of the Laplace transform in Eq.s15ad can be
determined by the sum of the residues of the integrand at
these poles. By taking a contour integration in the complexs
plane, Eq.s15ad can be represented by the double integral
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h =
1

4p2o
j=1

4 E
−`

` E
−`

` Nj

D0
expfisax + bydgdadb, s17ad

where

Nj = uNus=sj
, s17bd

D0 = uDus=0. s17cd

To obtain the asymptotic expansion of the Fourier-type
double integral in Eq.s17ad, we shall employ Lighthill’s two-
stage schemef33g, which in essence involves calculating the
a integration by the residue theorem and theb integration by
the method of steepest descents. For small«, D0sa ,bd in Eq.
s17cd has two simple zeros with respect toa,

an = s− 1dn+1a0 + i«a1 + Os«3/2d, sn = 1,2d, s18ad

where

a0sbd = f1 + s1 + 4b2d1/2g1/2/Î2, s18bd

a1sbd = 4a0
6s2a0

2 − 1d−1. s18cd

We introduce the cylindrical coordinatessR,ud on the
horizontal sx,yd plane byx=Rcosu, y=Rsinu. Using the
residue theorem, the leading terms which contribute signifi-
cantly to the wave profile in the far field can be written as

h =
1

2p
o
j=0

4

o
n=1

2 E
−`

` Ha0
2Gjn expfRfnsbdg

1 − 2a0
2 + oS 1

R
DJdb,

0 , Rcosu , t, s19ad

where

Gjn = uNjua=an
, s19bd

fnsbd = an cosu + ib sinu. s19cd

For the second stage of Lighthill’s scheme, the method of
steepest descents should be employed forb integration at
largeR f14,15,19g. The leading term of the solution for sta-
tionary points of the phase function is given byf31g

b = bnm= s− 1dnqmQm
1/2 tanu, sn,m= 1,2d, s20ad

where

qm = 2f1 + s− 1dm+1Î1 − 8 tan2 ug−1, s20bd

Qm = sqm + 1d/2. s20cd

By means of the steepest-descents analysis and other
mathematical manipulations, the formal expression for the
unsteady free-surface waves in the viscous far wake is given
by

h = Hst − Rcosudo
k=0

2

shk
S+ hk

Td + osR−1d, s21d

where

h0
S= − dRo

m=1

2

dm
Vdm

SQm
3/4fFx cosMm − Qm

1/2Fz sinMmg,

s22d

h1
S= − 2«dRo

m=1

2

dm
Vdm

SQm
9/4fFx sinMm + Qm

1/2Fz cosMmg,

s23d

h2
S= 2«1/2dRo

m=1

2

dm
Vdm

BQm
3/2FFx sinSMm −

Qm
1/4h0

Î2«
+ p/4D

+ «1/2FzQm
5/4 cosSMm −

Qm
1/4h0

Î2«
DG, s24d

h0
T = − dRo

m=1

2

dm
Vdm

Sdm
TQm

3/4fFx cosMm − Qm
1/2Fz sinMmg,

s25d

h1
T = − «dRo

m=1

2

dm
Vdm

Sdm
TQm

9/4fFxs3 sinMm − sinNmd

+ Qm
1/2Fzs3 cosMm − cosNmdg, s26d

h2
T = 2«1/2dRo

m=1

2

dm
Vdm

Bdm
TQm

3/2FFx sinSMm −
Qm

1/4h0

Î2«
+ p/4D

+ «1/2FzQm
5/4 cosSMm −

Qm
1/4h0

Î2«
DG , s27d

and

dR = S 2

pRcosu
D1/2

s1 − 8 tan2 ud−1/4, s28ad

dm
V = exps− 4«qm

−1Qm
3 Rcosud, s28bd

dm
S = exps− Qmh0d, s28cd

dm
B = expS−

Qm
1/4h0

Î2«
D , s28dd

dm
T = exps− 2«Qm

2 td, s28ed

Mm = Qm
1/2Rcosu − qmQm

1/2Rsinu tanu + s− 1dm+1p

4
,

s29d

Nm = Qm
1/2Rcosu − qmQm

1/2Rsinu tanu + s− 1dm+1p

4
− 2Qm

1/2t.

s30d
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IV. UNSTEADY VISCOUS FREE-SURFACE WAVES DUE
TO A SUDDENLY STOPPING OSEENLET

In Sec. III, the point force is assumed to start suddenly
from rest and to move with a constant velocity. In this sec-
tion, the point force is assumed to stop suddenly from a
steady state, the decaying of three-dimensional waves will be
investigated. Cartesian coordinates are taken fixed on the sin-
gularity. It is assumed that the point force stops suddenly at
t=0. For t,0 the steady-state flow is due to an Oseenlet.

The governing equations are Eqs.s1d ands2d with FS=0.
The boundary conditions are given by Eqs.s3d–s6d. We may
write usx,z,td= ¹F+VT, whereFsx ,td represents an irrota-
tional flow while VTsx ,td represents a rotational flow. Thus,
the boundary conditions can be expressed by Eqs.s10d–s13d
with uS=vS=wS=PS=0. The initial conditions can be given
by uhsx,y,tdut=0=hSsx,yd and uFsx,y,0 ,tdut=0=FSsx,y,0d,
wherehS is the steady free-surface wave elevation, andFS is
the velocity potential. Following Sec. III, one may obtain the
steady wave elevation and the potential function as

hhSsx,yd,FSsx,y,0dj =
1

4p2E
−`

` E
−`

`

hNh
S,NF

Sj

3
expsiax + ibyd

iaD0
dadb, s31ad

where

NF
S = siaFx − AFzdF 1

2A
sa2 + Ad − 2i«aA − 2«2A2sA + B0dG

3exps− Ah0d + 2sB0aFx + iA2Fzdsa« − 2iA2«2d

3exps− B0h0d, s31bd

Nh
S = uNus=0, s31cd

B0 = uBus=0. s31dd

The procedure to obtainhsx,y,td follows that in Sec. III
and will not be reproduced here. Finally, the unsteady free-
surface waves in the viscous far wake become

h = o
k=0

4

hk
T + oS 1

R
D , s32d

where

h1
T = − 2«dRo

m=1

2

dm
Vdm

Sdm
TQm

9/4fFx sinMm + Qm
1/2Fz cosMmg,

s33d

h2
T = − 2«3/2dRo

m=1

2

dm
Vdm

Sdm
TQm

3

3HFxFcosSMm +
p

4
D − cosSNm +

p

4
DG

− Qm
1/2FzFsinSMm +

p

4
D − sinSNm +

p

4
DGJ , s34d

h3
T = «3/2dRo

m=1

2

dm
Vdm

Sdm
TQm

15/4fFxscosMm − cosNmd

− Qm
1/2FzssinMm − sinNmdg, s35d

h4
T = 2«1/2dRo

m=1

2

dm
Vdm

Bdm
TQm

3/2FFx sinSMm −
Qm

1/4h0

Î2«
+

p

4
D

− «1/2FzQm
5/4 cosSMm −

Qm
1/4h0

Î2«
DG , s36d

whereh0
T, Qm

1/4, dR, dm
V, dm

S, dm
B, dm

T , Mm, andNm are given in
Sec. III.

V. CHARACTERISTICS OF UNSTEADY VISCOUS WAVES
DUE TO AN OSEENLET

It can be seen from Eq.s21d that the disturbed waves
consist of two parts,hk

S andhk
T. As time tends to infinity,hk

S

reduces to the steady viscous waves andhk
T vanishes due to

the exponential temporal decay factordm
T . Therefore,hk

S is
the steady-state response andhk

T the transient response to an
Oseenlet starting suddenly from rest to a constant velocity. It
is noted that the expressions of wave profiles involvingq1
correspond to the transverse wave system, while the expres-
sions involvingq2 the diverging wave system. Accordingly,
the solution for the unsteady waves is given by the superpo-
sition of four families of waves: the steady transverse waves,
the steady diverging waves, the transient transverse waves,
and the transient diverging waves.

It should be noted that the amplitudes ofh1
S andh1

T are of
order« relative to those ofh0

S andh0
T, whereash2

S andh2
T are

trivial components for large submergence depths due to the
presence of factordm

B. h2
S and h2

T become relatively signifi-
cant only whenh0=OsÎ«d, that is, when the Oseenlet is near
the free surface. Thus,hk

S andhk
T sk=1,2d can be regarded as

the higher-order viscous correction to the wave profile. In
addition, there exists a phase shift ofp /2 betweenh0

S andh1
S,

which is also true forh0
T andh1

T. The phases ofh2
S andh2

T are
shifted due to the presence of the submergence depth. An
interesting feature of the present result is that the first-order
solution for the transient response,h1

T, consists of two waves
with different phases of oscillation, i.e.,Mm andNm, which
represent the “noise” disturbance in the initial stage of the
wave evolution and decay exponentially as time increases.
Although the contribution from the first-order solution re-
mains insignificant, it represents the effect of a viscous wake.

Equations21d shows that the generated unsteady viscous
waves are confined within a wedge of semiangle as well as
within a moving finite triangular region behind the body,

Lh = hsR,udu0 , Rø t secu,uuu , ucj, s37d

where uc=tan−1 Î1/8<19°288. The moving finite regions
are shown in Fig. 2, which is consistent with that obtained by
Liu and Taof6g for the unsteady ship waves in an inviscid
fluid. As time increases, the waves move away from the body
and the finite triangular region extends to an infinite
V-shaped region, which is the same as the well-known
Kelvin ship-wave wedge for inviscid waves.
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Dugan f12g found that in two-dimensional Oseen flows,
the wave amplitude due to a unity drag is the same as that
due to a unit lift while there is a phase shift ofp /2 between
these two waves. Equations21d shows that for the three-
dimensional case, the wave amplitude due to a unity drag is
less than that due to a unit lift sinceQmù1, and there also
exists a phase shift ofp /2 between these two waves, as
shown in Fig. 3.

A close examination of the solutions shows that there ex-
ist three types of decay factors for the steady wave profiles:
the radial decay factordR, the viscous decay factordm

V, and
the submergence decay factorsdm

S and dm
B. All generated

waves are attenuated algebraically along the distance away
from the body as well as exponentially by the inclusion of
viscosity and submergence. The effects of parameters« and
h0 on the wave profile are shown in Figs. 4 and 5, respec-
tively. Besides these three factors, there is a temporal decay
factordm

T for transient waves, which ensures that the transient
components eventually vanish as time goes to infinity. Figure
6 shows the unsteady viscous waves at different instants. As
time increases, the transient waves diminish. Thus, the
steady statest→`d can be attained ultimately.

A careful examination of factordm
T for the transversesm

=1d and diverging wavessm=2d shows that the transverse
wave system is less damped than the diverging one, espe-
cially in the region close tou=0. Therefore, for a point sin-
gularity, the transverse wave system is the dominant compo-
nent of the singularity-generated wave system.

A special case of the present result with«=0 andFz=0
corresponds to a simple source moving in an inviscid fluid.
In the limit as « tends to zero,h1

S, h2
S, h1

T, and h2
T vanish

while h0
S and h0

T simply reduce to the same one. Thus, the
steady and transient components of the surface elevation for
an inviscid fluid are

hS,0 = hT,0 = − Fxd
Ro

m=1

2

dm
SQm

3/4 cosMm + osR−1d, 0 , x , t,

s38d

which agrees with that obtained by Liu and Taoff6g, Eq.
s35dg. The remarkable difference between the present solu-
tion and the corresponding inviscid solution predicted by Liu
and Taof6g is the existence of a temporal decay factordm

T . It
can be seen from Eq.s38d that the potential theory predicts a
nonvanishing transient component. This incompatibility
caused by the potential theory is removed by the viscous
theory.

A special case of the present result withFz=0 corresponds
to a “singular needle” moving in a viscous flow. The corre-
sponding solution obtained by Luryeff14g, Eqs. s69d and
s70dg is recovered by the present solution. Another special
case of the present result withFx=0 andh0=0 corresponds

FIG. 2. The moving triangular region for unsteady free-surface
waves att=40, 60, and 80s—, boundary line; ---, cusp lined.

FIG. 3. A comparison between drag- and lift-induced waves
with h0=1, «=0.01,Fx=4p, Fz=4p, u=0.33, andt=80 s—, drag-
induced wave; –·–·, lift-induced waved.

FIG. 4. The effect of parameter« on the wave profiles withh0

=1, «=0.01, Fx=4p, Fz=0, u=0.33, andt=80 s---, «=0; –·–·,«
=0.005; —,«=0.01d.

FIG. 5. The effect of parameterh0 on the wave profiles with
h0=1, «=0.01,Fx=4p, Fz=0, u=0.33, andt=80 s---, h0=0; –·–·,
h0=0.5; —, h0=1.0d.
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to a point pressure moving on the surface of a viscous fluid.
The corresponding steady solution given by Cumberbatch
ff9g, Eq. s48dg is also recovered by the present solution. It
should be noted that the potential theories predict an infinite
amplitude for diverging waves near the moving path of a
floating bodyff5g, Fig. 4g. However, the viscous theory pre-
sented in this paper predicts zero amplitude for diverging
waves asu approaches the path of a moving body, which is
consistent with the physical reality.

In the limit as « tends to zero, Eq.s32d reduces to the
solution obtained by Wehausen and Laitonef4g for steady
inviscid waves. The most remarkable feature of Eq.s32d is
the presence of viscous decay factors and high-order viscous
corrections.dm

T sm=1,2d can be regarded as decay factors for
the energy dissipation in ship waves. From Eqs.s32d–s36d
and Fig. 7, it can easily be seen that the wave will die out as
time goes to infinity. However, the potential theory predicts a
nonvanishing wave for the suddenly stopping singularity,
which does not agree with the physical observation. It can be
stated that the attenuation of waves is caused by the inclu-
sion of viscosity.

VI. CONCLUSIONS

Analytical solutions are obtained for the unsteady viscous
free-surface waves generated by a point force moving in an
incompressible fluid of infinite depth. The point force is as-
sumed to experience a Heaviside step change in velocity at
the initial instant. Two categories of the velocity change,sid
from zero to a constant andsii d from a constant to zero, have
been analyzed. It is found that the unsteady viscous wave

system consists of four families of waves: the steady trans-
verse waves, the steady diverging waves, the transient trans-
verse waves, and the transient diverging waves. The gener-
ated unsteady waves are confined within a finite triangular
region and move away behind the point force. As time in-
creases, the finite region extends to an infinite V-shaped re-
gion. The waves due to a suddenly stopping Oseenlet consist
of two families of waves: the transient transverse waves and
the transient diverging waves.

All waves are attenuated algebraically along the distance
away from the Oseenlet as well as exponentially by the in-
clusion of viscosity and submergence. The remarkable fea-
ture for the transient viscous waves is the existence of a
temporal decay factor, which ensures that the transient com-
ponents will tend to zero as time goes to infinity. Thus, the
steady state can be attained ultimately. The radial decay fac-
tor, the submergence decay factors, and the viscous decay
factors sone spatial and another temporald are analytically
expressed. The diverging waves are more severely damped
than the transverse waves. Hence the singularity-induced
wave system consists primarily of transverse waves.

It is found that the fundamental singularity in Oseen flow
sOseenletd is a general model for the simulation of a moving
body on or beneath the free surface of a real fluid since the
previous works by other authors can readily be attained by
taking the corresponding limits of the present result.
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