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Coexisting phases and lattice dependence of a cellular automaton model for traffic flow
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The Biham-Middleton-Levine traffic model is perhaps the simplest system exhibiting phase transitions and
self-organization. Moreover, it is an underpinning to extensive modern studies of traffic flow. The general
belief is that the system exhibits a sharp phase transition from freely flowing to fully jammed, as a function of
initial density of cars. However, we discover intermediate stable phases, where jams and freely flowing traffic
coexist. The geometric structure of such phases is highly regular, with bands of free flowing traffic intersecting
at jammed wave fronts that propagate smoothly through the space. Instead of a phase transition as a function
of density, we see bifurcation points, where intermediate phases begin coexisting with the more conventionally
known phases. We show that the regular geometric structure is in part a consequence of the finite size and
aspect ratio of the underlying lattice, and that for certain aspect ratios the asymptotic intermediate phase is on
a periodic limit cycle(the exact microscopic configuration recurs eadime stepg Aside from describing
these intermediate states, which previously were overlooked, we derive simple equations to describe the
geometric constraints, and predict their asymptotic velocities.
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I. INTRODUCTION jams moving through otherwise freely flowing traffic. We
. . . . .. show the geometry of these patterns arise due to the finite

Modeling vehicular and internet traffic, thereby gaining gj;e and periodic boundary conditions of the underlying lat-
an understanding of congestion patterns and jamming phgjce e also show that the aspect ratio of the lattice imposes
nomena, is an extremely relevant problem, with ObV'Ougeometric constraints which restrict the patterns, and derive
practical ramifications. One popular approach is the use o§jmple equations describing these geometric constraints
simple discrete cellular automat¢@A) models, which cap- yhich allow us to calculate the asymptotic velocities. For
ture aspects of the dynamics of discrete vehicles or packetgeriain aspect ratios we can prove that the intermediate con-
One of the most cited examples of such a CA model is th§jqyrations end up on a periodic limit cycle—the exact mi-
Biham, Middleton, and Levine mode(BML) of two-  ¢yoscopic configurations recur eachtime steps—hence
dimensional traffic flow 1]. At the time of this writing, Ref.  hese states are stable for all time. For the other aspect ratios,
[1] has received over 200 citations in the scientific literature,ye snhow the intermediate states are at least metastable, last-
and it serves as a th_eoretica_l underpinning fo_r the phys_icists,hg as long as we could simulate them. By establishing the
approach to modeling traffic. Note that using techniquessyistence of these intermediate states, we show that the con-
from physics to model traffic has been a fruitful research aregeantional beliefs about this model need to be reexamined.
for more than a decade, and continues to be. For recent '€ontrary to the evidence published elsewhere, only on
views see Refd.2-5]. _ _ _smaller spaces do we see evidence for a sharp transition from

The BML model describes two species of “cars” moving freely flowing to fully jammed configurations as a function
on a two-dimensional square lattice, with periodic boundary,¢ the injtial density of carsp. Instead we observe bifurca-
_con_ditions. The model is_ ext_remely simple, yet the behaviorgjqns as a function op, where different phases can begin to
it displays are extraordinarily complex. The system showsgexist. The bifurcation points, the range of the windows for
what appears to be a phase transition from having all carspase coexistence, and the number of coexisting phases de-
freely moving at all time steps, to complete gridlock, wherepeng on the size and the aspect ratio of the underlying lattice.
no car can ever move again. In addition, in all the phases, théonsidering the amount of ongoing work on this model, and
system becomes fully correlated, forming a range of interestyg ;se in large scale, complex simulations of traffic, we be-
ing stable self-organized patterns. It is perhaps the simplegye it is important to understand these observations.
model where one can study both phase transitions and self g article is organized as follows. In Sec. Il we review
organization. This model has recently become increasinglyhe BML model and relevant past work. In Sec. Ill we de-
of interest to the combinatorial mathematics community, as i¢ripe our simulations and empirical results. Section IV con-
continues to elude rigorous theoretical analysis _ _ tains a discussion of the kinetic pathways, geometric con-

We implement the BML model and study its behaviors viagiraints, and derivation of the velocities for the intermediate

computer simulation. We discover stable intermediate state§ates. Finally, in Sec. V, we summarize and discuss open
that have never been reported before for the BML mOdelquestions and areas for further inquiry.

with highly structured geometric patterns of wave fronts of
Il. THE BML MODEL

Consider two species of particléise., “cars’), eastbound
*Electronic address: raissa@alum.mit.edu and northbound (which we also interchangeably call
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FIG. 1. (Color onling Typical configurations observed for the BML model onlar L system of sizé.=256.(a) The free flowing stage,
where all particles advance during each updatel). Note the ordered stripes of alternating east- and northbound cars. The width of the
stripes increases, on average, with dengityhile in the low density phaséb) A fully jammed configuration, consisting of one global jam.
Note the jam length/2L is larger than the system siz) A high density, random jam configuration.

“brown” and “black,” respectively which populate a two- next. We expect that for an infinite size system, the fully
dimensional square lattice with periodic boundary condijammed state resembles this random type of jam.
tions. Each lattice site can be in one of three states: empty, Most of the understanding of the BML model has come
occupied by an eastbound car, or occupied by a northbounflom numerical simulationg1,7-13. Theoretical analysis
car. The cars are initially distributed uniformly at random has been limited to mean-field approach@&sl4-16, and
along the lattice sites, with spatial densityusually taken to  attempts to start with continuum hydrodynamic equations
be the same for both north- and eastbound)caise discrete and formulate an equivalent discrete mofErf]. There are
time dynamics has two phases. On even steps, all eastbougéneral beliefs about this model, that the transition is first
cars synchronously attempt to advance one lattice site towamrder and that the critical densip decreases with increas-
the east. If the site eastward of a car is currently empty, iing system size, possibly reaching the valye=0 as the
advances. Otherwise, it remains station@yen if the east- system size approaches infinift]. The BML model has
ward site is to become empty during the current time)step been simulated extensively, but there are inconsistencies in
On odd time steps, the northbound cars follow the analogouthe literature and lack of detail of numerical implementations
dynamics, only attempting to advance to the northward site(such as the size of the ensemble being averaged.dver
The dynamics is fully deterministic. The only randomness igtails of numerical studies have been published only for small
in the initial condition. Furthermore, the dynamics conservesystems, on the order df=10-50[7,8]. Larger systems
cars, and does not allow for an eastbound car to change iteave only been studied coarsely, or in the context of self-
row, nor for a northbound car to change its column. So on amrganized versus random jarf810].
L XL lattice, there are 12 conservation laws. Despite extensive numerical simulation, the existence of
If initialized with a low enough density of cars, the sys- stable intermediate phaseésith 0<v <1) has not been ex-
tem eventually self-organizes into a configuration where alblicitly reported previously. Fukui and Ishibadld] do show
cars can move at each time stggach car has asymptotic evidence of the existence of an intermediate phase in one
velocity equal to unity. A typical such configuration is plot. They note that for intermediate valuesmfv “fluctu-
shown in Fig. 1a). If initialized at slightly higher density, the ates around a certain value for a long time.” The value shown
cars are blocked by other cars, until eventually all cars enéh their plot is extremely close to the values we observe
up participating in one large global jam, where no car can(plotted in Sec. IlJ. Aside from this comment, they do not
move (asymptotic velocity equal to zexoA typical global  pursue the issue further. A careful study by Torék and
jam is shown in Fig. (b). The transition between the two Kertész[11] contains precise details of their numerical simu-
behaviors has been thought of as sharp, showing charactdations. They are studying a variant of BML with faster con-
istics of a first order phase transition. Initialized at muchvergence timescalled the green wave modeSince it is not
higher densities, small jams begin simultaneously throughoytossible to theoretically predict the convergence time, they
the lattice and merge almost immediately with other smallestimate it, and apply the following, very reasonable, empiri-
jams, leaving all cars blocketWith all velocities equal to cal heuristic. If a realization has not reached a state, with
zero. In this high density phase, the system has no time te=0 or v =1, within an allotted timetaken to be five times
self-organize, and instead of one global jam, we observe the estimated convergence timehat realization is dis-
collection of small random jams. This latter type of jam hascarded. We can only assume some of the studies of the BML
been compared to traffic in a large city during “rush hour:” amodel may have used a similar criteria of discarding “non-
car might escape one jam, only to quickly join the tail of theconverged” states. Note that for continuum models, interme-
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FIG. 2. Plot of the average velocity for each individual realiza-
tion v versus the density for that realization, for a. X L lattice:
L=(a) 64, (b) 128, (c) 256, and(d) 512. Note the emergence of an
intermediate phase fdr>64. The value ob for the intermediate
state becomes more crisply defined with increasing system size, and
that the window of coexistence between the phases broadens. For

theL=512 system, the average valuevoh the intermediate phase (b) »
is (v9=0.673+0.005. The dotted line shown (b)—(d) is the pre-
diction from Eq.(24). FIG. 3. (Color onlineg Examples of typical intermediate geom-

etry. (a) A system with square aspect ratio whére512, w,=1/2,

diate phases of jammed wave fronts moving through other‘:’mOI @p=2, Wherew, and w, are winding numbers to be defined in

. freelv flowi traffic h b ted. S f Sec. IV B. (b) A system with rectangular aspect ratio whdre
wise freely Towing traffic have been reported. See Or:377, L"'=233, w,=1, andw,=3. Note that in(a) there are many
instance Ref[18].

e . disordered, random cars in the space between the bands, ¢®t in
Sensitivity of the BML model to boundary conditions has all cars are ordered. We find this crisp order shown by the latter

been reported previously. Martinetal.[12] study the dilute o, ample for all realizations studied on rectangular aspect ratios with
limit (p— 0), and show that different results are obtained for; ang L’ relatively prime. IfL and L’ are not relatively prime,
an “entangled” torus versus a conventional one. They raiSgandom disordered cars located between the bands persist. Note that
interesting questions about how to get at the bulk propertiesig. 9 below is a closeup of the region that has just shed from the
using only finite size simulations, but do not quantify norjams in(b).
pursue the effects further. Chau, Wan, and &3] study the
BML model on the torus with random boundary conditionsizations for each density. All simulations are implemented on
(BCs) [meaning that particles moving off the rigttop) edge  a special purpose cellular automata machine, the CAM8
reappear at some randomly selected site on thebeftonr)  [19]. The CAM8 performs approximately iGite updates
edgd. They claimv >0 whenevep <1, and hence dismiss per second, comparable to a modern high-performance desk-
such systems as being “not very interesting.” They also notéop computer. The main advantage of the CAMS8 is that it
that the velocity and critical density depend sensitively onallows for excellent visualization of the system, with no
the choice of BCs, but they also do not pursue the effect®verhead in the rendering, giving us live video output of the
further. dynamics of the system. As discussed in Sec. IV, visualizing
the kinetic pathway gives crucial insight into the formation
of the intermediate states.

The main subtlety involved with simulating this model is

We implement the BML model on square lattices of finite determining the convergence tintee., the time it takes to
sizeL X L', for a range of sizes and varying aspect ratios. Foreach the asymptotic behavjoAll realizations were simu-
square aspect ratiogse., L=L"), the lengths studied range lated until convergedv=0, v=1, or the periodic limit cycle
from L=64 to 512. We also study rectangular aspect ratiosvas reachedor for times out to at leagt=2x 10° time steps.
where the widthL is an integer multiple of the height, and  Of the realizations that had not yet converged, many were
whereL and L’ are relatively prime. On each lattice, we simulated for orders of magnitude beyond. We find this a
implement a range of densitigs studying at least ten real- reasonable compromise, since the compute power to simu-

Ill. SIMULATION RESULTS
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the constraints.

FIG. 4. Comparison ofa) behavior of individual realizations to All realizations contributing to Fig. 2 were simulated to at
(b) the behavior of the same realizations averaged together by defieastt=2x 10° full updates of the entire space, with various
sity, for a square system df=512. Note that by averaging the realizations simulated fot>10°. We do occasionally ob-
quantized nature of the final state for each realization is obscuredserve a realization persist in the~2/3 state for orders of

magnitude, then suddenly jump to eitherO orv=1, with
late all samples to times greater tharf i9beyond our cur- the latter being more common. Regardless, the intermediate
rent capacity. Throughout the remainder of the manuscripttate is at least metastable, persisting for longer than we

we refer interchangeably to the eastbound cars as “browngould simulate most realizations. Furthermore it is “univer-
and the northbound as “black.” sal” in the sense that the value ®f-2/3 is independent of

system size and density, and all systems that do not go to
v=0 or 1 go to the same intermediate stéte., the same
geometric structure and approximate value pfThe reason

For small size systems we actually observe the predictedle do not average over the individual realizations is that it
behavior of a sharp transition from freely flowing to total would obscure the behavior. Instead of displaying the three
gridlock. Figure 2a) is for anL X L system withL=64. Itis  distinct quantized states, averaging would produce a deceit-
a plot of the final average velocity observed for each realizafully smoothly decaying curve, as shown for instance in Fig.
tion v versus the density for that particular realization. Note4.
that we are plotting the average velocity for each individual From our data, it is difficult to determine the exact bifur-
realization, not an average over all realizations initializedcation point where the phases begin to coexist, and the point
with the same (hence error bars are on the order of the sizewhere they cease to. We attempted to identify the factors that
of the plotting symbol used Surprisingly, when we imple- distinguished realizations which converge tc=0 from
ment systems with. > 64, we observe a bifurcation where those, with the same density, that converga te2/3. We
two phases start to coexist, as we go from low to intermedifirst investigated connections to anisotropy, such as an im-
ate values op. The second phase that emerges has averadelance between the total number of eastbound versus north-
velocity v ~2/3, as shown in Fig. 2. In addition, these inter- bound particles. But we found no correlation. The probability
mediate states have a very well defined geometry, of bands realization would jam or go to the intermediate state is
of brown stripes with slope one-half, criss-crossing bands oindependent of this asymmetry. We also looked at a more
black stripes with slope 2. An example of the geometry isfine-grained measure: the line density of brown particles ver-
shown in Fig. 3. Jammed wave fronts are located at the insus the black. Again we found no correlation between this
tersections of the bands, and, as the systems evolves in timesymmetry and the likelihood of jamming.
move as solid structures uniformly down toward the south- In Sec. IV we discuss the kinetic mechanism observed,
west with unit velocity. Particles are freed from the head ofwhich gives rise to the interleaved band structure exhibited
each jam, but a like number of new jammed particles aggreby the intermediate states. As mentioned above, the jam in-
gate at the tail. As discussed in detail below, the underlyingerface moves ballistically, with unit speed, toward the south-
lattice imposes constraints on the allowed topologies of thevest. The width of the jam interface can fluctuate. It seems

A. Square aspect ratios
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FIG. 7. For simulations witlh.=89 andL’=55 andp=0.38, we
plot (a) the time to reach the periodic limit cycle versus sample
number;(b) the period of the cycle versus sample number. Eight
of the ten realizations simulated reach final configurations of type I,
as shown in Fig. ). They all have the shorter values af Sur-

FIG. 6. (Color onling (a) The average velocity for each indi- Prisingly six of these eight realizations have the same period
vidual realizationv versus the density for that realization, for an =5114, though their microscopic configurations differ. The other
Lx L’ lattice, with L=89 andL’=55. Note the appearance of yet two realizations, with significantly larger values gfare of type I,
another well defined intermediate state. Note also that the bifurce@s shown in Fig. @).
tion point, where phase coexistence ceases, has not yet been
reached, despite the range pf>0.44. The dotted lines are the
predicted velocities from Eq$18) and (21), v;;~0.7430 andv,,  With one brown band wrapping around tReaxis, and three
~0.3707. The empirically determined average values are, respe@lack bands. The jam points are at the intersections of the
tively, (v;1)=0.700+0.002 andv,,)=0.364+0.004. The geometries bands. Note the crisp, regular geometry. Recall Figp) 3
of the two types of intermediate states are distirib}. A typical  which is for an equivalent, but larger, system with the same
configuration withv ~2/3. Interface slops=1. (c) A typical con-  Fibonnaci aspect ratio but with=377 andL’=233. This
figuration withv ~2/5. Interface slope~2/3. Note that the inter-  figure more clearly illustrates the highly ordered geometry. It
face is the surface where the jammed regions of different colorgsg jncludes the definitions of several of the parameters used
meet. in the analysis in the subsequent sections. All realizations

with v ~2/5 resemble the one shown in Figch with one
for the L=64 system that the fluctuations are large enouglbrown band and approximately two black barftteugh the
that eventually the head of one jam meets the tail of thdatter are not so clearly defingd
previous, continuing until eventually one global jam forms. One of the most striking differences when comparing
Figure 5 shows the median convergence times observed fehese rectangular aspect ratios to the square, is that for the
the systems with square aspect ratios. Note that the a value efctangular, the intermediate configurations are exactly peri-
t=2x 1P really meang>2x 1CP. odic: the exact microscopic configuration of particles repeats
every T updates. We observe systems of dize89 andL’
=55, settling into the periodic behavior typically in a time
less thant ~100 000 updates, with a period on the order of

We also implement the BML model on systems with vary- 7~ 6000 updates. Figure 7 is a plot illustrating such typical
ing rectangular aspect ratios. In particular we study latticedehavior. Another striking difference is that not one realiza-
where the two lattice lengths are subsequent Fibonacci nuntion has jammed fullyv =0), despite the fact that the largest
bers. Figure @) is the plot analogous to those shown in Fig. density simulated ip=0.45. Note that for the square aspect
2, for a system with. =89 andL’ =55. Note we see the same ratios, the bifurcation point where the phases cease to coexist
intermediate velocity ob ~2/3, but we also see the emer- is at p~0.40. Another striking differences is the lack of dis-
gence of one more possible phase witkh 2/5. All the con-  order for the relatively prime systems with rectangular aspect
figurations withv ~2/3 resemble the one shown in Figh§ ratios. In Fig. 3a) there are isolated particl€¢&lislocations’)

B. Rectangular aspect ratios
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FIG. 8. Shedding from a jam.

moving in the area between the bands. However, for th@pens up a space for an x in the original row to advance—
rectangular case, all the particles manage to join the orderegvo time steps delayed from the first x to move in that row.

bands. The o below this original o is currently blocked. However, an
0 one site from the original along the southwest diagonal is

IV. GEOMETRIC CONSIDERATIONS now free to advance. Note that this o blocks the x in its
o newly occupied row from advancing, yet opens up a space
A. Kinetic pathways for the x one row southward to advance. Hence a pattern

By watching the dynamical evolution of the system, start-emerges: a brown particle sheds from within the same row
ing from the initial configuration, the mechanism by which only every third time step, yet from a site further southwest
the intermediate phases form can be observed. Often orfvery time step, yielding brown bands of densify=1/3
global jam initially begins to form, yet the head of the jam With slopes,=1/2. Likewise for the black particles, a black
just fails to meet up with the tail, leaving a few lattice sites particle sheds from within the same column only every third
of distance between them. Particles shed from the head d&ne step, yet from a successive site along the southwest
soon as allowed by the local environmésince all particles ~ every time step, yielding black bands of dengigy 1/3 with
move whenever possibldeaving with a well defined order. slopes,=2. The jams occur at the intersections of the bands,
See Ref[20], for video images of the dynamical evolution. and the interface of a jam has slop€elypically, s=1. In Fig.

To understand the pattern formed by the shedding, con8 one can see the order beginning to emerge, and the inter-
sider first one row of a solid isolated block of brown par-face withs=1 in the lower left hand corner.
ticles. Since the particles only advance provided the site they More illuminating is to view a closeup near the jammed
wish to occupy is empty, a particle would leave the head ofegions. Figure 9 is a zoomed-in view of the region near one
the jam only every other time step. However, we can nowof the jams shown in Fig.(8). Note the order that exists in
consider a diagonal interface formed by a triangular block othe region above the jam interface, which has shed from the
brown particles in contact with a triangular block of black jam in the manner described above. In this region there are
particles. See Fig. 8. Note broweastbounyl particles are alternating diagonal stripes of black, brown, and empty. The
represented by x and bla¢korthbound particles by o. Each  stripes have “phase locked’—on the next update the black
subsequent time step illustrated corresponds to one comples&ipes move into the empty stripe regions, leaving room for
update of the spadge., one north step followed by one east the brown stripes to move on the subsequent update, and so
step. Recall, all particles of the same species update synon. Hence the system has organized itself into the highest
chronously. Step 1: No o’s are able to move, but, during thedensity packing that still allows all particles to move with
east phase of the time step, the first x moves away from the=1.
jam, opening up a space. Step 2: The first o advances. This
blocks all other x’s in the original row, yet opens up a space
for an x, one site from the original x along the southwest
diagonal, to advance. The original x to move also continues Since the system lives on a torus, the bands must wrap
advancing. Step 3: That first o continues advancing andeamlessly around it. Noting these facts, we can develop a

B. Winding number
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TABLE I. Allowed winding numbersy, and wy, for lattices with
different aspect ratiok/L’ and interface slops. The values ob
which include error bars are from our numerical simulations.

L/L’ S [on wy, v
1 1 1/2 2 0.673+0.005
1 1 1 1 0
2 1 1 4 ~2/3
2 1 2 2 0
5/3 1 1 3 ~2/3
3 1 2 5 ~2/3
(1+5)/2 1.17 1 3 0.700+0.002
(1+\5)/2 7/10 1 2 0.364+0.004

combination of variables in terms of the others. Solving first
for k’;
k'=(2w,L"-L)/(2s-1). (6)

Using this, we can solve fap,, in terms ofw,, s, L, andL’,
and obtain

3(b). The interface of the jam is shown in the lower left hand corner.

It is the region where the jams of different colors meet. Note the

slopes=1.

mathematical expression for the number of brown bands

)

wp =

2L (2—3)( L)
- = Wy~ .
L' (2s-1) L’

Knowing that the interface slopg~1, we can tabulate

and the number of blaclo, (referred to, respectively, as the the allowed values ok, and wy, in terms of the aspect ratio

“winding” number for brown and blagkthat must be

of the spacel/L’. The allowed values for various aspect

present. Essentially, we can calculate the length of the reratios are listed in Table I. Note, the valuwe=1/2 means the
gions of slope 1/2, slops and slope 2 that must be present brown band has only reached heighit'2 in traversing dis-

for the bands to wrap around the tor$he slopes are re-

tancel [as in Fig. 3a)]. We implement systems with the

spectively those of the brown band, the interface, and th&arious aspect ratios shown in Table I, and find that the ex-

black band. Consider anL XL’ lattice, and a brown band
starting in the lower left hand corner. Moving out along e
direction, there ard sites with slope 1/2 an#’ sites with
slopes. Similarly for a black band starting in the lower left
hand corner, there ara sites with slope 2 anth’ sites with
slopes. The constraints are

k+k' =L, (1)

1
§k+ sk = oL’ (2
m+m’ =L, (3)
2m+sni = wyL’, (4)
k'=m', (5)

where, due to the latticgk,k’,m,m’} are positive integers,
and {w,,w,} are either positive integers or equal togl/
where g is a positive integefe.g., for the configuration
shown in Fig. 8a), o,=1/2]. The final equation, Eq(5),

perimental configurations observed all match the predicted
behavior. See in addition to the previous figures, Fig. 10. The
final lines in Table | are for systems where we observe em-
pirically the values ofw, and w,, and using Eq.{7) can
predict the value o$é. Recall thatw, andw, must be integers.
The system seems to tune the valuesdb allow this. For
instance, ifL andL’ are successive Fibonacci numbfirs.,
L/L'=(1+5)/2], a rearrangement of Eq7) predictss
=1.17, which matches our empirical observations. Note in
Fig. 3(b), the upper jam has small glitches whese 1.

FIG. 10. (Color onling A typical realization withL=769 and
L’=256(i.e.,L=3L’+1, where the additional lattice site is to make
the lengths relatively primje Note that as predicted in Table I, the
configuration is consistent wittF 1, w, =2, andw,=5. Realizations
with L=768 andL’=256(i.e.,L=3L’) have a similar structure, but

expresses that the length of the jam interface must be theurprisingly lack the crisp order, and instead have disordered cars at
same for the brown and black cars. Combining this systenrandom locations between the bands. For images of the latter, see

(of five equations in seven unknownsve can solve some

Ref.[20].
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C. Average velocity

Figure 3 illustrates the typical geometry for realizations
with v ~2/3. In this examplew,=1 andw,=3. We label on
the figure the lengthg, b, ¢, andd, denoting, respectively,
the width of the brown band, the black band, the black jam,
and the brown jam. We define two discontinuous functions
which will simplify notation later on:

0, (w) = 1 if o,=1, ®)
0N Vo, if wp <1,

@( )_ Wy if wbél, (9)
TN i wy < 1.

In other words,®, is the number of independent brown
bands in one column of the lattic), is the number of
independent black bands in one row of the lattice. If we
denote the density of the brown bandgswe can express

the average number of brown particles in a column of the (b}
space:
O, (w)paa=pL'/2. (10)
Likewise, the average number of black particles in a row is
Op(wp)ppb = pL/2. (11
Recall thatp is the overall particle densitybrown plus
black. Empirically we determined that,=p,=1/3,which is
a consequence of the dynamics described in Sec. IV A. Us-
ing the basic equations described in Sec. IV B and knowl- s
edge of the “typical” geometry, we can solve for the velocity k

of the intermediate state. Unfortunately, we have to consider
the square and rectangular aspect ratios independently, and
do not have one equation that describes all cases. The as-
sumptions described above are valid for the rectangular as-
pect ratios, but fail to capture the full behavior of the square

ones FIG. 11. Typical jam configurations. For type | jams, shown in

(@), c=d=Tk’. For type Il jams, shown inb), d=d,,. and c
1. Rectangular aspect ratios type | =Cmax Knowing the slopes of the lines if@), s=1, §=2, ands,

. . . . =1/2, we candetermine all of the angleg=tarr(1/2), §=m/4,
Configurations such as the one shown in Fig. 3 have g _. 1, andg¢=(m/2-tarr1 2). gle® (112, o=

regular, highly structured, geometry that is well described by
the formalism in Sec. IV B. We find that the values Idf
predicted by Eq(6) exactly match those obtained via nu- 9= dmax= pLI20O (@) and C= Cpax= pL'Op(wp)/2awy.
merical simulation. Typically there arg jams, with the par- (13
ticles equally divided amongst them. The interface width per
jam is ki =k’ /n,, wheren, is the total number of jams one
brown band is involved in, as it wraps once around %he
axis. See Fig. @), for example, where,~2 andn;=3.

The structure of the jams and the relevant geometric fac- in¢
tors are shown in Fig. 1&). The jams form trapezoidal lp~ b{cosdﬁ tar(a—qﬁ)} =by. (14)
shapes of widths. From simple geometric considerations, we
can show that=k{ sin(6- ¢)=«k{. The jam width per line,
d, and per columng is

5 _sin(6-¢)
- cosé N cosé

From similar geometric considerations we can show that
the length of the black jam,, is approximately

Similarly, the length of the brown jant,, is approximately

! =Tk . 12 _ siné | _
ki ki (12) [, a{cos§+—tada_¢)} ap. (15

However, note this is only true provided that there are
enough particles available in each column and in each rowlhe total number of particles involved in the jands,s the
Otherwise, number of jams multiplied by the width and length:
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3. Square aspect ratios

3
J=ndl,+1,)=QwL -L —pL/® . . .
Mol +10) = (2 )K{( 2P b(wb)) 4 The typical geometry of an intermediate state for a square

3 lattice is shown in Fig. @). The interfaces and especially the
+ (-pL'/@r(wr)>go]Dl. (16) edges of the bands are disordered and jagged. The slope
2 Ny assumptions only hold approximatelg:~1/2 ands,~ 2.

Furthermore, there are several particles moving freely in the
low density regions, unlike for the rectangular lattices, where
all particles eventually order into the bands and jams. Also
unlike for the rectangular latticésee for instance Fig.(B)],
the brown and black bands cross through each other without
the pronounced shifting upward.
1 3 We cannot use the formalism developed above in Sec.
J=(2 —]:‘),{—y+ —qp:| pLL’ = 0.257QLL’. (17) IV B for this situation, since that formalism is based solely
2 2F on geometric constraints of winding seamlessly around the
lattice. A configuration on a square lattice wigh=1/2, s,
=2,s=1, would havew,=1/2.Plugging into Eq(6) we find
the required length of the overall interfad€,=0. Instead,
J empirically we find the black jams form a trapezoidal shape
v1=1-—=0.7430. (18  of approximate length and heighta/4. Likewise the brown
N jams form a trapezoid of approximate lengihand width

Note, this is independent gf and independent df andL’.  P/4. Each jam has this shape and theregre3 jams alto-
This predicted value fop,, is included in the plot of the gether(i.e., three distinct intersections of the bandshe

experimentally determined velocities, shown in Fig. 6. NotehUmber of particles involved in jams, is

For the data plotted in Fig. &," andL are two successive
Fibonacci numbers, hende/L’=(1+y5)/2=F. In agree-
ment with expected values shown in Tablea,=1 [thus
0,(w,)=1] and w,=3 [thus Oy(w,)=3]. For this geometry,
n;=n=2. Plugging in these values into E4.6),

Solving for the velocity, noting that the overall number of
particlesN=pLL’,

that the calculated value slightly underestimates the number J=n(abl4 +ab/4) = 3a2/2. (22)
of particles involved in the jarthence slightly overestimates )
Ur)- Using Eq.(10) to solve fora and the fact that the overall
number of particledN=pLL’, we can solve for the fraction of
2. Rectangular aspect ratios type II particles in the jammed state:
As mentioned, rectangular lattices are well described by J 3(3 \?1 27
the formalism in Sec. IV. We observe the “rich” jam de- N 2\4” FP‘3_2P' (23

scribed above, but also a second type of “depleted” jaot

enough particles Empirically, all observations of this type Hence the velocity
haves=2/3, and one large jam. See for instance Fig,).6

The per row and per column widths of the jams are the ve=1-—=1-—p. (24)
maximum, d,,., and .y respectively, sincd’k’ is greater N 32

than the number of particles available in a row or column. Atpis predicted valuey is included in the plots of Fig. 2. It
jam interface of lengthk’ and slopes (with s> 1) involvesk’  c4ptyres the features of the experimental data, including the
columns, but onlysk' rows. Hence the total number of par- slight decrease in with increasingp.

ticles involved in the jams,

J=K'(SUnax*+ Cmax = [(2a L’ = L)/(25= 1) ][spL/20; O ()
+ pL' Op(wp)2wp]. (19

V. DISCUSSION

The BML traffic model is a simple model of a jamming
For the realizations contributing to the plot in Fig. l6/L’ transition with self-organization. In our study, instead of
=(1+\5)/2=F, w,=1 [thus O,(w,)=1], w,=2 [thus agreement with conventional beliefs, we find stable interme-
O(wp)=2], ands=2/3 (which is empirically determingd diate configurations with phase coexistence of jammed and
Plugging these values in we find free flowing traffic. Such configurations have not been pre-
viously reported in the literature, despite the extensive
amount of past work on the BML model. Furthermore, these
intermediate configurations have interesting geometric and
topological properties, with different behaviors resulting as a
Thus the average velocity consequence of different aspect ratios of the underlying lat-
tice. We develop a formalism, based on geometric constraints
imposed by the lattice, to predict the asymptotic velocities of
the coexisting phases. Visualizing the kinetic pathways of the
evolving configurations was a key element in uncovering the
We include this predicted value in the plot of Fig. 6. Note theexistence of the intermediate phases and, moreover, their pe-
agreement with the experimental data. riodic nature on lattices with relatively prime aspect ratios.

3=2(2 1<1}‘+}> LL'=0.629%LL'. (20
A 20" " 2)P 0293LL"

J
vrp= 1= = 0.3707. (21)
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The observations described in this manuscript open up &g particles to a configuration that is known to jdire.,
range of new questions about the BML model. increasingp) can actually change the sequence of particle
As mentioned, instead of a phase transition as a functioimteractions and result in that configuration going to free
of density, we observe a bifurcation point where the il’ltermeﬂowing instead of jamming. Furthermore, it is known that
diate states first begin appearing, and a second bifurcatiogertain discrete models with the same property as BML—
point, where they completely cease to appear. Perhaps mofamely, that the randomness is in the initial condition, yet the
interesting than predicting the asymptotic velocities, wouldgynamics fully deterministic—can be notoriously difficult to
be to calc_ulate the locations of the blfqrcatlon points. Fr(_)mdeal with analytically. Examples include bootstrap percola-
our experlmgntal data, the exact location of the bn‘urcanor%On [21] and the Lorentz lattice gd22]. We modified the
points are difficult to determine, and moreover, also depen ML model to include a small probability for particles to flip

onlzh_e aspe_(;[l I’attrI]O toIhthe L_Jnderl%/lng Ia;[]tlce. i ition. H species types at each update. Our preliminary studies, adding
everlsi’np(s)S; scaie t?]r: clisér?s;y/?éﬂlg r?ostebéat?]z I:Sbro?wfhis small amount of randomness to the dynam_ics, suggest
) ’ . that the model with randomness has extremely different geo-
priate control parameter. Perhaps a more appropriate Comrﬂqetric properties from the original BML model. In addition
parameter would be an interaction energy between nom}br the model with randomness, we did not observe the i,n-
bound and eastbound particles. Note that when in the fre?ermediate configurations descri,bed herein
flowing state, the north and east particles have moved onto '
noninteracting lattices. It may be possible that one can define
an initial energy based on the overlap or interaction between ACKNOWLEDGMENTS
two lattices, and use that as a control parameter.
A complication which makes theoretical treatment of the This work has benefited greatly from discussions with

BML model difficult is that it is not strictly monotonic. Add- Laszlé Lovasz, Alexander Holroyd, and Roman Kotecky.
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