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Phase transition in a directed traffic flow network
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The generic feature of traffic in a network of flowing electronic data packets is a phase transition from a
stationary free-flow phase to a continuously growing congested nonstationary phase. In the most simple
network of directed oriented square lattice we have been able to observe all crucial features of such flow
systems having nontrivial critical behavior near the critical point of transition. The network here is in the shape
of a square lattice and data packets are randomly posted with a edtene side of the lattice. Each packet
executes a directed diffusive motion toward the opposite boundary where it is delivered. Packets accumulated
at a particular node form a queue and a maximurmafuch packets randomly jump out of this node at every
time step to its neighbors on a first-in-first-out basis. The phase transition ocgrsmat The distribution of
travel times through the system is found to have a log-normal behavior and the power spectrum of the load
time series shows I/like noise similar to the scenario of Internet traffic.
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[. INTRODUCTION experiment data show that round-trip timedistribution has
) . ~_ alog-normal behavior.

The transport of matter and propagation of information in - However, the topological structures of the Internet and the
biological, social, and electronic communication systemshighway network are far from being similar. It has been ob-
etc., remain significantly important in different branches ofserved that the nodal degree distributidgtiee degreek of a
physics, and more generally in natural science for manyode is the number of links meeting at @f the Internef{7]
years. Evidently the prime objective is to make the transporaind the worldwide web8] as well as many other real-world
or communication processes more efficient in these systemaetworks have power law tailf2(k) ~k™?, and cannot be
In particular, one aims at maximizing the flow at the samemodeled by simple random graphs. This is in contrast to the
time minimizing the delivery time and loss, and of coursewell-known random graphs introduced by Erdds and Rényi,
maximizing robustness against attack and failure. The effeavhose degree distribution is Poissoni@j. Due to the ab-
of the local and global topological properties of the systensence of a characteristic value for the nodal degree these
and the microscopic dynamic process involved with the flownetworks are called scale-free netwofk-12. Barabasi
are considered as the two basic ingredients of these complé@fd Albert grew scale-free graphs where a fixed number of
dynamical processes. vertices are a_dded at each time and are linked to the growing

Research on highway traffic as a field of applied physicgraph with a linear attachment probabil{0]. On the other
is already decades old. Study on information network traffid’and the topological structure of a highway network may
is comparatively new. It is evident from empirical observa-S1oW small-world behavior in some cases but its degree dis-
tion on internet traffid 1—4] and vehicular flow(6] in a net- tribution could not be a power law for practical reasons.

. Lo _ So the question is whether the self-similarity and long-
work of hlghway§ that both POSSESS similarity in many re range dependence of traffic flow and congestion are topo-
spects. In the highway network it was observed that o

r]ogical in nature or if they are caused only by the micro-

Increasing th_e vehlcle. density a well-defined transition oc- copic dynamic properties associated with the generation and
curs at a critical density sepgratlng_the f“?e'f'OW phase aNflow of traffic, such as posting rate, fluctuations in posting
the jammed phase. At the critical point the jam or congestion o or routing schemes

occurs as back-propagating waves with fractal propefigs Traffic systems usually involve queues and the simplest

I_n the_ internet netwprk it is found that the ping-time Stals-jnformation traffic system consisting of a random informa-
tics, in which _the_ time taken by a packet to move frqr_n tion input and a buffer shows a phase transition behavior
source to destination and back were measured, show criticglyep, the puffer capacity is infinif]. When the mean input
dy”?‘m'cs and.a T/noise spectrum similar to the scenario of a4 js smaller than the maximum possible output rate, the
vehicular tra}fﬂc[l]. . . _average accumulation of information at the buffer is finite
Observation of rea! computer _networ_k t_rafﬂ_c dyna_1m|csand this is called the “free” phase. As the mean input rate of
also reveals the following behavidr) the distribution of file information is increased the average accumulation at the

sizes !S ng normgl_(ii) the_ interarriyal times_ have a power buffer increases, and at a critical point the averaged accumu-
law dlstr|but|on;.(|||) traffic Ioa}q time. s.eness' d?t"’,‘ SPOW lation diverges. The critical point is defined by the simple
1/f-type fluctuation near the critical point; andy) “Ping condition that the mean input rate is equal to the maximum
output rate.
This phase transition behavior is local and can occur in
*Electronic address: manna@bose.res.in any buffer system because of the general nonlinear response
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therefore disappear from the system. Although the data pack-
ets are distinguishable a packet is delivered at any arbitrary
sink. In general each? nodes is a router which receives,
stores, and forwards packets along the preferred direction.
There is a limit to the forwarding capacity of each node; a
node can forward a maximum aof data packets at a time.
Each of these data packets is forwarded to the LL or LR
nodes randomly with equal probability. Each node receives
packets from its two upward neighbors, places them in its
buffer maintaining a queue of lengtf(p,t), and forwards a
+ + + + + + + + maximum ofm packets at a time from the front of the queue
_ _ according to the first-in-first-oufFIFO) rule. We further as-

FIG. 1. A configuration of the number of data packets at eachyme that the buffer capacity of each node is infinitely large
node of an 88 system with the posting raje=0.8 in the station- ¢ ihat no packet is lost due to a filled-up buffer. A single
ary state. time step during the evolution of the system consists of up-

dating every node of the system for once.

of the buffer. But the ping experiment indicates a phase tran- The posting ratep of data packets is the only control
sition of the whole network due to propagation of congestiorparameter of the system. Therefore, at each time step, each
among jammed nodes and showd fliictuation at the criti-  node of the top row receives a new data packet with a prob-
cal point[2,3]. The whole system was also considered as ability p. The free-flow phase is a stationary state where the
vast ensemble of phase transition elements and the systesgerage fluxes of the inflow and outflow currents of data
properties are the outcome of the interactions between theggickets balance. Once a specific valueroi assigned, the
individual element$13]. magnitudes of these currents can increase at mast his

In recent studies on different geometries, that is, on amplies that the critical posting rate. must be equal tan.
linear chain(14], two-dimensional lattices, and a Cayley tree This is supported numerically for a number of valuesvof

[15] a sharp transition from the free to congested phase it most of our calculations reported below we have used
found for routing of packets through shortest paths. In the=1,

linear chain the smallest buffer causes jamniihg]. In the " The total numberN(p,t):EiLflqi(p,t) of data packets in
Cayley tree the role of the node at the top of the hierarchy IShe network at timé is called the “load™” it fluctuates with
crucial for congestion. Also in the case of two-dimensionalt '

It it is ob d that if th ket deli i fime but maintains a steady mean vaN@) in the station-
attices 1t 1s observed that It the packet delvery capactty o ary free-flow statgFigs. 2 and R For a posting rate> p.

the nodes is fixed, or independent of the load on the nOd%he system switches over to a congested phase ard(the)

then congestion occurs above a specific value of the postin% . - ; o
; . mcreases indefinitely. Since packets are moving into the sys-
rate p. Traffic flow has also been studied on scale-free net-

works [16]. tem at a rate larger than the outflow rate, packets simply pile

In this work we try to address this question of dependenc%’p in the system and no flow balance is attained. The varia-
(or independengeof the network traffic flow on topological lon of N(p) with p is studied. Different packets take differ-

features and on the details of the dynamic process associatgat t.ravgl times to reach the|r dgstlnatlons. The probap|llty
with the generation and flow of traffic. We took a simple Istribution of these travel times is alsol mgasyred for differ-
network of oriented square lattices and select random diffu—entp \l/alues.' The nodal queue Iength distribution of the net-
sion along a preferred direction as the method of routing o?’VO”‘ is studied for different posting rates.

data packetg&all of the same sizeand show that this arrange-
ment could generate the main experimental findings of inter-
net traffic flow.

Ill. RESULTS

The fluctuation of the mean load per node or the mean
queue lengthg(p,t)=N(p,t)/L? is observed to have a self-
similar fluctuation as shown in Fig. 2 fgs=0.96 andL

An oriented square lattice of sizexL placed on the =128. In Fig. Za) N(p,t)/L? has been plotted with time
x-y plane is the network in our model: the lattice sites are theover an interval of lengtiht=10°. A small boxed region over
nodes and lattice bonds are the links of the netwede Fig.  a time interval ofAt=10* from Fig. 2a) has been zoomed in
1). The system has a preferential direction, called the downFig. 2(b) using a vertical magnification 2.72 having the same
ward direction, imposed along they-direction such that size as in Fig. @). Similarly a boxed region over a time
packets from every site jump with a positive componentinterval of At=10° from Fig. 2b) has been zoomed in Fig.
along the preferred direction. Every node has two neighbor2(c) using a vertical magnification 3.48 having the same size
ing nodes along the preferred direction which are situated as in Fig. Zb). It is evident from the three plots that apart
the lower left (LL) and lower right(LR) positions. Data from the stochastic noise present in the system the fluctua-
packets are posted at a ratenly on nodes of the top row of tion of mean load is self-similar.
the lattice aty=L. Similarly all nodes on the bottom row at In addition the fluctuation of mean load per node becomes
y=0 are considered as sinks where packets are delivered asttonger and more correlated whgrapproaches the critical

Il. THE MODEL
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7.20 rally influences the states of the system far away from it. In
o Fig. 3 we plotN(p,t)/L? for four different posting rateg
S TI6F =0.80, 90, 0.93, and 0.96 over an interval of length tiBe
z I units and for the system side=128. The width of fluctua-

712F , , , tion w(p)={q?(p,t))—(q(p,t))? increases as posting rate in-

50000 75000 100000 125000 150000  creases and also the fluctuation becomes more and more cor-

(a) t related.

7.17 When p is very small the number of packets posted per
T 716 time step is also very small and the system can deliver it very
= quickly to the destination. No queue could be formed on the
S 715 nodes and a packet need not wait in any node while travel-

THME . ing. This is a free-flow phase. But when the posting rate
85000 87500 90000 92500 95000 increases, slowly queues are formed and a packet had to wait
in queues while traveling and this waiting time started con-
tributing to the travel time of a packet. But up to a certain
value the queue length and hence the waiting time at the
nodes fluctuates around an average value, i.e., still the aver-
age delivery rate of the system and the average posting rate
, are equal and there is no growing accumulation of packets in
87750 88000 the system. At this stage queues are formed on the nodes and
t the average length of the queues increases witiut that

FIG. 2. Self-similar fluctuations of the average load per site@Verage value is not growing with time. .BUt AS* P the
N(p,t)/L? with time't are displayed(a) Average load of a system of postlng rate becomes equal to the maximum ‘?'e"Very rate
sizeL=128 in the stationary state is plotted for the posting ate (CaPacity of the system and beyond that there will be grow-
=0.96 over a range of 100 000 time units) Magnification of the NG accumulation of packets in the system indicating conges-
boxed region ir(a) with the horizontal and vertical scale factors 10 tion or jammed phase.
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and 2.72, respectivelyc) Magnification of the boxed region ifb) Though exactly atp=p.=m the balance of inflow and
with the horizontal and vertical scale factors 10 and 3.480utflow fluxes of data packet currents is maintained it is
respectively. observed that no stationary state is attained at this critical

point. This is because not all nodes of the bottom row at
posting ratep.. For a smalp value the load fluctuates around =1 receive exactly one data packet each at every time unit;
an average value and the fluctuations are also small. It meaty fluctuation some nodes receive two and some other nodes
that the correlation time is short, that is, the state of thedo not receive any packet at all. Since a node, even if it
system at a certain time step has very little effect on theeceived two data packets, can deliver at most one packet,
states of the system a few time steps away.pAs p. the  some packets must have to stay back in the system, ulti-
fluctuations in the mean load become increasingly strongemately leading to a global congestion. How does the mean
and it spreads in a wider region indicating higher correlatiorload per node increase with time at the nonstationary state of
in the system. Neap. a particular state of the system natu- p=p.? It is observed that the variation is parabolic, i.e.,

(@)
1.76 - 342
= 174p 3.40
g 1mp 338
2 I FIG. 3. These plots show that
1.70 - 3.36 as the posting rate approaches
F r the critical posting ratep. the
1.68 ' 334 i
r 20 25 r fl_uctl_Jatlon of the average load per
site increases and also long-range
correlation develops. For a system
4.86 7.18 of size L=128, average load
r - N(p,t)/L? is plotted for 100 000
pE 4.84 [ 7.16 time steps for the posting ratés
< r 0.80 (b) 0.90, (c) 0.93, and(d)
%‘ 4.82 7.14 0.96, respectively.
4.80 7.12
478 ! 7.10 !
1.5 2.0 2.5 15 2.0 2.5

/100000 /100000
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FIG. 4. (a) Plot of the average load per sitp)/L2 with p for The travel timer of a data packet is defined as the time

L=64 and form=1. The growth of average load diverges at the SPENt by the packet in th? system, WhiFh i$ obviously the
critical point of phase transition ai.=1. (b) Plot of the average difference between the delivery and posting times. Each data

load again but with 1p and on a double logarithmic scale; the packet is given a label and with each node a queue list is
slope gives the value of the exponet 0.98. associated containing the labels of the data packets in this
queue. If the queue length at a node is greater thahen
the firstm packets from the front of the queue are deleted
time: qlpe,t) ~t. and the queue !s shiftech locations to the front. Each of

' thesem packets is then randomly routed to one of the LL or

X y i
The time aver_aged load per nols_l(ap)/L in the free-flow LR nodes. Such a packet is placed at the end of the queue in

stationary state is calculated for different values of the pOStEhe new node by the FIEO rule. Intuitivelv. it is easy to

ing ratesp and plotted in Fig. @) for L=64. For small Y : Y. y

values ofp the load is small and increases slowly. However understand that for very low posting rates- 0 every data
P : ; Y- 'packet makes a hop at every time instant and therefore all
when p approache$,. the rate of increase is very fast and

diverges. This is seen more explicitly in Fig(b} where values are the same and equal to Consequently,
g A . plicitly 9 .- P(r,p,L),_.o=8(—L). However, asp increases the queue
N(p)/L= is plotted againsfp.—p on a double logarithmic p } N
. T . lengths become larger; as a result travel time increases and
scale and a straight line is obtained forclose top.. The

. S . : its distribution gains a finite width. We have studied in detail
\s/:;)rsea(;f the straight line is 0.98, implying that the load M&Ythe distribution of travel times and its dependence@mdL

(Fig. 6 andP(r,p,L) is observed to follow a combined scal-
N(p)/L? ~ (p.— p) L. (1) ing form overp andL as

qlpe,t) ~tY2. However, forp>p. the growth is linear in

The queue Ieng'Fh dist.ributi.dh(g) of thg system, whichis  p(7,p,L)(p. = p)"1LO585~ G([log(7) = 7](pe— p)°-04L049).
analogous to the jam size distribution in the highway net-
work, gives a better understanding of the packet flow sce- (2)
nario. Compared to single queue theories, here we havi . . .
many interacting queues in which at each time step a sing| he _scah_ng functionG(x) is seen to follow a log-normal
packet can hop from any queue to any of the two neighboriunction like
ing queues. Thus here apart from the source nodes all other )
nodes are placed equivalently. They all have only two neigh- G(x) = 1 o — (Inx) ) 3)
boring nodes as sources of data packets. In Fig. 5 we show Xm@% 20% )’
the plot of P(g) vs g for p=0.97, 0.98, and 0.99 fdr=64 on
a semilogarithmic scale indicating that the intermediate re-
gion of the distribution follows the exponentially decaying |, powWER-SPECTRAL ANALYSIS OF NETWORK TIME
distribution exp—-qg/qy(p)] in general. It has been observed SERIES
that the dependenag(p) ~ (p.—p) " is followed very nicely.
The average queue lengtiy(p,y)) is also measured as a  The fluctuation of mean queue length per nodgn,t),
function of they coordinate and found to vary &g.—p)™*  with time depends on the posting rate. In the free-flow sta-
independent ofy except over a small region near the top tionary state the autocorrelation functiongip,t) is defined
level. as
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FIG. 6. Scaling plot of the data for the distribution of travel FIG. 7. Plot of(a) correlation functionC(t) vst on a semiloga-
timesP(r,p,L) on systems of sizels=32 and 64 for posting rates rithmic scale andb) power spectruns(f) vs f on a double loga-
0.95, 0.97, and 0.99. The scaled plot fits nicely with a log-normalrithmic scale for the posting ratep=0.96 (dot-dasheyj 0.97

function. (dashed, and 0.98(solid) lines for a system size=64.
— , 2 We also studied the spectral analysis of the overall
Clo.b) = @lp.t)alp,t+1)) = (alp,t)) (4)  throughput time signal. The overall throughput is defined as
P @ty -@pt' ) the mean numbeD(p,t) of packets delivered per site of the

bottom row of the lattice per unit time. This is naturally a
The Fourier transform of the autocorrelation functiofp,t)  fluctuating variable whose time average is equal to the input
is known as the spectral density or power spectf¥fd de-  posting rate. A time displaced correlation of the fluctuating
fined as D(p,t) time series shows an exponential decay whose spec-
" tral analysis yields a power law decay of the power spectrum
S(p.f) :f e C(p, . (5)  but with a different exponenS(f)_ocf‘O-%. _
o Similar autocorrelation functions and associated power
spectra are also calculated for the fluctuation of the length of
For a time series which has no temporal correlation, a plot of single queue(p,t). The power spectrum is also observed
S(f) againstf is independent of. For some other time data g follow a power law with the spectral exponent value
series, the power spectrum may vary as a power B}  nearly equal to 1.
~ 7. In this case the spectral exponeficharacterizes the  Finally the undirected version of this problem has also
nature of persistences=2 indicates zero correlation associ- peen studied on the square lattice. In this case the data pack-
ated with Brownian motiong> 2 indicates positive correla- ets are posted at the nodes on the middle yew /2 and are
tion and persistence angl<2 represents negative correla- delivered at the nodes on the top rowyatL and the bottom
tion and anti-persistence. row y=1 with periodic boundary conditions applied along
The autocorrelatiorC(p,t) function of the mean queue thex axis. Each packet executes a simple noninteracting ran-
length in the stationary state is plotted in Figa)7on a  dom walk, i.e., for each step it selects one of the four neigh-
semilogarithmic scale up tb=4096 for three values of the boring nodes randomly with uniform probability and jumps
posting ratep=0.96, 0.97, and 0.98 calculated on a systemo that site. As before a similar phase transition is observed
size L=64. The same calculations have also been repeatéfom a free-flow state to a congested phase at a specific post-
for even smaller values g down to 0.75 at intervals of ing ratep.. However, unlike in the previous model, the criti-
0.05. Fourier transformations of these correlation functiongal rate p.—0 as 1L. This is because a large number of
are done usingtMGRACE and the power spectrurB(f) is  packets simply pile up at the middle line for all values of the
plotted vsf on a double logarithmic scale in Fig(bf for all ~ posting rates greater thanlL/Travel times of packets again
three values of posting rates. The intermediate regimes of thiellow log-normal distributions and the power spectrum also
curves are quite straight, indicating a power law variation offollows a similar power law.
the power spectrums(f) ~ f~#). From Fig. 1b) we mea-
sure the slopes as all nearly the same afw) =~ 1, indicat- V. CONCLUSION
ing 1/f noise near the critical posting rapg irrespective of The properties of the traffic of the flow of data packets on
the precise value of the posting rate. a model network of an oriented square lattice with random
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routing scheme largely consistent with the real-world inter-confirming long-ranged correlation in the network load time
net and vehicular traffic flow behaviors. First, it describes theseries near criticality.

transition from a free to a congested phase with increase of
the density of packets separated by a well-defined critical
posting rate. Second, it produces a self-similar nature of the
network workload time series. Third, the long-tailédg- We thank B. Tadic for useful discussion. G.M. thankfully
norma) nature of the travel-time distribution is reproduced. acknowledged facilities at S. N. Bose National Centre for
Fourth, the power-spectral analysis showd-fiype noise, Basic Sciences.
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