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Domain wall dynamics in an optical Kerr cavity
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An anisotropic(dichroic) optical cavity containing a self-focusing Kerr medium is shown to display a
bifurcation between static—Ising—and moving—Bloch—domain walls, the so-called nonequilibrium Ising-
Bloch transition(NIB). Bloch walls can show regular or irregular temporal behavior, in particular, bursting and
spiking. These phenomena are interpreted in terms of the spatiotemporal dynamics of the extended patterns
connected by the wall, which display complex dynamical behavior as well. Domain wall interaction, including
the formation of bound states is also addressed.
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I. INTRODUCTION domain walls with curvature effects. In fact the first experi-

Domain walls are localized structures typical of spatiallymetir(‘:tslhggsggﬁtg'nfﬂ%tgg vl?n?ggle“r?t?um (ItrBar:rsa\l/Tasrgg)I; n

extended systems with broken phase invariance, where t\/\Rpe Smensional version of thg sarme ge\,ﬁeia The poss

or more homogeneous states with different phases occugy. .. ; . >
different patchgs the walls being defects conpnecting two ofility of domain walls as stable states has a particular interest
such states or domains. Two different types of walls can exigf? "onlinear optical systems, given the potential use of local-
in systems described by a complex order parameter name!?ec_j structures in all-optical signal processing. In nonlinear
Ising and Bloch walls, which differ in the way the ,phase ptical cavmeds_, tlhe struhctures develop in thde transverse
changes between the two domains as the wall is crossed: A{hane, perpendicular to the resonator axis, and can be con-

|
. X . , . L rolled by external parametef9].
[smg wall is characterized by a d|scor_1t|nuous variation of the Optical systems with a Kerr nonlinearity have been shown
field phase across the wall, whereas in a Bloch wall the pha

. . 3% exhibit a rich spatiotemporal dynamics, see R&€] and
angle rotatgs contmyously accross the wall. As this rOt"’_‘t'o'?eferences therein for details. Concerning the nonequilibrium
can occur in two different senses Bloch walls are chiral gjng-Bloch transition, the Kerr cavity, consisting of an opti-
(Contrarily, the Ising wall is not chirgl.Alternatively, the  ¢a| resonator filled with a Kerr medium and driven by a
order parameter is null at the core of an Ising wall, while inexternal coherent field, is a good candidate for exhibiting it,
a Bloch wall the order parameter does not vanish at angs this system presents the basic requirement of broken phase
point. For this reason, Ising and Bloch walls are often re-nvariance. The original model proposed by Lugiato and
ferred to as dark and grey solitons, respectively. When the¢efever[11] was later extended in Ref12] to include the
system dynamics do not derive from a potential, other crucialector character of the light fields, what allows to describe
differences between Ising and Bloch walls refer to their dy-instabilities of the light polarization state. This work was
namics: Ising walls are stationafgtatig, while Bloch walls  extended in Ref{13] where the case of elliptically polarized
move with a velocity related to their chirality. input was considered and in Refl14] where two-
Both types of domain walls may exist in different param- dimensional domain walls in the form of dark-ring solitons
eter regions, and in this case they bifurcate one into anothevere studied.
via a nonequilibrium Ising-BlockiB) transition[1,2], which Recently these works were generalized by considering the
can be interpreted as a bifurcation of the wall chirality. possibility of dichroism and/or birefringence in the optical
The IB transition has been found in systems of very differentcavity for the two linear polarization componefib—-17. It
nature, such as nematic liquid crystdl3] or reaction- was shown that large enough cavity anisotropy or birefrin-
diffusion system$4]. In the optical context, the phenomenon gence substantially modifies the dynamics of the system. In
has been predicted to occur in typd3d] and type 11[6] particular, they allow for the polarization instability to rule
optical parametric oscillators; from the experimental point ofpattern formation in self-focusing Kerr cavities, something
view it is to be mentioned a related stufly] where Lari- that does not occur in isotropic cavitié&ithout birefrin-
onovaet al. have analyzed the dynamics of two-dimensionalgence or dichroisin[12]. Moreover, as the polarization in-
phase domains in a photorefractive oscillator in a degeneratability can be subcritical for large enough dichroism or
four-wave mixing configuration. Within the samelosed birefringenceg[16,17] bright cavity solitons can exist, which
wall they found both Bloch-type and Ising-type segmentsin this case are polarization solitoh6,17. In Ref.[16] it
They did not observe, however, the nonequilibrium IB tran-was also shown that in the limit of large anisotrofsyhen
sition, probably because of the two-dimensiof2D) char-  the losses of the two polarization components are very dif-
acter of their system, which complicates the dynamics oferent in magnitudg the dynamics of the system can be
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described by a single order parameter obeying a universalavity detunings(w is the angular frequency of the input
equation, namely the parametrically driven, damped nonlinfield and wg ; are the frequencies of the cavity longitudinal
ear Schrodinger equatio?PDNLSE). For our purposes the modes with polarization parallel and orthogonal to the input
recent predictio18] that the PDNLSE contains an IB tran- closest tow), Y=,/ v, is the cavity anisotropy parameteﬁ
sition and that Ising and Bloch domain walls can connectaccounts for diffractiorithe transverse spatial coordinates
either spatially uniform or patterned states is of special relnormalized to the diffraction coefficienandt is time nor-
evance. This equation has been derived in different contextsialized toy;*. Finally, A and B are the Maker and Terhune
(see Ref.[18]). In particular, in the optical context, the coefficients, which verifyA+(B/2)=1 for isotropic media
PDNLSE has been shown to descrilagart from the aniso- [23], which we consider. For details on the normalizations
tropic Kerr resonatof16]) the degenerate optical parametric see Ref[15].
oscillator[19,20 and optical fiber loops with parametric am-  In Refs.[12—14], the pattern formation properties of this
plification [21]. model have been studied for=1 andA;=A,. We extended
However, despite the generality of the results obtained inhe model to the anisotropic cavity+ 1) first considering
Ref. [18], their applicability to the Kerr cavity is strictly the plane-wave modého diffraction) [15] and then consid-
valid only in the case of strong anisotropy, a very restrictiveering pattern formatioi16], where we concentrated in the
condition. In this paper we consider the more realistic case oimit of large cavity anisotropy and demonstrated that the
a Kerr cavity with moderate anisotropy as discussed in Se®DNLSE describes the system in this limit. Later, in Ref.
Il, where the symmetries of the model and the feasibility of[17] we studied pattern formation and localized structures
domain walls are discussed. The pattern forming propertiedue to birefringencéA, # A,).
of this system are investigated in Sec. lll. Ising and Bloch |n the following, the casd,=A;= A (no birefringencgis
walls are then shown to be solutions of the system and the IBonsidered. Also we restrict the study to the case when the
transition between them is characterized in Sec. IV. For smakonlinear material is a liquide.g., CS), for which A=1/4
detunings, the usual scenario of IB transition and Bloch walland 8=3/2 [23]. This makes that our results could apply,
dynamics is found. For larger detunings, the dynamics o g., to cells of liquid crystal in the isotropic phaggematic
domain walls shows features typical of excitable systemsjiquid crystals, which have a much larger nonlinearity, are
such as spiking and bursting during the domain wall evolunot covered by our analysis as they arésotropicnonlinear
tion, as discussed in Sec. VI. The collisions between wallgnedia.
and the formation of bound states is preliminarily considered Most relevant for our study are the symmetries supported
in Sec. V. Finally the main conclusions of the work are high-py Egs. (1) and (2). In particular the termyE in Eq. (1)
lighted in Sec. VII. completely breaks the phase symmetry of fiajd Neverthe-
less, the model still supports the discrete symméfy, A;)
— (Ag,—A;). [Note that the four-wave mixing term—the one
The system considered in this paper is an optical resonanultiplied by B/2 in Eq. (2)—breaks the continuous phase
tor with plane mirrors filled with an isotropig® medium of  symmetry] This symmetry means that whenever a state
self-focusing type and driven by a spatially homogeneougA(x,t),A;(x,t)) is a solution of the system, another solu-
Iir_learly polarized cohe_rent field of amplitude (taken real tjon (Ag(x,1),=A(x,1)) exists as well that is dynamically
without loss of generalifythat propagates along the resona- gquivalent(has the same dynamical properties like stability,
tor axis z. The resonator is _anisotrop(dichroic), i.e., the  etc) to the former. AsA, and A, correspond to the two or-
two intracavity field polarization componemg andA; (par-  thogonal components of the light electric field vector, the
allel and orthogonal to the input field, respectivegxperi-  apove symmetry relates two equivalent solutions having op-
ence different linear lossewith associated cavity linewidths posite helicity, apart from a different polarization ellipse ori-
Yo and y, respectively. In order to avoid curvature effects entation. This symmetry thus opens the possibility of excit-
that strongly influence domain wall dynamics, we assume g domain walls that join asymptotically two of such
transversely one-dimensiondlD) problem(that can be ex-  symmetric states. On the other hand, the reflection —x)
perimentally achieved with a slab waveguide geometry thajng translatiorix— x+x,) invariances of the problem imply
confines the fields along one transverse dimen&sagy), or 4t if a Bloch wall of given chirality exists, another, equiva-

Wit_h rectangular slits place_d in appropriate p|af@'b’]_)- The  |ant one of opposite chirality also exists, and both move in
adimensional model equations for such a system in the meafhnosite direction§l,8,18.

Il. MODEL AND HOMOGENEOUS SOLUTIONS

field limit read[16,17 The existence conditions and dynamic behavior of do-
B .. main walls, the main subject of this paper, is strongly related
P = = (y+iAg)Ag+ i(|/'\o|2'°\o+ AlAyPAg + EAon) with the stability properties of the homogeneous solutions
connected by the walls. In the system described by Egs.
+ iﬁﬁAo + 7E, (1) and(2), these solutions have been analyzed in RéfS,17),

and we review here the main results.

) ) ) ) B . According to the polarization state of the intracavity field
AAL == (L +iIADA +i{ |APA + AJAG AL + EAOAI two kinds of steady homogeneous solutions are possible,
, the linearly polarized statewith intensitiesl, = |A% =0 and
+id A, (2)  1,=|A3 given by the solutions of
where Ap=(wg—w)/y, and A;=(w;—w)/y, are normalized YE2=[¥2+ (A =102, ®)
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and(ii) theelliptically polarized statewith intensities deter-
mined by

YEAo=(I1+ Y2 +[(A=1Dl = (A=1plels,  (4)

| No walls

B 2
I]_:A_Aloi <Elo) _1. (5)

The linearly polarized solution Eq3) shows a multivalued
character wherh >3y [15]. The elliptically polarized solu- 2
tion Eq.(4) was analyzed in detail in Reff15] and can be a
multivalued function as well.
The cavity anisotropy parametgmplays an important role
on the character of the polarization instabilitye., the bifur-

cation affecting the linearly polarized solution that sets the 1 | ! | |

onset of eliptically polarized emissignas shown in Refs. 0 1 2 3 4

[15,17). In particular the polarization instability can become A

subcritical for y>2 (the exact value at which this occurs

depends on the detunlng Va}uwheneverA>1/3 |n thls FIG. 1. Bifurcation d|agram of homogeneous solutions jbr

case bright cavity solitons can be supported by the system atl/4,8=3/2,40=A;=A, andy=3.5, together with the boundaries
low pumpings[16]. More important for the present study is of Ising-Bloch transitions. See text for details.

the fact that for largey the anisotropic Kerr cavity model can . ) o

be reduced to a PDNLSE, which exhibits an IB transitionPiecewise curvéwith dashed and dotted segmenjsining
[18]. This implies that the anisotropic Kerr cavity will ex- the pointsa—e. Beyond this line(shadowed argathe ellip-
hibit the same phenomenon for large enoughn order to tically polarized solution is modulationally unstable.

test the universality of this phenomenon we investigate here The complex form of this boundary follows from the de-
a cavity with moderate anisotropy and take 3.5 for defi- pendence of the real part of the largest elgenyalu_e with the
niteness. We note that for this value pfhe model cannot be Wave number of the perturbation. As shown in Fig. 2, the
rigorously reduced to a PDNLSE and then some extra feat€@l part of the eigenvaluesolid line) evaluated for param-

tures can be expected. eters corresponding to poift) in Fig. 1 shows two maxima
at different wave numbers. Depending on the parameter set-
Ill. THE PATTERN FORMING INSTABILITIES ting the threshold is minimum for the smallest wave number

. . . _ ) (dashed lined—c andd—e) or for the largest wave number
The stability of the linearly polarized solutid) against (dotted linesa—b andc—d). Consequently, the points denoted
space-dependent perturbations was analyzed in R&37, by p ¢ andd in the figure correspond to codimension-2
where analytical expressions for the different boundaries anfsints, where the instability is reached at two different wave
wave number of the emerging patterns were obtained. In Figy mpers simultaneously. Furthermore, the imaginary part of
1 the stability of the different solutions is shown on the planey,q eigenvalue is null in the first cas@ashed lines— and

E-A, which are the only free parameters. In the figure, they ) thus corresponding to the emergence of stationary pat-
linearly polarized solution(3) is stable below curveE;,  terng but non-null in the second cagdstted linesa—b and

which corresponds to the polarization instability. Above thisc_d) see Fig. 2, thus corresponding to a Hopf bifurcation
curve the linearly polarized state is no more a stable solution ’

and gives rise to the elliptically polarized solutiof) and 8

(5). In its turn, this last solution exists above lil®, i.e., S

there is a domain of coexistence between the linearly and - ;o Im(\)

elliptically polarized solutions, marked in the figure as BS, /

between lines; andE,. 4= /
We consider now the existence of pattern forming insta- /

bilities of the elliptically polarized solution4) and (5), N /

which are of relevance for the analysis of the dynamics of 0 \ J

domain walls performed below. Following the usual proce- \

dure, we consider perturbations of the homogeneous solu- —_/U ROOT

tions in the formA(x,t)= A exp(\t+ikx), and Ré\)=0 |- N

signals a bifurcation. Unlike the case of the linearly polar- 0 p o 3 4

ized solution[16,17], the stability analysis is now quite in- k

volved and analytic expressions cannot be obtained. Instead,

we perform a numerical analysis of the eigenvalueso FIG. 2. Growth rate of the perturbations of the homogeneous

determine the instability boundaries. solutions as a function of the spatial wave number, near a
The pattern formation instability boundary affecting the codimension-2 point foA=1.25 andE=3.5. The rest of the param-

elliptically polarized solution(4) and (5) corresponds to the eters are the same as in Fig. 1.
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that gives rise to the appearance of dynamic patterns whose
amplitude oscillates in time. Finally, as stated, the region
marked with BS in Fig. 1 denotes the domain of coexistence
between linearly and elliptically polarized states. When this
coexistence is bistable and one of the stdths elliptically
polarized state in this casis spatially modulate@shadowed
region), bright cavity solitons can be also excitgtb,17].

Intensity

IV. THE ISING-BLOCH TRANSITION

We performed the numerical integration of Eq¢$) and 0.00 0.05 0.10 0.15 0.20 0.25
(2) with a split-step algorithm, ford=1/4, B=3/2, Ag=A, X
=A, and y=3.5. Periodic boundary conditions were used
that impose an even number of walls in the transverse do-
main. A spatial grid of 2048 points was used and the tempo-
ral step was lowered down t4t=0.001 in order to obtain
At-independent results. As an initial condition, two walls
were placed symmetrically with respect to the center of the
integration window. Several integration region lengths
were investigated. Results shown here correspond to the
choicelL =20y5, which ensured enough spatial separation be-
tween the two walls in order to avoid their mutual interaction
during the initial stage of the evolution. For some parameter A —
settings the walls reached a static configuration after a tran-
sient, having fixed their position across the transverse plane.
In such cases it was assessed that walls were Ising ones by 2 (b) 7
verifying that the complex field; was zero at the wall core. ! | s s | s
For other parameter values walls reached a moving configu- 2 - 0 1 2
ration and were identified as Bloch walls as there was no Im(A1)
point in the transverse plane where the complex ffgldvas
zero. Note that the following analysis of the results refers to FIG. 3. Example of a pair of Bloch walls numerically obtained
the cross polarized componeAt that is the one in which for the parametera=0.8 andE=3.25 (the rest of the parameters
domain walls can be clearly identified as dark solitphé] are the same as in Fig).lntensity distribution(a) and parametric

as walls join two domains where the values/fgfhave op-  'ePresentatiorb).

posite signdphasepas discussed. riodic state. This behavioflongest transientis in contrast
Figure 1 summarizes our numerical findings. For low val-yith what happens in the “No walls” domain, where domain
ues of both pumE and detuningA (inside the region la- walls disappear sharply.
beled "Ising,” delimited by the solid lines joining points At the right of the pointf, when increasing the pump, two
a-f-g-h-d-e, and line E,) stable Ising walls are found. different regimes can be clearly distinguished, depending on
These Ising walls connect homogeneous states in most @fetuning. For small detunings the transition is denoted by
this region, except in the thin white areas at the right of theB; in Fig. 1 (continuous ling and in this case the Bloch
dashed lined—e and the dotted line—d, where they connect walls (that exist inside the “trianglef—b—g) connect homo-
patterned states, in agreement with the linear stability analygeneous states. For the chosen values of the parameters, this
sis discussed above. By increasing the pump or the detuninggime exists up tch=1.75. For larger detunings, the transi-
from this region we observe IB transitions, marked withtion is mainly ruled by the pattern forming instability expe-
solid lines f-g—h—d—e, where Ising walls are replaced by rienced by the domains joined by the wall8, in Fig. 1,
Bloch walls. represented by the continuous curviote that, for moder-
Before commenting the differences between the variouste detuninggin the center of the plgt the IB and pattern
Ising-Bloch transition linegIB, IB,, and IB;), let us com-  forming boundaries are nearly coincident. In this case the
ment about what happens in the small region abovediie  Bloch walls always connect patterned states. Finally, for
where the behavior is somewhat anomalous. In the smaBmall pump but large detunings, another regiog ®BBloch
domain between this line and the dark-grey shadowed area&alls is found (right-hand side of the curvé—d-e). The
marked as “No walls” the walls are unstable, and the singléBloch walls in this region move with an extremely small,
pattern supported by the system are rolls. Then, strictlyandom velocity, similarly to what happens in the PDNLSE
speaking, the domain “No walls” extends until the liaeb.  without diffusion or saturation tern4.8].
If we have left this domain without including it in the “No An example of a Bloch wall corresponding to the transi-
walls” domain it is just because in it a very long transienttion IB,, obtained forA=0.8 andE=3.25, is shown in Fig. 3.
behavior in the dynamics of the walls is observed until wallsin Fig. 3(a) the intensity distribution in transverse space near
eventually disappear and the system develops a spatially p&e core of the wall is given, and in Fig(l8 we show the

Re(A,)

066209-4



DOMAIN WALL DYNAMICS IN AN OPTICAL KERR CAVITY PHYSICAL REVIEW E 71, 066209(2005

12

3.6

02~ (@)

FIG. 4. Bifurcation diagram of the velocity of the walls far ° ¢ s ¢ 2 10 20

=1 (the rest of the parameters are the same as in FigDdshed
line shows the boundary of the pattern forming instability

corresponding phase portréite., a plot of the real versus the
imaginary part of the field Both pictures are alternative rep-
resentations where the Bloch character of the wall is evi-
denced. The intensity at the wall core is small, but non-null,
Fig. 3(@), and a smooth variation of the phase between the
domains separated by the wall is appreciated in the paramet-
ric plot in Fig. 3b). For these parameters, the homogeneous
solutions which constitute the domains connected by the wall
are modulationally stable.

As stated in the introduction, an essential feature of Bloch
walls in nonvariational systems is that, contrary to Ising
walls, they move in the transverse plane, with a velocity that -
depends on the parameters. For a fixed value of the detuning
A=1, the dependence of the wall velocity with the pump is
shown in Fig. 4. For this particular value of the detuning, in
the region where the background solutions are modulation-
ally unstable, the walls no longer exist as commented, since
spatial modulations of the background grow and fill com-
pletely the transverse space leading eventually to a roll pat-
tern.

Let us now describe the dynamic behavior of Bloch walls.

Intensity

V. BOUND STATES
FIG. 5. Interaction of two Bloch walls with opposite chirality

As stated in the preceding section the use of periodigor A=1 andE=3.1 (the rest of the parameters are the same as in
boundary conditions forces that the number of domain wallsig. 1). Intensity(b) and real partc) distribution of the bound state.
that can exist within the integration window be an even num-The inset shows the oscillatory evolution of the wall position after
ber, two is the minimum. On the other hand, Bloch wallsthe interaction.
move with a velocity whose sign depends on their chirality.

Then two situations are possible, namely, that the two Bloctbehaviors of the cavity soliton have been identified.

walls have either the same or different chiralitiestice that For small detuningsi.e., inside the trianglé—b—g above

the sign of the chirality of the Bloch walls is fixed by the the region IB in Fig. 1), after the collision the positions of
initial conditions. When the chiralities are the same, the twothe walls delimiting the cavity soliton perform small ampli-
Bloch walls move along parallel paths and no interactiontude antiphase periodic oscillations, as shown in Fig. 5;
between them appea(@at least when their movement is regu- hence the cavity soliton performs a breathing dynamics, re-
lar; when it is highly irregular the chirality of the walls can maining constant at its position in the transverse plane.
change independently of each otti&8]). Contrarily, when For higher detuninggabove the region 1B bound states
the chiralities are opposite the paths followed by the twoare also formed as a result of the interaction, but their dy-
Bloch walls intersect and a collision occurs. As a result anamics is different. In these cases, after the collision, one
localized structure may appear and a bound state is formeall is dragged by the other and the resulting bound state
This bound state is a cavity soliton different from a wall. drifts with the velocity of one of the original Bloch walls as
Although a detailed study of these objects falls outside thahown in Fig. 6.

scope of the present work, and without trying to be exhaus- Finally, we note that near but below the bounda#p, the

tive in their characterization, we just note that two differentwalls do not form bound states after the interaction, but in-
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FIG. 6. Interaction of two Bloch walls with opposite chirality i
for A=3.25 andE=3 (the rest of the parameters are the same as in
Fig. 1). Intensity(b) and real parfc) distribution of the bound state. P | ; A l ! \ | \
0.2 0.0 0.2
stead bounce and exchange their chiralities. Such behavior is X

shown in Fig.. 7 L . L FIG. 7. Bouncing of two walls fod =0.84 andE=3.4 (the rest
Although it is difficult to determine the origin of these f the parameters are the same as in Figlritensity (b) and real
behaviors after a collision is produced, the reason for thesgart (¢) distribution of the walls during the interaction.

different behaviors is very likely linked to the different dy-

namics of the patterned state that the walls connect, whosgcitaple systems. The wall motion is in fact regular only
complicated spatiotemporal dynamics depends on the parargipse to the 1B transition, which nearly coincides with the
eter set. In the' next section, where we concentrate in thBattern formation boundary, see Fig. 1. For higher pump val-
dynamic behavior of isolated Bloch walls, we give someeg wall dynamics is characterized by an irregular behavior
clues on how the pattern dynamics affects the wall behaviotyf the wall position. We report next several numerical ex-
amples of such irregular motion, obtained fé=3.5 and
different values of the detuning.

In Fig. 8, a bursting phenomendthe appearance of al-
most periodic oscillations during time intervals of arbitrary
In the small detuning regime, Bloch walls behave in aduration), is observed both in the wall position, FigaB and
regular manner and the motion occurs at a constant velocitghirality, Fig. 8b), for A=2.25.[We used the definition of
as in the case shown in Fig. 4. For higher detunings howeveghirality )(:Im(AjaxAl)IX:Xo [18] wherex, denotes the point
the wall dynamics shows features which are characteristic ofvhere the wall intensityA,|? is at its minimum] After ex-

VI. BURSTING AND SPIKING DYNAMICS OF ISOLATED
DOMAIN WALLS
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1 | 1 | 1
100 150 200 250 FIG. 9. Spiking behavior of the wall positiof® and chirality
t (b), obtained forA=2.5,E=3.5 (the rest of the parameters are the

in Fig. )1
FIG. 8. Bursting of the wall positioifa) and chirality (b), ob- same as in Fig. )

tained forA=2.25,E=3.5 (the rest of the parameters are the same
as in Fig. 1. Inset shows the oscillations during the burst. These numerical results suggest that the complex dynamic
behavior of Bloch walls is related with secondary instabili-
periencing several bursts, the wall velocity turns to be conties of the extended roll patterns which form the domains at
stant again, but in this case with a chirality of opposite signhoth sides of the wall. In particular, numerics show that
W|th reSpeCt to the |n|t|a| one. During the Steady motion, thebursting and sp|k|ng of the Wa” position a|WayS deve'op in
chirality takes a very small valug,~10"% and consequently cgincidence with the appearance of a second spatial fre-
the change in sign is not appreciated in Fig)8owing to  quency in the intensity of the roll pattern forming one of the
the scale imposed by the bursting events. However, thigomains. To check this statement, E¢B. and (2) were in-
change is manifested in Fig(8 as a change in the sign of egrated in the absence of walls, and the spatial distribution
the wall velocity. The number of bursts and final chirality of oy patterns was studied. A summary of results is given in

depends in general on the parameter values and initial Corig 11, corresponding to roll patterns obtained for a fixed
ditions, such as the amplitude and the relative distance of the

two initial walls.

A slight increase in the detuning leads to a qualitatively
different behavior, namely a spiking in the wall position. An
example is shown in Fig. 9, obtained fa=2.5. In this case
the bursts appear periodically in time, in the form of spikes.
The intensity distribution of the Bloch wall during the spik-
ing regime is shown in Fig. 10. The wall connects two pat-
terned states with different spatial distributions. The pattern
on the right-hand side of the wall in Fig. 10 is spatially
harmonic, contains a single spatial frequency, while the pat-
tern of the left-hand side of the wall is biperiodic, and both a 0 0{1 ' 0?2 : 0!3 ' 0!4
fundamental and a small amplitude second spatial harmonic X
are present. This particular structure of the domain walls has
been observed in all the numerical simulations in the irregu- FIG. 10. Intensity distribution near a Bloch wall corresponding
lar regime, and seems to be at the root of the complex bee Fig. 7. Note that the wall connects periodic patterns with differ-
havior exhibited by the wall dynamics. ent spatial structure.

12

Intensity
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8 =1.5, and the resulting intensity pattern is a stationary roll,
with a single spatial frequency. In Fig. (), whereA=2, the
intensity pattern develops a second spatial frequency of
4 small amplitude. This value of detuning nearly corresponds
to the onset of bursting phenomena of the wall. Finally, in
Fig. 11(c), for A=2.25, the resulting intensity pattern shows

ol the coexistence, in different spatial domains, of rolls with
NANANANANANANNANNANNANNNANN different periodicity and equal phas@ompare with Fig. 10
VVAVVVVVVVVVVVVVV where a domain wall separates oppositely phased pajterns

“ , | , | , | , Clearly, in this parameter region there exists bistability be-

02 -0.1 0.0 0.1 02 tween different spatial structures. This bistability seems to be

X a requirement for the existence of irregular dynamics. It is

. (b) interesting to interpret these results in terms of the real and

imaginary parts of the patterns shown in the bottom parts of
Figs. 1Xa)-11(c). The second spatial frequency of the inten-
sity pattern, and consequently the irregular dynamical behav-
ior, appears when real and imaginary parts of the pattern
distributions cross, Fig. 1) and left part of Fig. 1(c).

. | . L . L . We have studied the dynamics of domain walls in an an-

0.2 -0.1 0.0 0.1 02 isotropic optical Kerr cavity. Both Ising and Bloch walls, and
X the transition between them, have been reported in the case

i of moderate cavity anisotropy. The stability of the homoge-
©) neous solutions against pattern forming instabilities has been

also analyzed. These results show a complex scenario of spa-
tiotemporal evolution of patterns in this system. Domain wall
8] dynamics is shown to be related with the stability of the
domain(background solutions. A numerical study shows the
existence of different domains of behavior, depending on pa-

4 rameters. Besides the typical evolution of Bloch walls, with a
drift at nearly constant velocity, we have observed regimes in
MMMMW which the behavior of the Bloch wall parametéposition,
0 s | . | ! | ! velocity, chirality, and intensity at the corés irregular, and
0.2 0.1 0.0 01 02 analogous to that found in the temporal dynamics of excit-
X able systems. These regimes, namely bursting and spiking,

are reported for the first time in the case of domain walls in
optical cavities. Finally cavity solitons formed by the inter-
action of two domain walls have been identified and two
dynamical regimes of wall collision have been envisaged.

FIG. 11. Roll patterns obtained at different detunings, Eor
=3.5 (the rest of the parameters are the same as in Big(al
Stationary roll pattern with a single spatial frequeriay=1.5); (b) a
second spatial frequency appeéts=2); (c) bistability of roll pat-
terns with different structuréA=2.25. Patterns in(b) and (c) are
dynamic. ACKNOWLEDGMENTS
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