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Stabilization analysis and modified Korteweg—de Vries equation in a cooperative driving system
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Two lattice traffic models are proposed by incorporating a cooperative driving system. The lattice versions
of the hydrodynamic model of traffic flow are described by the differential-difference equation and difference-
difference equation, respectively. The stability conditions for the two models are obtained using the linear
stability theory. The results show that considering more than one site ahead in vehicle motion leads to the
stabilization of the system. The modified Korteweg—de Vries equétimmmKdV equation, for shornear the
critical point is derived by using the reductive perturbation method to show the traffic jam which is proved to
be described by kink-anti-kink soliton solutions obtained from the mKdV equations.
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[. INTRODUCTION nearest-neighbor interactipnXue [3] proposed a lattice

Traffic jam is an important issue from the viewpoint of model of optimal traffic flow considering the optimal current
transportation efficiency and pollution. Therefore the issue?f the next-nearest-neighbor interaction. Lenz, Wanger and
has attracted much attention recently. There are various agollacher[20] discussed a model in which a driver looks at
proaches to describe the characteristics of traffic flow, suchany vehicles ahead of him or her. Hasebe, Nakayama and
as the cellular automaton models, car-following models, gaSugiyama[21,22 proposed an extended optimal velocity
kinetic models and hydrodynamic modéds-8]. Recently, ~model which is applicable to a cooperative driving control
some researchers have investigated the traffic jam by use sfstem. In their model, drivers are assumed to be able to
nonlinear analysis. Kerner and Konhauf@} presented the adjust their velocity by utilizing the information of an arbi-
nonlinear theory of the cluster effect in traffic flow, and de-trary number of vehicles that precedes or follows them. They
rived the structures of a stationary moving cluster. Kurtzefound that there exists a certain set of parameters that makes
and Hong[10] derived the KdV equation with the hydrody- traffic flow "most stable” in the "forward looking” optimal
namic model and showed that the traffic soliton appears neaselocity model.
the neutral stability line. Komatsu and S444] deduced the Nagatani proposed a simplified versions of the hydrody-
mKdV equation with the optimal velocity model proposed by namic modelg14] in 1998. He used the continuum models
Bandoet al.. [12,13], while Nagatan[14,15 worked out the to describe the jamming transition in traffic flow on a high-
mKdV equation from the hydrodynamic model to describeway. Model | is described as
the density waves in congestion. In real traffic flow, Kerner _
et al. [16] and Knospe[17] made many of experimental dp + d(pv) =0, (1)
investigations of traffic on highways, and found the wide
moving traffic jams. Moreover Kernest al.. [18] used an dpv = apV(p(x + ) — apv, 2

asymptotic theory of traffic jams based on the singular PeTwherep, is the average density, ardis the sensitivity of a
turbation methods to derive formulas for the characteristicyjyer: p(x+ ) is the local density at positiaa+ 8 at timet; 8
parameters of traffic flow. represents the average headway, which méaris/py; local
For public demand, it is necessary to enhance the traff"aensity p(x+8) is related with the inverse of headway
current and avoid jams. Traffic control systems have beeﬂ(x,t):p(x+ 8)=1/h(x,t). The idea is that a driver adjusts the

utilized as a part of intelligent transport systdfor short, : : i
ITS). Drivers can receive information about other vehiclesCar yelomty according to the observed head ') for
density aheag(x+d)].

on roads, and then determine the velocity of their own ve- Model Il is the lattice version of model | with dimension-
hicles. Thus the stability of traffic flow can be raised and th
appearance of traffic jam might be suppressed. Some Woejﬁss spac«

has been done on the traffic behavior with the consideration ap; + polpjvj = pj-1vj-1) = 0, (3)
of ITS control. Helbing[5] presented an improved gas-
kinetic traffic model, which differs from others mainly by its dpv: = apV(piy) — apiv: (4)
nonlocal interaction term that takes into account the space tPi0] = SPoYRPj+1) ~ EPL)-

requirements of vehicles and the correlations of successiveherej denotes sitg§ on the one-dimensional lattice, and
vehicle velocities. The model reflects the anticipation behavp;(t),v;(t) represent the local density and the local average
ior of drivers, which is responsible for a smoothing effectvelocity on sitej at timet, respectively.

that acts only in the backward direction. Nagatgi®] put On the basis of lattice model of Nagatddi4,15,23, we
forward an extended optimal velocity model involving the propose the extended lattice version of the continuum mod-
vehicle interaction with the next car ahe@éce., the next- els considering an arbitrary number of sites ahead on a
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single-lane highway. We obtain the stability conditions of the n n

two models using the linear stability theory, and then derive dyp;(t + 7) + p V(E ,3|pj+|(t)> —V<E ,3|pj+|_1(t)> =0,
the mKdV equations near the critical point by using nonlin- I=1 I=1

ear analysis. We find the traffic jam described by kink- (10)
antikink soliton solutions for the mKdV equations.

Il. MODELS ( |t + ol i ©
. . . pi(t+27) — pi(t+7) + 75| V| 2 Bipj(t
The extended lattice version of the continuum models : : ° I=1 o
considering an arbitrary number of sites ahead on a single- n
lane highway is proposed. The vehicle motion is described -V _ - 11
by the following differential-difference equations, called g{ﬁ'p”'_l(t) 0. (1)
model A:
apj* polpiv; = pj-10j-1) =0, ®) lIl. LINEAR STABILITY ANALYSIS
pi(t+ Dt + 7) = pV(pj+1(1), pj12(t), ... pj+n(1).  (6) The linear stability analysis is made for the above traffic

. . models. It is obvious that the uniform traffic flow with con-
where n denotes the number of sites ahead considered. A?tant density p, and constant optimal velocity
0

n=1, the on_gmal Ia_tt|ce version of the continuum m_ob@:k] V(po.pas - -+ spo) IS the steady state solution for Eq&0) and
on a single-lane highway is recovered. Equatiéhis the (11), given as

lattice version of a continuity equation, while E4). is the 9
evolution equation. We select the optimal velocity as

pj(t) = po andu;(t) = V(pg, po, - - P0) (12)
n
> Bipju(1) Supposey;j(t) to be a small deviation from the steady state
=1 1 i i i
V(piarsPiazs - pyjen) = tani — . _ 1 density of thejth vehicle
Po Po Pc
1 pi(t) = po +Y;. (13
+tam‘<—>. (7 o ) _ o
Pc Substituting Eq(13) into Egs.(10) and(11) and linearizing
them vyield

Here g, is the weighting function tg;,;, which corresponds

to sensitivitya; in the multi-anticipative car-following model n

[20]. The difference between them lies in that the optimal 20 1 _ _

velocity in Ref.[20] is related to a certain position, while in Ryt 1)+ poV (pO)lg Ay y,-+|_1(t))] =0,

this paper the traffic flow ahead is regarded as a whole, con-

sidering nonlocal effect. It is necessary to point out that

Bi(1=1,2,... n) have the properties as followd) B, de-

creases monotonically with increasing value lpfwhich n

meansB,/ B-1<1, for we know that the influence of the sites y;(t+27) —y;(t+7) + eV’ (po) > Bi(Yj1(1) = Yju-a(1)

ahead on the vehicle motion reduces gradually as the dis- I=1

tance between the considered site and a site ahead increases. _ (15)

(2) IiL,B4=1. Equation(7) has the inflection point at;=p. '

when py=p.. 7is introduced to denote the delay time that it 1) = , a0 n , ;

takes the traffic current to reach the optimal current ansl \évr:(;rle ;ép&u&%\gg leljrc:’c){i]c')pﬁ_.p 0 becauseXi-i/iyju (1) is a

the inverse of the sensitivity. We assume that a driver can Expandingy; in the Fourier modesy (t) =exp(ikj +zt), we

obtain the information of any site density ahead. The trafficObtain ! ! '

currentp;(t+ 7)vj(t+7) on the sitg at timet+ 7 is determined

by the optimal currenpoV(pj+1(t), pj+2(t), ... ,pj+n(t)) ON site n

j+1,j+2, ... j+n at timet. 7€+ p? ’(2 B(eM - eik(l—l))) =0, (16)
We present another model, model B, which is described =1

by following a difference-difference equation in which both

space and time are discrete variables:

pi(t+7) = pj(0) + 7ol pj(Dv;(D) — pj-a(Dvj 4 (] =0, (8) €27 — €7+ TV’ (2 pile - e‘k“‘”)) =0. (17
=1

(14)

pi(t+ Doj(t+ 1) = poV(paa(D.pjall). - pen(D). (9 oy simplicity, V'(po) is indicated a3/’ in the above equa-
By eliminating velocity in Eqs(5) and(6) [and also in Egs. tions and hereafter. Expanding z,(ik) +z,(ik)?+... and in-
(8) and (9)], we obtain the density equations for models A serting it into Eqs(16) and(17) lead to the first- and second-
and B: order terms of coefficient in the expressionzpfespectively,
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FIG. 1. The neutral stability lines considering different lattices ahead.
n 1 n
z1=-poV' andz, = - (pgV')? = pgV' 2 ,3|(| - E) , > B2 -1)
=1 =1
7> - ——————, for model B. (23
(18) 3paV
N The neutral stability lines in the parameter spgeg) are
2 1 h in Fig. 1 f del A. There exist critical point
_ 2 __ % aun2_ 2 1 shown in Fig or mode ere exist critical points
2=~ poV’ andz 3T(pov) Po gﬁ(' 2)’ (pe,a¢) for the neutral stability lines, such that uniform states

19 with any density are always linearly stable #®r a., while
(19 the uniform states in a neighborhood @f are unstable for

The neutral stability condition is given by a<a.. As n=1, the critical points and the neutral stability
lines are consistent with those in a single-lane highway traf-

i, fic flow [23]. From the figure it can be seen that with taking
%B.(ZI - into account more sites ahead, the critical points and the
r=- _T for model A, (20) neutral stability lines decrease, which means the stability of
2pV the uniform traffic flow has been strengthened. The traffic
jam is thus efficiently suppressed.
n
> B2-1)
I=1 IV. NONLINEAR ANALYSIS
T=—-——>-,—, formodelB. (21)
3poV Because of the complexity of Eq$10) and (11), it is

For small disturbances with long wavelengths, the uniformdifficult to extract the essential properties of solutions. Thus
traffic flow is unstable in the condition that we use the reductive perturbation method to E4$) and
(11) focusing on the system behavior near the critical point

" (pe,a¢). With such simplification, the nature of kink-antikink
I% A2 -1 solitons can be described by the mKdV equations. We intro-
> — >—, for model A, (22 duce slow scales for space variajleand time variablet
2ppV [24,25, and define the slow variablééand T
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X=¢g(j+btandT=¢%,0<e <1, (24)
whereb is a constant to be determined. Let
P = pe+ eR(X,T). (25)

Substituting Egs(24) and(25) into Egs.(10), (11) and mak-
ing the Taylor expansions to the fifth order oflead to the
expression.

e?(b+ p2V') xR+ 83[ b? (2l - 1)} ~R

\ b7
+ée &TR + 2

2\
V
pC6 ﬂng} + 85{ 2bT(7x(?TR

2 n

(312-3l + 1)]&3R

b4’7'3 pZV/ n 5 5
+[ 5 * o2 I}‘igl(m -612+41-1) [#R
2vm N
+ p°4 > B2l - D[RPAR+ 2R(aXR)2]} =0, (26
=1

3 2
82(b+p§V’)r9xR+83|:§b27'+ Pe (2l - 1)](9%
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2/n

chP

2 Bi(312- (413 - 612

+4|—1)}a§R =0, (28)

3 2 '
y{aﬁ{"’%ﬁ VEB|(3|2—3|+1)]a3

2\ s

2\ ym
V
pc6 (9ng +g5 p

3
Eszcﬁ)z(R + C4

X [2 B2 -1) - 6bTC] [RPAR+ 2R(3xR)?]
1=1

. [_ 69473 chpZV

' 2
24 E Bi(312-31+1)

20 N
+ ﬂE Bi(A12 6%+ 4] - 1)](9§‘(R} =0. (29
24 13

In order to obtain the standard mKdV equation with
higher order correction, we make the following transforma-
tions for Egs.(28) and (29):

S b372 pCV
2

E B(312-3l + 1)] (30)

7b31,2 2 n _ 3b3 2 1/2
+et aTR+|: - p 312-3+1) |#R R= pZ—VWTC— pgv,,,z BBZ-3+1)| R, (31
Cc
pZV/// 372
¢ 7b V’
g MR [ *e%) 30moxiR T =- [—6 £ Eﬁ(slz 3l +1)} (32)
50%7 2V
[ s p;4 > B4R -6l2+4-1) |#R _7b372 Y 12
=1 R= 2> B@BI2-3+1)| R. (33
p2vm ZVW
2vm N c
+ 23 g (21 - DIRRRR+ 2R(3R)?] { =0, (27) or : -
4 = [ X X ' Co_nS|der|ng Eqs(20) and(21) we obtain the regularized
equations
whereV' =[dV(p)/dp;]| -, andV"=[dV(p))/dp{l|, -, R = BR = kR3 = eM[R'], (34)
and V" correspond tovV (pc) V" (p) in the above equatlon
and hereafter. Near the critical poifp.,a,),7=(1+&?)r,, orR = BR — R’ - eM,[R'], (35

takingb=-p2V’ and eliminating the second- and third-order

terms ofs from Egs.(26) and (27) result in the simplified WNere
equation:
TABLE |. The critical sensitivitya. and the propagation veloc-
b372 2V’ ity c; in model A.
4 R+ 2,3(3|2—3|+1) AR
2 n 1 2 3 4 5 1 12 20
2\ P2V L F 2.0 1.33333 1.23077 1.20755 1.20188 1.20001 1.2 1.2
3 5 2 l aC . . . . . . . .
R [ + 6% bPredRR+ E ClCh c, 24 24 24 24 24 24 24 24
F, a. 20 1.2 1.05882 1.01887 1.00621 1.00001 1.0 1.0
5b*r.2 c, 24 24 24 24 24 24 24 24
X[R2ZAR+ 2R(,R)?] + | - —= !
[RAR+ 2R(0R7) .

066119-4



STABILIZATION ANALYSIS AND MODIFIED ... PHYSICAL REVIEW E 71, 066119(2005

242 BI(Zl - 1) 3 n

iR 2R -2 821 - D[RZER + 2R (3R')?
R S pia-1araas g 2 AT IRTAR R GRO]
~1+23 f- 4P -6+ 1) + 123 A+ 483 I -40Z A

’ ’

, 36
23 B(1-129) + 243 By . (39

243, B2l - 1) .
M-[R'] = PR -= 2l - DIR'22R’ + 2R (6+R)2
S berrvan 283 g™ 22 A2 - DIR?GR + 2R (5xR)7]

2-32 B(-6° -9 +1) - 30X Bl)2- 108 BI¥2)2+ 92X BI)®
+
-2 B(2+1+27%) +56>, Bl)?

whereX denotesS[L ;. Equations(34) and (35) are the modified KdV equations witB(e) correction terms on the right-hand
side. First, we ignore th®(e) terms in Eqs(34) and (35), and get the mKdV equation with the kink solution

KR, (37)

Ri(X,T') =c tanh\/g(x -cT'). (38)

Next, supposindR’ (X, T")=Ry(X,T") +eR;(X,T’), we take into account th®(e) correction. To determine the selected value
of the propagation velocitg for the kink solution(38), it is necessary to consider the solvability condit[@6,27]

+oe

(RO, MR} = f AXRMAIRY] =0,

+oe

(RO, MS[RY)) = f AXRIMAIRL] = O, 39

where
My[Ry] = My[R'] andM,[Ry] = M,[R'].
By performing the integration, we obtain the selected velocity
B -120>, (21 - 1)
TS B(L-10+602+ 169 - 603 A1) - 1683 AI22 + 1523 B)°

(40)

-270>, B(21 - 1)
C,= .
?7 > B(10- 18 + 1382+ 369 - 1503, B1)2- 378>, B139%+ 352, B))°

We obtain the kink-antikink soliton solutions for models A and B

— 3p32c 2o, 12 b2 2
R(X,T):[ 1 Pt 1S 5(312-31+1) | tanh %X+cl e Pl S g@2-3+ 1) |T|, (42

(41)

A VA s Vet 2 6o

-0, pAV'Coe o R AR
R(X,T):[ 2 Pt 2% 532-3141) | tanhy 2| X+cp| ——2+ S g@iz-s+1)|T|, (43

pcV PV 121 2 6 6 1o

whereb, 7., ¢, C, given before.

V. RESULT ANALYSIS AND DISCUSSION the propagation velocities,,c, of the kink-antikink solu-
tions for models A and B. Now we select two specific opti-
On the basis of the linear stability theory and the nonlin-mal functions(8,=1 for n=1). In this paper, we take tenta-
ear wave analysis, we obtain the critical poifgs,a.) and tively for n>1
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TABLE Il. The critical sensitivitya. and the propagation velocity in model B.

n 1 2 3 4 5 6 11 20
Fq ac 3.0 2.0 1.84615 1.81132 1.80282 1.8007 1.8 1.8
C, 27 32 33.9656 34.5222 34.666 34.7022 34.7143 34.7143
F, a 30 1.8 1.58824 1.5283 1.50932 15 15 15
C 27 34.7143 39.7636 41.968 42.7788 43.1999 43.2 43.2
( L . .
3 The neutral stability lines in the parameter spgeg) are
4 I#n, shown in Fig. 1 for model A and the optimal function is
Fi=8=1 1 (44)  described by Eq944) in the model.
1 =N
(4 VI. SUMMARY
( 2 We have proposed two lattice hydrodynamic models of
=5 1#n, traffic flow for the purpose of constructing a driving system
Fo=p4=1 3 (45) for freeway traffic and given a form of optimal velocity func-
1 | = tion taking into account the nonlocal effect. The traffic nature
k3n—l' n. has been analytically analyzed by using the linear stability

We calculate the values of the critical sensitivityand the
propagation velocitieg;,c, by use of Eqgs.(44) and (45).

They are shown in Tables | and II.

Table | shows the propagation velocity is a constant,
while Table Il shows the propagation velocity is variable
and increases with increasimg In both models, the critical
sensitivities decrease with the increasenpénd the stability
regions are enlarged for the two models. Mgaises up to a

theory and the nonlinear analysis. It has been shown that
there exist critical points in the two models and obtained the
neutral stability lines, which demonstrate that multivehicle
consideration could further stabilize traffic flow, and consid-
ering three sites in front is an optimal state. We have derived
the mKdV equations to describe the traffic jam near the criti-
cal points, respectively, and obtained the kink-antikink soli-
ton solutions related to the traffic density waves. Moreover,
two examples with different optimal velocity functions are

certain value, the critical sensitivitieg and the propagation calculated to show the results clearly. As 1, the two mod-
velocities ¢, will not change again, and the system is in ag|s reduce to the original lattice version of the continuum

stable state. In fact, only the former three terms play an immodels on a single-lane highway, and the results are identi-
portant role to the stability. We may consider this state as theg|.

optimal state. The information of this state is enough for a
driver.We also find that as the ratigg/g,-, of weighting
function are bigger, the whole stability is better. As 1,
which corresponds to the first value of weighting function is  This work was supported by the National Natural Science
1 and the others are 0, the stability region is the smallest. Sboundation of Chin&Grant Nos. 10202012, 1036200&nd
considering, the cooperative driving system will stabilize thethe Special Research Fund for the Doctoral Programs in
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traffic flow.
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