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Peaks in the probabilities of loops or bubbles, helical segments, and unzipping ends in melting DNA are
found in this article using a peak finding method that maps the hierarchical structure of certain energy
landscapes. The peaks indicate the alternative conformations that coexist in equilibrium and the range of their
fluctuations. This yields a representation of the conformational ensemble at a given temperature, which is
illustrated in a single diagram called a stitch profile. This article describes the methodology and discusses stitch
profiles vs the ordinary probability profiles using the phage lambda genome as an example.
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I. INTRODUCTION

DNA melts by a stochastic formation and growth of loops
�1� and tails �i.e., unzipping ends�. Loop formation is also
induced in the dense cellular environment and is at the heart
of DNA biology �2�. For the past three decades, numerically
calculated properties of the DNA melting process have been
represented by plotting curves of three types: probability
profiles, melting curves, and Tm profiles. Probability profiles
�3,4� are plots of the basepairing probability pbp�i� or the
“upside-down” 1− pbp�i� vs sequence position i. Melting
curves �5,6� are plots of the helicity � or its derivative vs
temperature T. Tm profiles are plots of the base pair melting
temperature Tm�i� vs sequence position i. Apparently, there
has been less interest in calculating other properties, one rea-
son being perhaps that the ordinary plots outline the main
features on the experimental side, such as the melting curves
from UV spectroscopy and differential scanning calorimetry.
However, there are other interesting properties within reach
of calculations. For example, what are the sizes and locations
of loops and how do they fluctuate? How do distant loops
correlate? What are the alternative conformations of a region
that coexist when it melts? What events are predominant and
what others are rare? In addition to these questions being
important per se, advances in single molecule techniques
�7–9� provide new types of measurement of the microme-
chanical, dynamical, and structural properties, and motivate
predictions beyond the ordinary curves �10–12�.

In this article, we turn our attention to stitch profiles. A
stitch profile is a diagrammatic representation of the alterna-
tive DNA conformations that coexist at a given temperature
�13�. Figure 1 shows the four types of graphical elements
called stitches that go into a stitch profile. A stitch represents
either a loop, a right tail, a left tail or a helical region, as
shown, and indicates its boundary positions and the ranges of
fluctuation of these positions. In analogy with sewing, where
a thread coming up and down through the fabric forms a row
of stitches, any conformation of DNA is an alternating row
of blocks of open or closed basepairs. A stitch profile indi-
cates alternative conformations as alternative threads �i.e.,
paths� through the diagram. The aim of this work is to de-
velop a method for constructing stitch profiles and to discuss
stitch profiles vs probability profiles.

In the Poland-Scheraga model �14�, a state of the chain
molecule is specified by N binary variables, x1 , . . . ,xN, where
the jth variable xj �=0 or 1� indicates if the jth base in the
sequence is base paired or not with the complementary
strand. While the classical three types of curves are based on
calculating the base pairing probabilities related to the state
xj of each base pair, a stitch profile, in contrast, is based on
probabilities of blocks of base pairs being in states corre-
sponding to loops, helical segments or tails. A stitch profile
made “by hand” was introduced in Ref. �13� �where we re-
ferred to it as a loop map� in order to suggest an application
of such block probabilities. The article described a DNA
melting algorithm with two important features: a speedup
based on multiplication of symmetrical left side and right
side partition functions; and the statistical weight of a base
pair depending rigorously on both of its neighbors. These
features allow the block probabilities to be easily calculated
as follows.

A loop is a consecutive series of 0’s �melted basepairs�
bounded by 1’s at positions x and y, where 1�x�y−1�N.
The probability of a loop is calculated by decomposing the
chain in three segments,

FIG. 1. A stitch profile is composed of four types of stitches: �a�
loops, �b� right tails, �c� left tails, and �d� helices. Loop and tail
stitches are drawn on the upper side and they span regions of
opened base pairs �0’s�. Helix stitches are drawn on the lower side
and they span regions of closed base pairs �1’s�. The horizontal bars
indicate fluctuational ranges of the 0-1 boundaries.
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ploop�x,y� = ZX10�x���y − x�Z01X�y�/�Z . �1�

ZX10�x� is a partition function characterizing the segment
�1,x+1�, Z01X�y� is a partition function characterizing the
segment �y−1,N�, Z is the total partition function of the
whole chain, ��y−x� is the loop entropy factor �a function of
loop size�, and � is related to the equilibrium constant of
complete dissociation of the two strands. A tail is a block of
0’s that extends to the end of the chain. The probability of a
right tail from position N �the right chain end� to a bounding
1 at position x is

pright�x� = ZX10�x�/�Z . �2�

The probability of a left tail from position 1 �the left chain
end� to a bounding 1 at position y is

pleft�y� = Z01X�y�/�Z . �3�

A helical region is a block of 1’s bounded by 0’s or by the
chain ends. If x is the position of the first 1 in the block and
y is the position of the last, where 1�x�y�N, then the
probability can be written

phelix�x,y� = ZX01�x���x,y�Z10X�y�/�Z , �4�

where ZX01�x� is a partition function characterizing the seg-
ment �1,x� and Z10X�y� is a partition function characterizing
the segment �y ,N�. The stacking chain function ��x ,y� is the
statistical weight of the block of 1’s, given as

��x,y� =�s1�x�s1�y�� j=x+1

y
s11�j� for x � y ,

s010�x� for x = y ,
� �5�

where s11�x� is the statistical weight of nearest neighbor
basepairs �a pair of 1’s�, s1�x� is the statistical weight of a
helix-ending basepair �0 on one side, 1 on the other�, and
s010�x� is the statistical weight of an isolated basepair �0’s on
both sides�. Equations �1�–�4� correspond to Eqs. �12�–�15�
in Ref. �13�, respectively.

The block probabilities ploop, pright, pleft, and phelix depend
on precisely located boundaries x and/or y. But thermal mo-
tion causes the boundaries to fluctuate. These fluctuations are
represented by fluctuation bars in a stitch profile. They are
not merely attributes like “error bars,” but rather an essential
ingredient. Each stitch represents not a single conformation
of a region, but a grouping of conformations that are sup-
posed to be related via fluctuations. In a plot of any of the
block probabilities as a function of x and/or y, such a group-
ing will appear as a broad peak, and the fluctuation bar�s�
indicate the extent of the peak. A stitch profile is simply a
representation of the peaks in the four block probability
functions, and the problem of constructing a stitch profile is
basically a peak finding problem.

The peak finding problem is important in data and signal
analysis in diverse areas of science, for example, in various
types of spectroscopy and image analysis. Peak finding has
also been used in statistical mechanics to define macroscopic
states of RNA secondary structure: native, intermediate, mol-
ten, and denatured states �15�. The following issues apply to
our case here: A peak’s size is given by its volume rather
than its height. If a peak is broad enough, it may have a

higher volume than another peak, even if it has a lower
height. Probability peak heights can be very low, so we can
not use a height cutoff for detecting peaks. There is no erro-
neous noise in our calculated probabilities, so smoothing
should not be used. Actually, the shapes of peaks are quite
irregular with “peaks within peaks,” so the problem is hier-
archical peak finding �analogous to hierarchical clustering vs
clustering�. There may be limited space in a stitch profile, so
it must be chosen which peaks to represent.

The right and left tail stitches are found by 1D peak find-
ing in pright and pleft, respectively, and the loop and helix
stitches are found by 2D peak finding in ploop and phelix,
respectively. The challenge is not so much finding a peak as
deciding its extent. In 1D we use an interval—the fluctuation
bar—to delimit a peak. In 2D we use a frame, that is, the
Cartesian product of the two fluctuation bars on the x axis
and the y axis, to represent a peak by “framing” it. Let the
peak volume pv be defined by the probability summed over
the interval in 1D or the frame in 2D.

This article describes a probability peak finding method in
1D based on a detailed mapping of the hierarchical structure.
The 2D case is solved by combining the 1D results for x and
y. For the extent of a peak, the main idea is to find where the
probability has dropped to a certain fraction relative to the
peak maximum value. This fraction is controlled by a param-
eter to the algorithm and it determines the widths of the
fluctuation bars. These widths, in turn, determine the peak
volumes that can be used for choosing if stitches are in-
cluded or not in the stitch profile.

II. THE METHOD

Minus the logarithm of a probability is an energylike
quantity. Using this, we transform probability peak finding
into finding the wells or lakes in a �pseudo�energy landscape.
A peak with a certain ratio between the probability at the
maximum and the probabilities at the edges corresponds to a
lake with a certain depth in an energy landscape. The anal-
ogy to mountain landscapes, lakes, ponds, etc., is standard in
statistical mechanics �16�. We use it here to redefine the
stitch profile problem of peak finding to be a lake finding
problem in four energy landscapes—two 1D landscapes:

E1�x� = − log10 pright�x� , �6�

E2�y� = − log10 pleft�y� , �7�

and two 2D landscapes:

E3�x,y� = − log10 ploop�x,y� , �8�

E4�x,y� = − log10 phelix�x,y� . �9�

A. Peak finding method in 1D

The 1D method is described here using E1�x� as an ex-
ample, but E2�y� is treated the same way. Of all the possible
lakes that can be created by filling water into the various
wells, we restrict ourselves to considering only a finite set of
representative lakes. Let �1 be the set of sequence positions
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a at which E1 has an extremum. Minima and maxima in �1
are alternating along the x axis. To each element a��1 we
associate a lake L�a� in the landscape, see Fig. 2. The alti-
tude of the surface �water level� is E1�a� and the lake surface
spans the interval L�a�= �LL�a� ,LR�a�� given by

a � L�a� , �10a�

∀x � L�a�:E1�x� � E1�a� , �10b�

E1„LL�a� − 1… � E1�a� or LL�a� = 1, �10c�

E1„LR�a� + 1… � E1�a� or LR�a� = N . �10d�

When a is a minimum, in most cases L�a�= �a	. When a is a
maximum, the lake L�a� is nearly split in two adjacent lakes,
divided at position a where the local depth becomes zero.
However the corresponding probability peak is not split in
two by a zero probability, so we consider L�a� as one lake.
The bottom �a of a lake L�a� is defined as the position with
lowest energy in the lake,

�a = arg min
x�L�a�

E1�x� . �11�

The depth D�a� of a lake L�a� is defined as the energy dif-
ference between the surface and the bottom: D�a�=E1�a�
−E1��a�. Some lakes are contained inside deeper lakes:
L�a��L�b�. This partial ordering of lakes in �1 defines a
hierarchical structure �17�. Assuming that both the leftmost
and the rightmost �on the x axis� elements in �1 are minima
�terminal maxima could just be excluded�, the elements in
�1 can be considered as the nodes of a binary tree. The root
	1 of the tree is the global maximum and its lake L�	1� spans
the entire sequence �or almost�.

1. Pedigree ordering

Imagine a walk along the branches of the binary tree. In
order to orient itself, the walker needs “road signs” at each

node a that point the directions to the root 	1 and the bottom
�a. This imposes a structure similar to a pedigree �i.e., tree
of ancestors� as illustrated in Fig. 2. Each node a�	1 is
connected upwards in the direction of the root to a unique
node 
a called the successor of a. This means L�a��L�
a�.
Each node a corresponding to a maximum is also connected
downwards to two parent nodes: a father node �a in the
direction of the bottom; and a mother node �a in the other
direction. This means that the father is the parent with the
lowest bottom, E1���a��E1���a�, and that ��a=�a. But
it does not imply that D��a��D��a�. In contrast to an off-
spring tree, parents are located in the direction away from the
root, rather than the reverse. Define the set of successors of a
node a:

�a� = �a,
a,
2a,
3a, . . . ,	1	 . �12�

The set �a� traces a path from a up to the root. Define the
set of ancestors of a node a:

��a� = �b � �1
a � �b�	 . �13�

The set ��a� is the subtree that has a as its root or top node.
Each node a��1 belongs to a unique paternal line,

��a� = ��a, . . . ,a,�a, . . . ,�a	 , �14�

which is a maximal set of nodes that are related through a
series of fathers. The series ends at their common bottom
node �a and, oppositely, it begins at a node, called the full
node �a, which is not itself a father. Each node correspond-
ing to a minimum is the bottom of its paternal line. And each
node which is either a mother or the root 	1 is the full node
of its paternal line. For a node a that is both a minimum and
a mother, ��a�= �a	. The term “full” stems from filling water
into a bottom: The paternal line indicates successively deeper
lakes until the full lake is reached. The successor of the full
lake belongs to another paternal line and corresponds to an-
other bottom being filled.

FIG. 2. �Color online� E1�x� is
plotted for a 70 bp sequence to il-
lustrate the pedigree ordering of
lakes in an energy landscape.
Lakes corresponding to each local
maximum are shown as horizontal
dashed �blue� lines. Arrows indi-
cate the binary tree starting from
the root 	1=4. Paternal lines are
connected series of fathers shown
as solid �red� arrows. The node a
=16, for example, has the lake
L�a�= �15,28�, bottom �a=20,
depth D�a��0.8, father �a=18,
mother �a=15, and successor

a=28, as shown.
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2. The MAXDEEP algorithm

The lake finding task at hand is to search through the set
of lakes corresponding to the set �1, and select the lakes to
be represented in a stitch profile. A possible solution is the
MAXDEEP algorithm. With a given parameter Dmax, the algo-
rithm finds all nodes a��1 where

D�a� � Dmax, �15a�

D�
a� � Dmax or a = 	1. �15b�

In words, this means that they should be as deep as possible
without exceeding the maximum depth. In many cases, it can
be expected that the depth increases in just a small step from
a node to its successor, but not for full nodes that often have
successors that are much deeper than themselves. Therefore,
some of the selected lakes will have depths close to Dmax,
while others �the full ones� can be more shallow. The
MAXDEEP algorithm is shown in Fig. 3. It is not necessary to
evaluate all a��1. Instead, the MAXDEEP algorithm involves
a “tree climber” c that basically climbs up the paternal line
��	1� of the input node i=	1, starting from the bottom �	1,
until it exceeds Dmax, and then takes one step down again. At
that point, c fulfills the criterion in Eq. �15�, while all other
nodes in �c� and ��c� do not. Subsequently, the algorithm
calls itself recursively with mothers of �c� as input nodes,
in order to explore other paternal lines.

The output of the MAXDEEP algorithm is illustrated in Fig.
4. Lakes have depths between zero and Dmax and they cover
a large fraction of the landscape. The figure shows that the
effect of increasing Dmax is that some lakes become wider
and deeper, some lakes merge, and some lakes �correspond-
ing to full nodes� remain unchanged.

3. The largest peaks

Some of the lakes found by the MAXDEEP algorithm are
probably not very significant, having low depths and low
peak volumes at the same time. A second selection process is
required before we finally get the stitches for the profile.
Since the MAXDEEP algorithm does not consider the peak
volumes pv, these can be considered in the second selection.
If we want to select the largest peaks, for example, this can
be achieved by having a cutoff as a second parameter pc and
select only nodes a with peak volume pv�a�� pc.

B. Peak finding method in 2D

While a 1D lake is completely described as an interval
�LL�a� ,LR�a��, lakes in the 2D landscapes E3 and E4 have
complicated contours and perhaps islands in the interior �17�.
Fortunately, we only need to know a 2D lake’s extents on the
x axis and the y axis, in order to enclose it in a frame, which
is needed in a stitch profile �cf. Sec. I�.

1. The helix landscape

Consider the lake finding problem in the helix landscape
E4. Although isolated base pairs are allowed �x=y in Eq. �4��
we will ignore those instances for convenience, and require
1�x�y�N in the landscape. It follows from Eqs. �4� and
�5� that

phelix�1,y�phelix�x,N� = phelix�x,y�phelix�1,N� . �16�

Defining two 1D landscapes,

E5�x� = − log10 phelix�x,N� , �17�

E6�y� = − log10 phelix�1,y� , �18�

we can write E4�x ,y�=E5�x�+E6�y�+const. This decoupling
of x and y allows us to analyze the lakes in E4, based on 1D
analysis of E5 and E6 and their binary trees �5 and �6.

FIG. 3. The MAXDEEP algorithm that finds stitches with depths
below Dmax. For a given input node i, it returns a list of those nodes
in ��i� that fulfill the criterion in Eq. �15�. c is the tree climber, →
means push �i.e., “put on a list”�, and I��c� is the output of a
recursive call to the algorithm itself with �c as the input node. The
diagram can be read in conjunction with Fig. 2.

FIG. 4. Lakes in 1D found by the MAXDEEP algorithm. The two
plots show the same region of an energy landscape. The first plot
shows the lakes found by the algorithm using Dmax=3 and the sec-
ond plot shows the lakes with Dmax=6.
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Let a��5 and b��6 and consider the frame L�a�
�L�b�. Does such a frame enclose a 2D lake in E4? At least,
the frame should cover a region of E4. The frame is said to
be above the diagonal if LR�a��LL�b�, such that all �x ,y�
�L�a��L�b� are points in the helix landscape. Because of
the decoupling, the minimum in a frame is

arg min
�x,y��L�a��L�b�

E4�x,y� = ��a,�b� . �19�

Consider the energy barriers seen from ��a ,�b�:

�E4�x,y� = E4�x,y� − E4��a,�b�

= E5�x� − E5��a� + E6�y� − E6��b�

= �E5�x� + �E6�y� . �20�

Using Eq. �10b�, we find that �E4�x ,�b��D�a� for all x
�L�a�, and using Eqs. �10c� and �10d�, we find that
�E4�x ,y��D�a� just outside the west and east side of the
frame. This means that L�a� is the extent on the x axis of a
2D lake with depth D�a� and bottom ��a ,�b�. And vice
versa, L�b� is the extent on the y axis of a 2D lake with depth
D�b� and bottom ��a ,�b�. If D�a��D�b�, then a 2D lake
with bottom ��a ,�b� must have depth D�min�D�a� ,D�b�	
to be confined by the frame, and it will not extend to all four
frame sides. A lake with depth D�min�D�a� ,D�b�	 is not
confined and may not even have its bottom inside the frame.
If D�a�=D�b� then the frame L�a��L�b� is exactly the ex-
tent in both dimensions of a 2D lake with that depth.

Unfortunately, we can not expect to find a’s and b’s with
equal depths. In order to best approximate 2D lakes, we want
instead D�a� and D�b� to be as close as possible, that is, none
of �a, 
a, �b or 
b should have depths in between D�a� and
D�b�. This can be formulated as two conditions: we say that
�a ,b� is “
 above” if

D�
b� � D�a� or b = 	6, �21a�

D�
a� � D�b� or a = 	5, �21b�

and we say that �a ,b� is “� below” if

D��b� � D�a� or b = �b , �22a�

D��a� � D�b� or a = �a . �22b�

Frames that are 
 above, � below, and above the diagonal
are good representations of lakes with depth
min�D�a� ,D�b�	. Let us examine the three conditions one by
one. First, define the set �4 of frames that are 
 above,

�4 = ��a,b� � �5 � �6
�a,b� is 
 above	 . �23�

Equation �21� shows that �	5 ,	6���4. And �a ,b���4 if a
and b both correspond to minima, because Eq. �21� is true
with D�a�=0 and D�b�=0. This means ��a ,�b���4 for any
a��5 and b��6. Just as 1D lakes are hierarchically or-
dered, so are frames. A frame is contained in another frame,
L�a��L�b��L�c��L�d�, if a���c� and b���d�. It turns
out that the elements of �4 are the nodes of a binary tree with
�	5 ,	6� as its root. We call �4 the frame tree, and it is a kind

of product tree between the trees �5 and �6. The successor
of a node �a ,b�� �	5 ,	6� is


�a,b� = ��
a,b� if D�
b� � D�
a� or b = 	6,

�a,
b� if D�
a� � D�
b� or a = 	5.
� �24�

Each node �a ,b���4, where a and b are not both minima,
has two parent nodes. We define the bottom of a node as
��a ,b�= ��a ,�b�, which enables us to distinguish the two
parent nodes as a father,

��a,b� = ���a,b� if D�a� � D�b� ,

�a,�b� if D�a� � D�b� ,
� �25�

with ���a ,b�=��a ,b�, and a mother

��a,b� = ���a,b� if D�a� � D�b� ,

�a,�b� if D�a� � D�b� ,
� �26�

with ���a ,b����a ,b�. This gives the frame tree a pedigree
ordering with paternal lines, etc., just as in 1D.

Some frames in �4 are not above the diagonal, such as the
root frame �	5 ,	6� that spans almost the entire sequence in
both dimensions. Next, define the set of frames that are 

above and above the diagonal:

�4 = ��a,b� � �4
LR�a� � LL�b�	 . �27�

�4 is organized as a number of disjoint binary trees, �4
=� j��aj ,bj�, each one being a subtree of �4. The top node
�aj ,bj� of the jth subtree is above the diagonal, while its
successor 
�aj ,bj� crosses the diagonal. And lastly, define
the set of frames that are 
 above, � below, and above the
diagonal:

�4 = ��a,b� � �4
�a,b� is � below	 . �28�

This set also consists of disjoint trees, but they are not bi-
nary, nodes can have more than two parents.

If we do not require � below and consider the larger set
�4, then such frames are still good representations of lakes.
A computational advantage of this is that each subtree
��aj ,bj� in �4 can be searched with the MAXDEEP algorithm,
by using its top node �aj ,bj� as the input i. The E4 lake
finding problem is solved by finding frames in �4 using the
MAXDEEP algorithm in this manner, followed by a second
selection based on the cutoff pc, which yields the helix
stitches for a stitch profile. For the MAXDEEP algorithm we
must define the depth of a frame. A possible depth definition
is D�a ,b�=max�D�a� ,D�b�	. Using this, the MAXDEEP algo-
rithm finds frames �a ,b� with D�a��Dmax and D�b��Dmax.

2. The loop landscape

Consider the lake finding problem in the loop landscape
E3. It follows from Eqs. �1�–�3� that for 1�x�y−1�N,

E3�x,y� = E1�x� + E2�y� − log10 ��y − x� + const. �29�

x and y do not decouple in E3. But log10 ��y−x� varies
slowly enough to be considered constant as an approxima-
tion. With this assumption, it turns out that an analysis par-
allel to the one for the helix landscape gives reasonable stitch
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profiles. There are only minor differences between the loop
and helix cases. For example, a loop frame is said to be
above the diagonal if LR�a�+1�LL�b�. Here is a brief out-
line: We define the frame tree

�3 = ��a,b� � �1 � �2
�a,b� is 
 above	 . �30�

The root of �3 is �	1 ,	2�. By replacing 	5 with 	1 and 	6

with 	2 in Eqs. �21� and �24�–�26� we define 
 above, suc-
cessors, fathers, and mothers in �3. The set of 
-above
frames that are also above the diagonal is

�3 = ��a,b� � �3
LR�a� + 1 � LL�b�	 . �31�

And we search �3 for frames using the top nodes of the
subtrees and the MAXDEEP algorithm. Subsequently, the loop
stitches are found by a selection based on the cutoff pc.

C. Stitch profile data

A mere calculation of the block probabilities �cf. Eqs.
�1�–�4�� gives O�N2� small numbers which are information in
a fragmented form. In principle, these block probabilities can
be obtained as functions of x and/or y using the Poland-
Scheraga model �14�, the Peyrard-Bishop model �18�, or
something else. The peak finding method is applied for put-
ting this information in the more useful form of a stitch
profile, which is data of size O�N� only. A stitch profile is a
set of stitches of the four types in Fig. 1. As we have seen,
each fluctuation bar corresponds to a lake in a 1D landscape.
Figure 5 shows how the two fluctuation bars of a loop stitch
�a ,b� span the lake intervals L�a� and L�b�, and how the
diagram also indicates the position of the lake bottom
��a ,�b�, where the probability peak has its maximum. Two
additional quantities are associated with a stitch: the depth
D�a ,b� and the peak volume pv�a ,b�. These quantities can
also be illustrated, for example, by labeling the stitch. Thus,
eight quantities are associated with each loop or helix stitch,
but only five quantities for left or right tail stitches that only
have one fluctuation bar.

III. DISCUSSION

This section discusses different aspects of stitch profiles,
what information they represent, and the choice of param-
eters and algorithm. The 48 kbp phage lambda genome
�GenBank accession number NC�001416� is used as a test
sequence, to illustrate stitch profiles and probability profiles
rather than the melting behavior vs biology of lambda �19�.
All stitch profiles were calculated for the whole 48 kbp se-
quence, but the interesting features are viewed in windows of
length 1–20 kbp. The stitch profiles in full length are better

viewed on a computer than in print �20�. Partition functions
were calculated in the Poland-Scheraga model using the al-
gorithm in Ref. �13� with �=1. The parameter set of Blake
and Delcourt �5� at �Na+�=0.075 M was applied, with the
loop entropy factor ��y−x�=
�2�y−x�+1�−� reparametrized
by Blossey and Carlon �21� using �=2.15 and 
=1.26
�104.

A. Alternative conformations

As previously stated, a stitch profile shows a number of
alternative conformations that coexist in equilibrium at a
given temperature. It does so in two ways: �1� each stitch
represents a fluctuational variation of its boundaries, and �2�
alternative rows of stitches represent alternative series of
loops and helices along the chain. Figure 6 shows a short
sequence window of a stitch profile, in which there are nine
loop stitches and nine helix stitches. Note how the fluctua-
tion bars and the lake bottoms of loops often coincide with
those of helices, although they were calculated indepen-
dently of each other. This is expected because a helix must
begin where a loop or tail ends, of course, so coinciding
fluctuation bars reflect the same boundary fluctuation. A row
of stitches is a series of stitches connected in a chain by
coinciding boundaries, and in the diagram, it forms a con-
tinuous path or thread, which alternates between the upper
and lower side. There are often several stitches to choose
among at a given boundary, resulting in a combinatorial
number of alternative rows of stitches. Each row of stitches
corresponds to a specific conformation �apart from the fluc-
tuational variation� of a region that is much longer than the
regions specified by the individual stitches. The stitch profile
in Fig. 6 is aligned with a schematic list of the seven alter-
native conformations corresponding to the possible rows of
stitches. These alternatives do not represent the only possible
conformations in that window—strictly speaking, any con-
formation has a nonzero probability—but they represent the
most stable conformations in terms of probability peak vol-
ume and depth.

Note that Fig. 6 also illustrates that stitches are sorted and
stacked vertically in the diagram according to their lengths
�b−�a. This is for aesthetic reasons only. There is no quan-
tity associated with the vertical axis. Fluctuation bars are
also placed on different levels to avoid overlap.

B. Correlations and cooperativity

DNA cooperativity �14� is the presence of certain long-
range correlations, that should be distinguished from the
long-range interactions embedded in the loop entropy factor
��y−x�. In a probability profile, cooperativity appear as the
characteristic plateaus that indicate the tendency of blocks of
basepairs to “melt as one”—being either all 0’s or all 1’s.
Base pairs within such a cooperative region are strongly cor-
related. This aspect of cooperativity is also prominent in a
stitch profile, where the block organization is shown more
specifically. For comparison, Fig. 7 shows a stitch profile and
a probability profile of the same piece of DNA. Stitches in
the diagram are labeled with their peak volumes. As can be

FIG. 5. Eight quantities characterize a loop stitch.
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seen, plateaus in the probability profile can be identified with
one or more stitches where there are correspondences in po-
sition and between the peak volumes and the plateau height
relative to surrounding plateaus.

In addition to the strong correlations inside a cooperative
region, there are weaker correlations over longer distances.
For example, a certain loop at one site can influence what
loops that can exist at a distant site. Information about such
correlations across one or more stitch boundaries may be
derived from the alternative rows of stitches that indicate the
possible multiloop conformations. However, this has yet to
be developed formally.

It can be expected that stitch profiles represent DNA co-
operativity better than probability profiles, when considering
the types of probabilities involved: Correlations between
base pairs xi and xj can be formulated using conditional

probabilities p�xi 
xj�. Conditional probabilities cannot be de-
rived from a probability profile p�xi� alone, but they can be
derived using block probabilities p�xi . . .xj�.

Figure 7 also illustrates that some stitches have a dead
end, that is, a boundary that does not coincide with other
stitches’ boundaries. A row of stitches can not be continued
at a dead end. Stitches with dead ends typically have low
peak volumes. Dead ends exist because the continuation of a
row splits up in several stitches that all have peak volumes
below the cutoff and are therefore not included. It is possible
to make stitch profiles without dead ends by replacing the
simple cutoff selection with some other appropriate method.

C. The parameters Dmax and pc

We have seen in Fig. 4 how Dmax controls the lakes found
by the MAXDEEP algorithm. An effect of increasing Dmax is to

FIG. 6. A stitch profile �in the
box� represents a number of alter-
native conformations. In this ex-
ample, there are seven possible
conformations listed schemati-
cally below the box. The param-
eters are Dmax=3, pc=0.02, and
T=81.9 °C and the sequence win-
dow is 35.5–37 kbp.

FIG. 7. �Color online� Comparison of a stitch profile and a probability profile, both calculated at T�90 °C where the helicity is �
=0.1. The curve in the middle �in red� is the probability profile 1− pbp�x� and it varies between 0 and 1 �vertical axis not shown�. Each stitch
is labeled with its peak volume pv in percent. The parameters are Dmax=3 and pc=0.02 and the sequence window is 11–17.4 kbp.
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increase the widths of the fluctuation bars �i.e., lakes� in a
stitch profile. Another effect has to do with the hierarchical
merging of lakes: In Fig. 7, the fluctuation bars correspond to
the sloping parts of the probability profile. However, these
sloping parts contain smaller plateaus. Decreasing Dmax can
reveal this internal structure, by splitting a stitch into several
stitches with smaller fluctuation bars.

Figure 8 illustrates the role of pc. When pc is lowered, an
extra set of stitches is added to the stitch profile. pc does not
modify the stitches as found by the MAXDEEP algorithm, it
only controls how many of them are included in the diagram.
The extra stitches represent rare events �low probabilities�,
and they provide a more finegrained picture like higher order
terms in an expansion. The number of stitches in a stitch
profile directly depends on pc, but it also depends on Dmax
indirectly, because the peak volumes depend on the widths of
lakes and frames.

The stitch profiles made using this article’s methods de-
pend on the values of Dmax and pc. The choice of these val-
ues depends on what we want to see. One could seek for
alternative methods that are parameterfree or only use one
parameter by applying, for example, an optimization scheme
and some optimality criterion. But in my opinion, reducing
the number of parameters would only hide the fact that the
peak finding task involves two different types of choice: �1�
lumping together related events into a peak and �2� selecting
what peaks to include. The cutoff selection method using pc
is simple to program, requires only little computer power,
and can reuse data from a stitch profile that has a lower
cutoff. Therefore, pc can be used in practice for “fine-tuning”
by trying out different values iteratively. In this way, we can
make a stitch profile with a certain total number of stitches.
Or a stitch profile with a certain maximum height of the
stackings of stitches in the diagram, which would limit the
visual complexity �cf. Fig. 8�.

D. Ensemble representation

The alternative conformations represented by a stitch pro-
file are few in numbers compared to the total number 2N of
possible conformations. But they may constitute a consider-
able fraction of the ensemble in terms of statistical weight. Is
this fraction big or small? A direct answer would be obtained
by comparing the total partition function Z with the partition
function restricted to the stitch profile conformations. In-
stead, we take a graphical approach that relates peak volumes
to base pairing probabilities. A stitch profile provides upper
and lower bounds of the corresponding probability profile.
For example, the presence of a loop stitch as in Fig. 5 im-
plies that base pairs in that region are melted with probability
greater than the peak volume. Or more precisely, 1− pbp�x�
� pv�a ,b� for LR�a��x�LL�b�. Stitches that overlap are
mutually exclusive, so we can sum over stitches to obtain
bounds as follows. Recall that an indicator function is de-
fined as

I�i,j��x� = �1 for x � �i, j� ,

0 otherwise.
� �32�

Then plow�x�� pbp�x�� pup�x�, where

pup�x� = 1 − �
left tail a

I�1,LL�a�−1��x�pv�a�

− �
loop �a,b�

I�LR�a�+1,LL�b�−1��x�pv�a,b�

− �
right tail a

I�LR�a�+1,N��x�pv�a� , �33�

and

plow�x� = �
helix �a,b�

I�LR�a�,LL�b���x�pv�a,b� . �34�

Figure 9 shows the probability profile 1− pbp�x� from Fig. 7,
together with its two bounds calculated using the stitch pro-
file in Fig. 7 and Eqs. �33� and �34�. The three curves are
quite close. The two bounding curves consist of vertical and
horizontal lines because of the block nature of the stitch pro-
file. Given this constraint, they almost come as close as pos-
sible to the probability profile. The probability profile can
apparently be reproduced from the stitch profile with only a
small error. This suggests that the conformations represented
by the stitch profile constitute a majority of the ensemble in
terms of statistical weight.

FIG. 8. �Color online� Extra stitches are included when the cut-
off pc is lowered. The first stitch profile �pc=0.02� contains stitches
with peak volumes pv�0.02. The second stitch profile �pc

=0.001� contains the same stitches as the first one �in blue�, plus an
extra set of stitches with peak volumes 0.001� pv�0.02 �in red�.
The other parameters are Dmax=3 and T�80.6 °C and the se-
quence window is 24–27.7 kbp.

FIG. 9. �Color online� The probability profile 1− pbp�x� of Fig. 7
is plotted here �in red� with its upper and lower bounds �in blue�,
1− plow�x� and 1− pup�x�, obtained from the stitch profile.
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E. Predicting metastable conformations

A depth between zero and Dmax is associated with each
stitch in a stitch profile. A depth relates to the landscape
picture, but it actually characterizes the probabilities of
boundary positions: The probability of a boundary in the
fluctuation interval L�a� to be located at �a is 10D�a� times
greater than the probability of being at LL�a� or LR�a�.

The landscape picture of lakes confined by barriers has
been borrowed in this article for the purpose of probability
peak finding. This should be distinguished from the usual
purpose of describing the nonequilibrium behavior of sys-
tems that are “trapped” in metastable states �16�. Neverthe-
less, an idea of dynamics is implicit when talking about fluc-
tuations. Are the fluctuation bars related to actual fluctuations
over time?

In a dynamics interpretation, a 1D lake L�a� describes the
ranges of the diffusion of a boundary position on timescale
��10D�a�. A stitch profile would then predict the ranges of
fluctuations that can be observed in an experiment during
time ��10Dmax with an empirical constant of proportionality.
However, this timescales interpretation is preliminary until
the rates of nucleation events creating new loops, tails, and
helices are accounted for. If the depths are related to times-
cales, a possible application of stitch profiles is to predict
metastable conformations that could play an important role
in intracellular DNA or other nonequilibrium situations.
Stitches that have large depths �i.e., long-lived� and small
peak volumes �i.e., rare� are expected to indicate metastable
conformations. They can be easily found using a slightly
modified cutoff selection method. It is more difficult to de-
tect such conformations in a probability profile because of
their low probabilities.

F. Applications

In conclusion, peaks in the block probabilities �Eqs.
�1�–�4�� can be found and represented as stitches in a stitch
profile. A stitch profile indicates the sizes and locations of
loops, tails and helical regions, their probabilities and
“depths,” and how they fluctuate. Multi-loop conformations
can be derived from the alternative rows of stitches, which
may show correlations between distant stitches. A stitch pro-
file thus predicts the conformations of partly melted DNA
and can account for a majority of the conformational en-
semble in terms of the base pairing probabilities.

Stitch profiles are motivated by the general idea that a
better prediction of DNA’s conformational behavior may
contribute to a better understanding of DNA’s functional be-
havior, when there is a structure-function relationship. Strand
separation is at the heart of various processes that occur in
chromatin and chromosomes �2�. The question is as follows:
What role does the sequence dependence of loop stabilities
as predicted for DNA melting play in biology? It is reason-

able to believe that the low stability of AT-rich regions is
important in origins of replication �2� and in transcription
initiation �22�. Furthermore, bioinformatic evidence points at
more extensive and not yet explained correlations in some
genomes between the predicted melting properties and the
organization along the sequence of exons, introns, and other
genetic elements �19,23–26�. There are different hypotheses.
One view is that DNA mainly is digital information storage
and that such correlations is a secondary effect reflecting, for
example, varying compositions of proteins �27�. Another
view is that DNA is also analog and that loop stabilities
and/or other sequence dependent biophysical properties of
DNA contribute actively in different biological mechanisms.
Some more or less speculative examples are: recombination
and crossover, sister chromatid adhesion, DNA-protein inter-
actions, and intron insertion �28�. DNA conformational
changes in a cell are not driven by temperature changes, but
rather by molecular forces and interactions. Why then are
DNA melting predictions relevant? The Poland-Scheraga
model deals with in vitro conditions that are far from the
conditions in chromatin: crowding �29� is not accounted for
in the loop entropy factor, condensation and protein interac-
tions are missing, and topology and chromosomal geography
is not accounted for. Fortunately, the correlations found by
Yeramian and others suggest a robustness of the predicted
melting properties. Stitch profiles may also apply to intrac-
ellular DNA.

As mentioned in the Introduction, the development of
stitch profiles is also motivated by new single molecule tech-
niques, in which some of the predicted properties could be
measured. For example, it would be interesting to compare
with measurements of bubble sizes and their statistical
weights �9�, positions and stabilities of “tails” �8�, and
bubble lifetimes �7�. As explained in the previous section, it
is an open question how the depths of stitches relate to the
lifetimes of the corresponding conformational features.

Stitch profiles may supplement the use of ordinary melt-
ing profiles in the design and interpretation of in vitro experi-
ments such as gel electrophoresis �30,31� and in the design
of probes and primers for PCR and microarrays �32�. For
example, stitch profiles emphasize the ensemble aspect and
may thereby predict some features of gel experimental data.
For short DNAs, however, it is relevant to consider also sec-
ondary structure, slippage and mismatches �33,34�, that are
not accounted for in the Poland-Scheraga model.

A web server for computing stitch profiles has been made
available at http://stitchprofiles.uio.no �35�.
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